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Abstract

Stationary iterative methods for solving systems of linear equations are con-

sidered by some as out of date and out of favor, as compared to methods based

on Krylov subspace iterations. However, these methods are still useful in many

circumstances because they are easier to implement and, more importantly,

can be used as pre-conditioners in combination with Krylov-subspace methods.

In this note, we briefly introduce the fundamental ideas of stationary iterative

methods.

1 Introduction

We consider solving a linear system of equations

Ax = b, (1)

where we will always assume, unless specified otherwise, that A is n by n and real,

i.e., A ∈ <n×n, nonsingular, and the right-hand side (RHS) b ∈ <n is nonzero.

For any nonsingular matrix Q ∈ <n×n, one can rewrite the system into an equiv-

alent form:

Ax = b ⇔ x = Mx+ c, (2)

1



where,

M = I −Q−1A, c = Q−1b, (3)

The equivalence can be easily seen from

Mx+ c = x+Q−1(b− Ax). (4)

Based on the equation x = Mx + c, we can derive a stationary iterative method

of the form: given an initial guess x0 ∈ <n, for k = 0, 1, · · · , do

xk+1 = Mxk + c, (5)

until some stopping criterion is met. Methods of this form are called stationary

because we do exactly the same thing at every iteration, which is to multiply the

iterate by M and add to it the c vector.

Let x∗ be the solution to Ax = b or equivalently, let it satisfy

x∗ = Mx∗ + c. (6)

Subtracting (6) from (5), we have

xk+1 − x∗ = M(xk − x∗). (7)

Therefore, for any vector norm ‖ · ‖,

‖xk+1 − x∗‖ ≤ ‖M‖‖xk − x∗‖, (8)

where by convention the matrix norm is the one induced by the given vector norm.

Recall an induced matrix norm is defined by

‖M‖ := max
x 6=0

‖Mx‖
‖x‖

.

It is clear from (8) that after every iteration the error, as is measured by the given

norm, is at least reduced by a fixed factor of ‖M‖ whenever ‖M‖ is less than one.

Therefore, we have a sufficient condition for convergence.
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Theorem 1. Let x∗ satisfy x∗ = Mx∗ + c. The stationary iterative method (5)

converges, i.e., for any initial guess x0,

lim
k→∞

xk = x∗,

if ‖M‖ < 1 for some induced matrix norm.

We note that ‖M‖ < 1 implies that I −M = Q−1A is nonsingular, thus so is A.

We still have the freedom to choose the nonsingular matrix Q, hence the iteration

matrix M = I − Q−1A. Noting that Mx = x − Q−1(Ax), to make the iterative

method practical we need to choose Q so that solving the linear system Qx = d is

very inexpensive, much more so than solving the original system.

We have two central questions: (1) how to choose the matrix Q, and (2) for given

A and Q, whether or not the method converges?

2 Jacobi method

From Wikipedia, the free encyclopedia, it reads

“The Jacobi method is an algorithm in linear algebra for determining the

solutions of a system of linear equations with largest absolute values in

each row and column dominated by the diagonal element. Each diagonal

element is solved for, and an approximate value plugged in. The process

is then iterated until it converges. The method is named after German

mathematician Carl Gustav Jakob Jacobi.”

I would not call the above a clear description of the Jacobi method (in fact, some

statements are technically wrong), though it at least informs us that Jacobi was a

German mathematician.
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In the Jacobi method, Q is chosen as the diagonal matrix formed by the diagonal

of A; that is, Q = D where

Dij =

 Aii, i = j,

0, i 6= j.
(9)

Therefore, the Jacobi method can be written into the following scheme:

x← x+D−1(b− Ax). (10)

The idea behind the Jacobi method is simple. At each iteration, one solves the i-th

equation in Ax = b for a new value of xi, the i-th variable in x, while fixing all the

other variables at their values in the prior iteration.

In Matlab, (10) could be implemented as

r = b− A ∗ x; x = x + invd .∗ r;

where r is the current residual and invd = 1./diag(A).

A natural stopping criterion is that the relative residual is less than some appro-

priately chosen tolerance ε > 0:

‖b− Ax‖
1 + ‖b‖

< ε, (11)

where in the denominator one is added to the norm of b to guard against the case of

an excessively small right-hand side b.

When is the Jacobi method convergent? Let us inspect the `∞ norm of its corre-

sponding iteration matrix M = I−D−1A (which is the maximum row sum in absolute

value). Since the diagonal of M is zero, we have

‖M‖∞ = max
1≤i≤n

∑
j 6=i

|aij|
|aii|

,

where in the summation j is running and i is fixed. Therefore,

|aii| >
∑
j 6=i

|aij|, ∀i ⇒ ‖M‖∞ < 1. (12)
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A matrix satisfying the left inequality in (12) is called row strictly diagonally dom-

inant. Similarly, a matrix is called column strictly diagonally dominant if for each

column the absolute value of the diagonal element is great than the sum of the abso-

lute values of all the off-diagonal elements in that column.

Proposition 1. If A is row strictly diagonally dominant, then the Jacobi method

converges from any initial guess.

This theorem does not say that if a matrix is not strictly diagonally dominant,

then the Jacobi method does not converge. It provides a sufficient, but not necessary,

condition for convergence.

Now what if A is column but not row strictly diagonally dominant? In this case,

we can measure the errors in the vector norm ‖ · ‖D defined by

‖x‖D := ‖Dx‖1,

which induces the matrix norm ‖M‖D ≡ ‖D(·)D−1‖1 since

‖Mx‖D
‖x‖D

=
‖DMx‖1
‖Dx‖1

=
‖DMD−1(Dx)‖1

‖Dx‖1
.

Observe that

DMD−1 = D(I −D−1A)D−1 = I − AD−1.

Hence

‖M‖D = ‖I − AD−1‖1 = max
1≤j≤n

∑
i 6=j

|aij|
|ajj|

< 1

whenever A is column strictly diagonally dominant. As a result, the theorem below

follows.

Theorem 2. If A is, either row or column, strictly diagonally dominant then the

Jacobi method converges from any initial guess.
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3 Fundamental Theorem of Convergence

We already mentioned that Theorem 1 is only a sufficient condition. The following

theorem gives a necessary and sufficient condition in terms of the spectral radius of

M , defined to be

ρ(M) = max{|λ| : det(M − λI) = 0}, (13)

that is, the largest modulus over the set of eigenvalues of M .

Theorem 3. The stationary iterative method (5) converges from any initial guess if

and only if

ρ(M) < 1. (14)

To prove the theorem, we will make use of the following lemma.

Lemma 1. For any B ∈ Cn×n,

ρ(B) = inf
‖·‖
‖B‖, (15)

where the infimum is taken over all induced matrix norms.

Proof. Obviously, in any vector norm and for any eigen-pair (λ, x) of B,

Bx = λx ⇒ |λ|‖x‖ = ‖Bx‖ ≤ ‖B‖‖x‖ ⇒ |λ| ≤ ‖B‖ ⇒ ρ(B) ≤ ‖B‖.

Indeed ρ(B) is a lower bound of ‖B‖ over all induced norms. We prove (15) by

showing that for any ε > 0, there exists a nonsingular matrix S that defines an

induced norm ‖ · ‖S := ‖S(·)S−1‖1 such that ‖B‖S ≤ ρ(B) + ε.

By the well-know Schur’s theorem, any square matrix is similar to a upper trian-

gular matrix. Namely, PBP−1 = D + U where D is diagonal and U is strictly upper

triangular. Furthermore, let T be the diagonal matrix with

Tii = 1/ti, i = 1, 2, · · · , n,

for any arbitrary t 6= 0. Then

TPBP−1T−1 = D + TUT−1.
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The strict upper triangular matrix Û := TUT−1 has elements

ûij =

 uijt
j−i, j > i,

0, j ≤ i,

where the nonzero elements can be made arbitrarily small by choosing t arbitrarily

small. Therefore, letting S = TP , we have shown that

SBS−1 = D + Û , ‖Û‖1 ≤ ε

for some t value chosen sufficiently small (however, Û 6= 0 unless B is diagonalizable).

Noting that D is a diagonal matrix with the eigenvalues of B on the diagonal, we see

that

‖B‖S := ‖SBS−1‖1 ≤ ‖D‖1 + ‖Û‖1 ≤ ρ(B) + ε.

Since ‖ · ‖S is an induced norm (please verify), we have proved the lemma.

Now we prove Theorem 3. Since ρ(M) < 1 implies ‖M‖ < 1 for some induced

norm ‖ · ‖, the sufficiency of condition (14) for convergence follows directly from

Theorem 1. For necessity, let us assume that there exists an eigen-pair (λ, d) of M

such that Md = λd and |λ| ≥ 1. Let x0 = x∗ + d, where x∗ is the solution, so that

e0 = x0 − x∗ = d. Then

‖ek‖ = ‖Mke0‖ = |λ|k‖e0‖ ≥ ‖d‖,

implying non-convergence. This establishes the necessity of condition (14) for con-

vergence from any initial point.

However, it should be clear from the proof that convergence from some initial

guesses is still possible even when ρ(M) ≥ 1.

4 Gauss-Seidel Method

Another popular stationary iterative method is the Gauss-Seidel (GS) method where

Q is chosen to be the lower triangular part, including the diagonal, of A. If one
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partitions A into three parts:

A = D − L− U

where D is the diagonal and −L (−U) is the strictly lower (upper) triangular part of

A. Then for the GS method

Q = D − L

is a lower triangular matrix (hence Qx = r is easy to solve), and the corresponding

iteration matrix M is

M = I − (D − L)−1A ≡ (D − L)−1U. (16)

Both the Jacobi and the GS method solves one equation (the i-th) for one variable

(the i-th) at a time. The difference is that while the Jacobi method fixes other

variables at their prior iteration values, the GS method immediately uses new values

once they become available. Therefore, the GS method generally converges faster.

Like the Jacobi method, the GS method has guaranteed convergence for strictly

diagonally dominant matrices.

Theorem 4. If A is, either row or column, strictly diagonally dominant then the

Gauss-Seisel method converges from any initial guess.

Proof. (i) Row case: In this case,

|aii| >
∑
j 6=i

|aij| ⇒ |aii| −
∑
j<i

|aij| >
∑
j>i

|aij|. (17)

We will show ρ(M) < 1. Let (λ, x) be an eigen-pair of M where x is scaled so that

|xj| ≤ 1 for j = 1, 2. · · · , n and |xi| = 1 for some index i. From the definition of M ,

Mx = λx ⇒ λ(Dx− Lx) = Ux.

Consider the i-th equation on the right,

λ

(
aiixi +

∑
j<i

aijxj

)
= −

∑
j>i

aijxj.
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Taking the moduli of both sides and in view of the fact that |xi| = 1 and |xj| ≤ 1, we

have

|λ|

(
|aii| −

∑
j<i

|aij|

)
≤
∑
j>i

|aij|,

Hence, in view of (17),

|λ| ≤
∑
j>i

|aij|/

(
|aii| −

∑
j<i

|aij|

)
< 1,

for all eigenvalues of M , confirming ρ(M) < 1.

(ii) Column case: In this case, consider ρ(M) = ρ(MT ) and apply a similarity

transformation (D − L)−TMT (D − L)T first. Details are left as an exercise.

Unlike the Jacobi method, the Gauss-Seidel method has guaranteed convergence

for another class of matrices.

Theorem 5. The Gauss-Seidel method converges from any initial guess if A is sym-

metric positive definite.

We sketch a proof as follows (the details are left as an exercise). Consider an

eigen-pair of M , (λ, x), and rearrange the equation Mx = λx. We have

Ax = (1− λ)Qx ⇒ x∗Ax = (1− λ)x∗Qx = (1− λ̄)x∗Q∗x > 0,

from which there holds

x∗Dx

x∗Ax
=
x∗(Q+Q∗ − A)x

x∗Ax
=

1− |λ|2

|1− λ|2
> 0.

Therefore, |λ| < 1, implying ρ(M) < 1.

5 SOR Method

SOR stands for Successive Over-Relaxation. It is an extension to the GS method.

For SOR, the diagonal is split into two parts and distributed to both the left and the
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right hand sides. That is,

Q =
1

ω
D − L, Q− A = U −

(
1− 1

ω

)
D.

Therefore,

M =

(
1

ω
D − L

)−1(
U −

(
1− 1

ω

)
D

)
,

or equivalently,

M(ω) = (D − ωL)−1(ωU + (1− ω)D). (18)

Obviously, ω = 1 gives the GS method. The extra degree of freedom in ω, if appropri-

ately chosen, can generally help reduce the spectral radius of ρ(M(ω)) from the value

of ρ(M(1)) for the GS method, though an optimal ω value is generally impossible or

impractical to calculate.

As an extension to the GS method, it is not surprising that the SOR method

converges for symmetric positive definite matrices.

Theorem 6. The SOR method converges from any initial guess if A is symmetric

positive definite and ω ∈ (0, 2).

The proof follows from a similar argument as for the GS method and is left as

an exercise. In addition, the condition ω ∈ (0, 2) is always necessary for convergence

from any initial guess.

Exercises

1. Prove that for any nonsingular matrix S ∈ <n×n, ‖S(·)S−1‖p is an induced

matrix norm in <n×n for p ≥ 1 (where ‖ · ‖p is the matrix norm induced by the

vector p-norm).

2. Prove the convergence of the GS method for column strictly diagonally domi-

nant matrices.
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3. Prove Theorem 5 in details following the given sketch.

4. Prove Theorem 6.

5. Prove that a necessary condition for SOR to converge is ω ∈ (0, 2). (Hint: First

show det(M(ω)) = (1− ω)n.)
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