CAAM 565: HW 10 (F2019)

Given real numbers x and $\lambda>0$, consider solving the non-smooth convex optimization problem

$$
t^{*}=\arg \min _{t} f(t)=\lambda|t|+\frac{1}{2}(t-x)^{2}
$$

We know that t^{*} satisfies

$$
0 \in \partial f\left(t^{*}\right)
$$

where $\partial f(t)$ is the sub-differential of f at t. It is clear that t^{*} is a function of x and λ. We will denote it as

$$
t^{*}=S_{\lambda}(x)
$$

Assignment: (Due on November 26 in class)
(1) Derive a formula for $S_{\lambda}(x)$. You derivation should be as rigorous as possible and the formula should be as simple as possible. Try condensing your formula into a one-liner if you can (hint: use the sign function and more).
(2) Submit a one-page, typed sheet for your formula and derivation.

