
CAAM 565 F2019

Image In-painting by Linear Programming

This problem is about in-painting (or de-noising) an image with a large number of missing pixels at random
locations via solving a linear program. The idea is to fill in the missing pixels so that the resulting image has a small
total variation (explained below).

We will use Matlab’s linear programming solver linprog which is designed to handle vector-valued variables.
On the other hand, images are matrices. Therefore, we need to treat images as vectors, and at the end transform the
solution vector back into an image.

Let the matrix X0 ∈ Rn×n represents a square gray-scale image (rectangular and color images can be similarly
handled as well) whose pixel values are only partially and approximately available on a subset of indices (or pixel
locations). Let the vector x0 ∈ Rn2

be the vectorized version of X0, obtained by stacking up the n columns of X0 (in
natural order) to form a long n2-vector x0 (in a mathematics notation x0 = vec(X0); or in MATLAB x0 = X0(:)).

We know neither X0 nor x0. The data available to us is a matrix X̂ ∈ Rn×n corresponding to the vector x̂ ∈ Rn2

whose elements satisfy

x̂i =

{
x0

i +noise, i ∈Ω,

255, otherwise,

where Ω is a subset of {1,2, · · · ,n2}, and 255 is the largest pixel value in an 8-bit gray scale color scheme, representing
a lost pixel value that is just filled with a white dot. See Figure 1, for example.

Left: Original.   Right: Contaminated

Figure 1: Available data for an image.

Can we reconstruct x0, rather accurately, from the partial and approximate data x̂Ω (consisting of all the available
pixel values with indices in Ω)? The answer is a sound YES provided that the subset Ω is “sufficient” in a certain
sense and the noise level is sufficiently low. How do we do it?

Let m = |Ω| be the total number of indices in Ω, and S ∈ Rm×n2
be the sub-matrix of the n2 by n2 identity matrix

consisting of the rows whose indices are in Ω. We will solve the following `1-minimization problem to reconstruct the
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image:
minx ‖Ex‖1

s.t. Sx = x̂Ω

x≥ 0.
(1)

What are the sizes of S? How many nonzero elements it has?
The constraint equation Sx = x̂Ω insists that the recovered image (represented by x) should match the pixel values

of x̂ on the subset Ω which should be correct within a noise level. In addition, we impose nonnegativity because
pixel values are nonnegative. By solving this problem, we fill in the missing pixel values while making the objective
function ‖Ex‖1 small. The function ‖Ex‖1 is called a total variation (or TV) of the image which is represented by x.
We choose to minimize this TV function simply because natural images usually have small total variations.

We now discuss the matrix E. First consider the one-dimensional difference matrix

D =


1 −1 0
0 1 −1 0

. . . . . .

1 −1

 ∈ R(n−1)×n. (2)

For a 2-dimensional image X , good results can be obtained by taking differences in both horizontal and vertical
directions, giving two matrices DX and XDT . We vectorize both DX and XDT , and then stack the two into a long
vector. By taking the `1-norm of the long vector, we get a version of two-dimensional TV function ‖Ex‖1 in (1) (other
versions do exist). E is the matrix representation of the above actions on the image x = vec(X); that is,

Ex =

[
vec(DX)

vec(XDT )

]
.

To have an explicit form for the matrix E, it is most convenient to use matrix Kronecker product “⊗” (learn more of
Kronecker products by yourself), which gives

E =

[
I⊗D
D⊗ I

]
, (3)

where I is the n× n identity matrix, and D is defined in (2). In MATLAB, the command kron performs Kronecker
products (study it). What are the sizes of E?

The optimization problem (1) is not yet a linear program, but can be equivalently transformed into one. To do so,
we first simplify the objective function by writing Ex = u−v for u,v ≥ 0 where u represents the positive part of Ex
(i.e., ui = (Ex)i if the latter is positive and ui = 0 otherwise). Similarly, v represents the absolute value of the negative
part. Under this transformation,

‖Ex‖1 = ∑
i
|(Ex)i|= ∑

i
ui +∑

i
vi = eT u+ eT v,

where e is the vector of all ones of an appropriate length.
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With the simplified objective function along with the condition Ex = u− v for u,v ≥ 0, we arrive at a linear
program below, which is equivalent to (1),

minx,u,v eT u+ eT v
s.t. Ex−u+v = 0

Sx = x̂Ω

x,u,v≥ 0,

(4)

which has 3 nonnegative, vector-valued variables x,u,v.
In order to call the Matlab linear program solver linprog, we need to put (4) into a standard form acceptable to

linprog; that is
minz f T z
s.t. Az = b

z≥ 0,
(5)

where f T = [0T eT eT ], z = [xT uT vT ]T , and

A =

(
E −I I
S 0 0

)
. (6)

What is b in (5)? What are the sizes of f in (5)? What are the sizes of I and A in (6)?

Tasks

Write a MATLAB function to compute a reconstructed image (matrix) X , from the available data matrix X̂ and the index
set Ω, by solving the standard form linear program (5), or another equivalent form of it, using linprog. Specifically,
your function has the interface

function X = myInpaint(Xh, Omega)

where the input arguments represent data X̂ and Ω, respectively, and the output is the reconstructed image. The
function performs the following steps:

• Figure out relevant sizes (n, m and so on) from the two input arguments.

• Construct the E matrix according to (3) and the S matrix.

• Construct the A matrix according to (6), and the f and b vectors.

• Call MATLAB linprog to solve the linear program (5) to get z.

• Extract the image x from z and reshape it into a matrix X for output.

Be sure that you use sparse matrices to construct E, S and A. For example, instead of using eye to generate identity
matrices, you should use speye to generate sparse identity matrices.

Run the test script test inpaint.p on two data sets: data1 inpaint.mat and data2 inpaint.mat. Without
your code, the script runs the instructor’s code yzInpaint.p only. All these files are available online. First experiment
on the first data set (containing a 256 by 256 image) until your code works. Then try the second data set (containing a
512 by 512 image). Finally, run the test script on both images to get a total score.

3


