Solution of Linear Programming Problems with Matlab

Notation

- The transposition operation is denoted by a superscript T (apostrophe in Matlab),

$$
[1,2,3]^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]^{T}=[1,2,3], \quad\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

- Given two (row or column) vectors a and b with components a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, the notation

$$
a \leq b \quad \text { or } \quad a \geq b
$$

is a shorthand notation for

$$
a_{i} \leq b_{i} \quad \text { or } \quad a_{i} \geq b_{i} \quad \text { for all } \quad 1 \leq i \leq n
$$

Definition 1. Let f be a column vector of length n, b a column vector of length m, and let A be a $m \times n$-matrix.

A linear program associated with f, A, and b is the minimum problem

$$
\begin{equation*}
\min f^{T} x \tag{1}
\end{equation*}
$$

or the maximum problem

$$
\begin{equation*}
\max f^{T} x \tag{2}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
A x \leq b \tag{3}
\end{equation*}
$$

Note that x is a column vector of length n.
The general version of a linear program may involve inequality constraints as well as equality constraints:

Definition 2. Let f be a column vector of length n, b a column vector of length m, $b_{e q}$ a column vector of length k, and let A and $A_{e q}$ be $m \times n$ and $k \times n$ matrices, respectively.

A linear program associated with $f, A, b, A_{e q}, b_{e q}$ is the minimum problem (1) or the maximum problem (2), subject to the inequality constraint (3) and the equality constraint

$$
\begin{equation*}
A_{e q} x=b_{e q} \tag{4}
\end{equation*}
$$

Example. The winemaker example led us to the following problem:

$$
12 x_{1}+7 x_{2}=\max
$$

subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 10,000 \\
3 x_{1}+2 x_{2} & \leq 16,000 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

If we define

$$
f=\left[\begin{array}{c}
12 \\
7
\end{array}\right], \quad b=\left[\begin{array}{c}
10,000 \\
16,000 \\
0 \\
0
\end{array}\right], \quad A=\left[\begin{array}{rr}
2 & 1 \\
3 & 2 \\
-1 & 0 \\
0 & -1
\end{array}\right]
$$

this problem can be identified with the linear programming maximum problem associated with f, A, b. Likewise it can be identified with the linear programming minimum problem associated with $-f, A, b$.

Solution of linear programming minimum problems with Matlab

Matlab provides the command linprog to find the minimizer (solution point) x of a linear programming minimum problem. Without equality constraint the syntax is

```
x=linprog(f,A,b)
```

If you also want to retrieve the minimal value $f_{\min }=\min _{x}\left(f^{T} x\right)$, type

```
[x,fmin]=linprog(f,A,b)
```

If inequality and equality constraint are given, use the commands

```
x=linprog(f,A,b,Aeq,beq)
```

or

```
[x,fmin]=linprog(f,A,b,Aeq,beq)
```

Let's solve our winemaker problem:

```
>> f=[-12;-7];b=[10000;16000;0;0];A=[2 1;3 2;-1 0;0 -1];
>> [x,fopt]=linprog(f,A,b)
Optimization terminated successfully.
x =
    1.0e+003 *
```

 3.99999999989665
 fopt $=$
-6.199999999973631e+004
This is the answer found in the class notes. The solution point is $(4000,2000)$, and the maximum profit is $\$ 6,2000$.

Practice Problems

In each of the following problems first identify vectors and matrices such that the optimization problem can be written in the form of Definitions 1 or 2 . Then use the linprog command to solve the linear program.

Problem 1.

$$
x_{1}+x_{2}=\max
$$

subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 29 \\
x_{1}+2 x_{2} & \leq 25 \\
x_{1} & \geq 2 \\
x_{2} & \geq 5
\end{aligned}
$$

Problem 2.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=\max
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 100 \\
x_{3}+x_{4} & \leq 70 \\
x_{2}+x_{3}+2 x_{4}+5 x_{5} & \leq 250, \\
x_{j} & \geq 0(1 \leq j \leq 5)
\end{aligned}
$$

Problem 3.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=\min
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & =100, \\
x_{3}+x_{4} & =70 \\
x_{2}+x_{3}+2 x_{4}+5 x_{5} & =250, \\
x_{j} & \geq 0(1 \leq j \leq 5) .
\end{aligned}
$$

