
Lecture Notes for CAAM 378

A Quick Introduction to Linear Programming

(DRAFT)

Yin Zhang

Sept. 25, 2007

2

Contents

1 What is Linear Programming? 5
1.1 A Toy Problem . 5
1.2 From Concrete to Abstract . 6
1.3 A Standard Form . 8
1.4 Feasibility and Solution Sets 10
1.5 Three Possibilities . 11

2 Vertices of the Feasibility Set 13
2.1 Matrix and Vector Partitions 13
2.2 Convex Set, Polyhedron and Extreme Point 15

2.2.1 Definitions . 15
2.2.2 Vertices of Feasibility Set 16
2.2.3 Basic Feasible Partitions and Vertices 18

2.3 Exercises . 19

3 Simplex Method: First Look 21
3.1 Terminology . 21
3.2 Reduced Linear Program . 21

3.2.1 Partitioning and Elimination 21
3.2.2 Reduced Linear Program 22
3.2.3 What Happens at A Basic Feasible Solution? 23

3.3 One Iteration of the Simplex Method 24
3.4 Do We Reach a New Vertex? 25
3.5 Exercises . 25

4 Simplex Method: More Details 27
4.1 How to Start Simplex? – Two Phases 27

4.1.1 Phase-I: An Auxiliary Problem 28

3

4 CONTENTS

4.1.2 Phase-II: The Original Problem 29
4.2 Main Implemetational Issues 30
4.3 Degeneracy, Cycling and Stalling 30
4.4 Exercises . 30

5 Duality and Optimality Conditions 33
5.1 Dual Linear Program . 33
5.2 Optimality Conditions . 35
5.3 How to find a dual? . 35
5.4 Exercises . 38

6 Primal-Dual Interior-Point Methods 39
6.1 Introduction . 39
6.2 A Primal-Dual Method . 40
6.3 Solving the Linear System . 43
6.4 Convergence Considerations 44

A Introduction to Newton’s Method 47
A.1 An Example . 50
A.2 Exercises . 51

Chapter 1

What is Linear Programming?

An optimization problem usually has three essential ingredients: a variable
vector x consisting of a set of unknowns to be determined, an objective
function of x to be optimized, and a set of constraints to be satisfied by x.

A linear program is an optimization problem where all involved functions
are linear in x; in particular, all the constraints are linear inequalities and
equalities. Linear programming is the subject of studying and solving linear
programs.

Linear programming was born during the second World War out of the
necessity of solving military logistic problems. It remains one of the most
used mathematical techniques in today’s modern societies.

1.1 A Toy Problem

A local furniture shop makes chairs and tables. The projected profits for
the two products are, respectively, $20 per chair and $30 per table. The
projected demand is 400 chairs and 100 tables. Each chair requires 2 cubic
feet of wood while each table requires 4 cubic feet. The shop has a total
amount of 1,000 cubic feet of wood in stock. How many chairs and tables
should the shop make in order to maximize its profit?

Let x1 be the number of chairs and x2 be the number of tables to be made.
These are the two variables, or unknowns, for this problem. The shop wants
to maximize its total profit, 20x1 + 30x2, subject to the constraints that (a)
the total amount of wood used to make the two products can not exceed the
1,000 cubic feet available, and (b) the numbers of chairs and tables to be

5

6 CHAPTER 1. WHAT IS LINEAR PROGRAMMING?

made should not exceed the demands. In additional, we should not forget
that the number of chairs and tables made need to be nonnegative. Putting
all these together, we have an optimization problem:

max 20x1 + 30x2
s.t. 2x1 + 4x2 ≤ 1000

0 ≤ x1 ≤ 400
0 ≤ x2 ≤ 100

(1.1)

where 20x1 + 30x2 is the objective function, “s.t.” is the shorthand for “sub-
ject to” which is followed by the constraints of this problem.

This optimization problem is clearly a linear program where all the func-
tions involved, both in the objective and in the constraints, are linear func-
tions of x1 and x2.

1.2 From Concrete to Abstract

Let us look at an abstract production model. A company produces n prod-
ucts using m kinds of materials. For the next month, the unit profits for
the n products are projected to be c1, c2, · · · , cn. The amounts of mate-
rials available to the company in the next month are b1, b2, · · · , bm. The
amount of material i consumed by a unit of product j is given by aij ≥ 0 for
i = 1, 2, · · · ,m and j = 1, 2, · · · , n (some aij could be zero if product j does
not use material i). The question facing the company is, given the limited
availability of materials, what quantity the company should produce in the
next month for each product in order to achieve the maximum total profit?

The decision variables are obviously the amounts produced for the n
products in the next month. Let us call them x1, x2, · · · , xn. The optimiza-
tion model is to maximize the total profit, subject to the material availability
constraints for all m materials, and the nonnegativity constraints on the n
variables.

In mathematical terms, the model is the following linear program:

1.2. FROM CONCRETE TO ABSTRACT 7

max c1x1 + c2x2 + · · ·+ cnxn
s.t. a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm
x1, x2, · · · , xn ≥ 0

(1.2)

The nonnegativity constraints can be vital, but are often forgotten by
beginners. Why is nonnegativity important here? First, in the above context,
it does not make sense to expect the company to produce a negative amount
of a product. Moreover, if one product, say product k, is not profitable,
corresponding to ck < 0, without the nonnegativity constraints the model
would produce a solution xk < 0 and generate a profit ckxk > 0. In fact,
since a negative amount of product k would not consume any material but
instead “generate” materials, one could drive the profit to infinity by forcing
xk to go to negative infinity. Hence, the model would be wrong had one
forgotten nonnegativity.

The linear program in (1.2) is tedious to write. One can shorten the
expressions using the summation notation. For example, the total profit can
be represented by the left-hand side instead of the right-hand side of the
following identity

n∑
i=1

cixi = c1x1 + c2x2 + · · ·+ cnxn.

However, a much more concise way is to use matrices and vectors. If we
let c = (c1, c2, · · · , cn)T and x = (x1, x2, · · · , xn)T . Then the total profit
becomes cTx. In a matrix-vector notation, the linear program (1.2) becomes

max cTx
s.t. Ax ≤ b

x ≥ 0
(1.3)

where A ∈ <m×n and b ∈ <m. The inequalities involving vectors are always
understood as component-wise comparisons. For example, the n-vector x ≥ 0
means that each component xi ≥ 0 for i = 1, 2, · · · , n.

8 CHAPTER 1. WHAT IS LINEAR PROGRAMMING?

1.3 A Standard Form

A linear program can have an objective of either minimization or maximiza-
tion, while its constraints can have any combination of linear inequalities
and equalities. It is impractical to study linear programs and to design algo-
rithms for them without introducing a so-called standard form – a unifying
framework encompassing most, if not all, individual forms of linear programs.
Different standard forms exist in the literature that may offer different advan-
tages under different circumstances. Here we will use the following standard
form:

min cTx
s.t. Ax = b

x ≥ 0
(1.4)

where the matrix A is m × n, b ∈ <m and c, x ∈ <n. The triple (A, b, c)
represents problem data that needs to be specified, and x is the variable to
be determined. In fact, once the size of A is given, the sizes of all the other
quantities follow accordingly from the rule of matrix multiplication.

In plain English, a standard linear program is one that is a minimization
problem with a set of equality constraints but no inequality constraints except
nonnegativity on all variables.

We will always assume that A has full rank, or in other words, the rows
of A are linearly independent which ensures that the equations in Ax = b
are consistent for any right-hand side b ∈ <m. We make this assumption to
simplify the matter without loss of generality, because redundant or inconsis-
tent linear equations can always be detected, and removed through standard
linear algebra techniques. Moreover, we normally require that the matrix A
have more columns than rows, that is m < n. This requirement, together
with the full rank of A, ensures that there are infinitely many solutions to
the equation Ax = b, leaving degrees of freedom for nonnegative and optimal
solutions.

A linear program is said to be equivalent to another linear program if
an optimal solution of the former, if it exists, can be obtained from an op-
timal solution of the latter through some simple algebraic operations. This
equivalence allows one to solve one and obtain a solution to the other.

We claim that every linear program is equivalent to a standard-form lin-
ear program through a transformation, which usually requires adding extra
variables and constraints. Obviously, maximizing a function is equivalent to
minimizing the negative of the function. A common trick to transform an

1.3. A STANDARD FORM 9

inequality aTx ≤ β into an equivalent equality is to add a so-called slack
variable η so that

aTx ≤ β ⇐⇒ aTx+ η = β, η ≥ 0.

Let us consider the toy problem (1.1). With the addition of slack variables
x3, x4, x5 (we can name them anyway we want), we transform the linear
program on the left to the one on the right:

max 20x1 + 30x2
s.t. 2x1 + 4x2 ≤ 1000

x1 ≤ 400
x2 ≤ 100
x1, x2 ≥ 0

=⇒

max 20x1 + 30x2
s.t. 2x1 + 4x2 + x3 = 1000

x1 + x4 = 400
x2 + x5 = 100

x1, x2, x3, x4, x5 ≥ 0

After switching to minimization, we turn the linear program on the right to
an equivalent linear program of the standard form:

min −20x1 − 30x2 + 0x3 + 0x4 + 0x5
s.t. 2x1 + 4x2 + x3 + 0x4 + 0x5 = 1000

x1 + 0x2 + 0x3 + x4 + 0x5 = 400
0x1 + x2 + 0x3 + 0x4 + x5 = 100

x1, x2, x3, x4, x5 ≥ 0

(1.5)

where cT = −(20 30 0 0 0), b is unchanged and

A =

 2 4 1 0 0
1 0 0 1 0
0 1 0 0 1

 .

This new coefficient matrix is obtained by appending the 3-by-3 identity
matrix to the right of the original coefficient matrix.

Similarly, the general linear program (1.3) can be transformed into

min −cTx
s.t. Ax+ s = b

x, s ≥ 0
(1.6)

where s ∈ <m is the slack variable vector. This linear program is in the
standard form because it is a minimization problem with only equality con-
straints and nonnegativity on all variables. The variable in (1.6) consists of

10 CHAPTER 1. WHAT IS LINEAR PROGRAMMING?

x ∈ <n and s ∈ <m, and the new data triple is obtained by the construction

A→ [A I], b→ b, c→
(
−c
0

)
,

where I is the m-by-m identity matrix and 0 ∈ <m.

1.4 Feasibility and Solution Sets

Let us call the following set

F = {x ∈ <n : Ax = b, x ≥ 0} ⊂ <n (1.7)

the feasibility set of the linear program (1.4). Points in the feasibility set
are called feasible points, from which we seek an optimal solution x∗ that
minimizes the objective function cTx. With the help of the feasibility set
notation, we can write our standard linear program into a concise form

min{cTx : x ∈ F}. (1.8)

A polyhedron in <n is a subset of <n defined by all points satisfying a finite
collection of linear inequalities and/or equalities. For example, a hyper-plane

{x ∈ <n : aTx = β}

is a polyhedron where a ∈ <n and β ∈ <, and a half-space

{x ∈ <n : aTx ≤ β}

is a polyhedron as well. In geometric terms, a polyhedron is nothing but
the intersection of a finite collection of hyper-planes and half-spaces. In
particular, the empty set and a singleton set (that contains only a single
point) are polyhedra.

Clearly, the feasibility set F in (1.7) for linear program (1.4) is a poly-
hedron in <n. It may be empty if some constraints are contradictory (say,
x1 ≤ −1 and x1 ≥ 1), or it may be an unbounded set, say,

F = {x ∈ <2 : x1 − x2 = 0, x ≥ 0} ⊂ <2, (1.9)

which is the half diagonal-line emitting from the origin towards infinity. Most
of the time, F will be a bounded, nonempty set. A bounded polyhedron is
called a polytope.

1.5. THREE POSSIBILITIES 11

The optimal solution set, or just solution set for short, of a linear pro-
gram consists of all feasible points that optimize its objective function. In
particular, we denote the solution set of the standard linear program (1.4)
or (1.8) as S. Since S ⊂ F , S is empty whenever F is empty. However, S
can be empty even if F is not.

The purpose of a linear programming algorithm is to determine whether
S is empty or not and, in the latter case, to find a member x∗ of S. In case
such an x∗ exists, we can write S = {x ∈ F : cTx = cTx∗} or

S = {x ∈ <n : cTx = cTx∗} ∩ F . (1.10)

That is, S is the intersection of a hyper-plane with the polyhedron F . Hence,
S itself is a polyhedron. If the intersection is a singleton S = {x∗}, then x∗

is the unique optimal solution; otherwise, there must exist infinitely many
optimal solutions to the linear program.

1.5 Three Possibilities

A linear program is infeasible if its feasibility set is empty; otherwise, it is
feasible.

A linear program is unbounded if it is feasible but its objective function
can be made arbitrarily “good”. For example, if a linear program is a mini-
mization problem and unbounded, then its objective value can be made ar-
bitrarily small while maintaining feasibility. In other words, we can drive the
objective value to negative infinity within the feasibility set. The situation is
similar for an unbounded maximization problem where we can drive the ob-
jective value to positive infinity. Clearly, a linear program is unbounded only
if its feasibility set is an unbounded set. However, a unbounded feasibility
set does not necessarily imply that the linear program itself is unbounded.

To make it clear, let us formally define the term unbounded for a set and
for a linear program. We say a set F is unbounded if there exists a sequence
{xk} ⊂ F such that ‖xk‖ → ∞ as k → ∞. On the other hand, we say a
linear program min{cTx : x ∈ F} is unbounded if there exists a sequence
{xk} ⊂ F such that cTxk → −∞ as k → ∞. Hence, for a linear program
the term unbounded means objective unbounded.

When the feasibility set F is unbounded, whether or not the correspond-
ing linear program is unbounded depends entirely on the objective function.

12 CHAPTER 1. WHAT IS LINEAR PROGRAMMING?

For example, consider F given by (1.9). The linear program

max{x1 + x2 : (x1, x2) ∈ F} = max{2x1 : x1 ≥ 0}

is unbounded. However, when the objective is changed to minimization in-
stead, the resulting linear program has an optimal solution at the origin.

If a linear program is feasible but not (objective) unbounded, then it must
achieve a finite optimal value within its feasibility set; in other words, it has
an optimal solution x∗ ∈ S ⊂ F .

To sum up, for any given linear program there are three possibilities:

1. The linear program is infeasible, i.e., F = ∅. In this case, S = ∅.

2. The linear program is feasible but (objective) unbounded. In this case,
F is an unbounded set, but S = ∅.

3. The linear program is feasible and has an optimal solution x∗ ∈ S ⊂ F .
In this case, the feasibility set F can be either unbounded or bounded.

These three possibilities imply that if F is both feasible and bounded,
then the corresponding linear program must have an optimal solution x∗ ∈
S ⊂ F , regardless of what objective it has.

Chapter 2

Vertices of the Feasibility Set

We have seen that both the feasibility set and the solution set of a linear
program are polyhedra in <n. Like polygons in two or three dimensional
spaces, polyhedra in <n generally have “corners” or vertices.

2.1 Matrix and Vector Partitions

It will be convenient for us to use matrix partitions in the development of
theory and algorithms for linear programming. This section introduces nec-
essary notations for partitioned matrices and vectors, which can be skipped
by advanced readers.

Consider a 3× 7 matrix

A =

 a11 a12 a13 a14 a15 a16 a17
a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37

 =
(
A1 A2 · · · A7

)
,

where Aj is the j-th column of A; i.e., Aj = (a1j a2j a3j)
T is a 3 × 1 vector

for j = 1, 2, · · · , 7. For any vector x ∈ <7,

Ax =

 a11x1 + a12x2 + · · ·+ a17x7
a21x1 + a22x2 + · · ·+ a27x7
a31x1 + a32x2 + · · ·+ a37x7

 =
7∑
j=1

Ajxj.

Let us partition the index set {1, 2, 3, 4, 5, 6, 7} into two subsets B and N
with an arbitrary order within each subset, say,

B = {5, 2, 4}, N = {1, 6, 7, 3}.

13

14 CHAPTER 2. VERTICES OF THE FEASIBILITY SET

Then AB and AN are, respectively, the 3 × 3 and 3 × 4 sub-matrices of A
whose columns are those of A corresponding to the indices and orders within
B and N , respectively. Namely,

AB = [A5 A2 A4], AN = [A1 A6 A7 A3].

Similarly, xB ∈ <3 and xN ∈ <4 are, respectively, sub-vectors of x whose
components are those of x corresponding to the indices and orders within B
and N , respectively. Namely,

xB = (x5 x2 x4)
T , xN = (x1 x6 x7 x3)

T .

Corresponding to the index-set partition (B,N),

Ax =
7∑
j=1

Ajxj =
∑
j∈B

Ajxj +
∑
j∈N

Ajxj = ABxB + ANxN .

Moreover, the linear system of equations Ax = b can be written as

ABxB + ANxN = b

for any right-hand side vector b ∈ <3.
Obviously, these notations can be extended to the general case where

A ∈ <m×n, x ∈ <n and b ∈ <m. For any index partition (B,N) with

B ∪N = {1, 2, · · · , n}, B ∩N = ∅, (2.1)

there holds

Ax = b ⇔ ABxB + ANxN = b, (2.2)

where the symbol “⇔” denotes equivalence. Moreover, if B contains m
indices (i.e., |B| = m) and the square matrix AB is nonsingular, there holds

Ax = b ⇔ xB = A−1B (b− ANxN). (2.3)

That is, we can solve the equation Ax = b to obtain xB as a function of xN .
Furthermore, in this case,

x ≥ 0 ⇔ A−1B (b− ANxN) ≥ 0, xN ≥ 0. (2.4)

2.2. CONVEX SET, POLYHEDRON AND EXTREME POINT 15

2.2 Convex Set, Polyhedron and Extreme Point

2.2.1 Definitions

Definition 1 (Convex Set). A set C ⊂ <n is a convex set if

x, y ∈ C ⇒ λx+ (1− λ)y ∈ C; ∀λ ∈ [0, 1];

that is, the line segment connecting any two members lies entirely in the set.
By this definition, an empty set is a convex set.

Definition 2 (Extreme Point). A point x is an extreme point of a convex
set C ⊂ <n if it does not lie in between any other two members of the set,
that is, for any y, z ∈ C such that y 6= x 6= z,

x 6= λy + (1− λ)z, ∀λ ∈ (0, 1).

Clearly, any extreme point must be on the boundary of the set and can
not be an interior point.

Definition 3 (Polyhedron and its vertices). A polyhedron in <n is a set of
points in <n defined by a finite collection of linear equalities and/or inequali-
ties (i.e., the intersection of a finite number of hyper-planes and half-spaces).
A bounded polyhedron is also called a polytope. An extreme point of a poly-
hedron is also called a vertex of the polyhedron.

Figure 2.1: Convex sets

Proposition 1. The following statements are true.

1. A hyperplane {x ∈ <n : aTx = β} is convex.

2. A half-space {x ∈ <n : aTx ≤ β} is convex.

16 CHAPTER 2. VERTICES OF THE FEASIBILITY SET

3. The intersection of a collection of convex sets is convex.

4. A polyhedron is convex.

The following facts will be useful for optimizing a linear function in closed
convex set C, that is,

min{cTx : x ∈ C ⊂ <n}. (2.5)

This is a problem more general than a linear program. It is called a convex
program.

Proposition 2. If a linear function cTx has a unique minimum (maximum)
on a closed convex set C, then the minimum (maximum) must be attained at
an extreme point of the set.

The proof is by contradiction. Suppose that the unique minimum is
attained at a non-extreme point x ∈ C, then there must exist two other
points y, z ∈ C such that cTx < cTy, cTx < cT z and x = λy+ (1−λ)z, where
λ ∈ (0, 1). Hence,

cTx = λcTy + (1− λ)cT z < λcTx+ (1− λ)cTx = cTx,

which is a contradiction.

2.2.2 Vertices of Feasibility Set

Let us examine closely a particular polyhedron – the feasibility set of our
standard linear program (1.4):

F = {x ∈ <n : Ax = b, x ≥ 0}, (2.6)

where the matrix A ∈ <m×n and the vector b ∈ <m are given. The vector
inequality x ≥ 0 is understood as component-wise, i.e., xi ≥ 0 for i =
1, 2, · · · , n. We will call F the “standard” polyhedron because we will treat
it as the representative of polyhedrons.

We will assume that (a) the matrix A has more columns than rows so
that m < n; and (b) the ranks of A is m. These assumptions guarantee that
in general the equation Ax = b will have infinitely many solutions. While the
first assumption will occur naturally from the context of linear programming,
the second one can always be achieved by a routine linear-algebra procedure
whenever the original matrix A is not full rank.

2.2. CONVEX SET, POLYHEDRON AND EXTREME POINT 17

Extreme points of a polyhedron are the “corners” of the set. They are
easy to tell only in two- or three-dimensional spaces where visualization is
possible. In high dimensional spaces, we need some algebraic characterization
for extreme points.

For any nonnegative vector x ∈ <n, we can define a natural index parti-
tion:

P ≡ P (x) := {i : xi > 0}, O ≡ O(x) := {i : xi = 0}, (2.7)

where we drop the dependence of P and O on x whenever it is clear from
the context. Furthermore, we assume that the indices within P and O are
arranged in some orders, even though how they are ordered is inconsequential.

Lemma 1. A point x ∈ F is an extreme point of F if and only if the matrix
AP (x) is of full column rank.

Proof. Without loss of generality, we assume that A = [AP AO] and xT =
[xTP xTO] (otherwise, a re-ordering will suffice). Clearly, Ax = APxP = b,
xP > 0 ∈ <|P | and xO = 0 ∈ <|O| with |P |+ |O| = n

We first prove the necessary condition by contradiction. Suppose x is an
extreme point of F but AP is not of full rank. Then there exists a nonzero
vector v ∈ <|P | such that Apv = 0. Moreover, there exists a sufficiently small
but positive scalar τ ∈ < such that xP ± τv ≥ 0 since xP > 0. Let

y =

(
xP + τv

0

)
∈ <n, z =

(
xP − τv

0

)
∈ <n,

then Ay = Az = b and y, z ≥ 0; that is, y, z ∈ F . Since

x =
1

2
y +

1

2
z

for x 6= y ∈ F and x 6= z ∈ F , we have arrived at a contradiction to the
hypothesis that x is an extreme point of F .

We now prove the sufficient condition by contradiction. Suppose that AP
is of full column rank but x is not an extreme point of F . Then there exist
distinct points y, z ∈ F with y 6= x 6= z such that for some λ ∈ (0, 1),(

xP
0

)
=

(
λyP + (1− λ)zP
λyO + (1− λ)zO

)
.

The nonnegativity of y and z implies that yO = zO = 0, but y 6= z, hence
yP − zP 6= 0. Therefore, since APyP = AP zP = b, AP (yP − zP) = 0,
contradicting to the hypothesis that AP is of full column rank.

18 CHAPTER 2. VERTICES OF THE FEASIBILITY SET

Theorem 1. Let F be defined in (2.6) where A ∈ <m×n has a rank equal
to m. A point x ∈ F is an extreme point (vertex) of F if and only if there
exists an index partition (B,N) of {1, 2, · · · , n} (see (2.1)) such that

|B| = rank(AB) = m, A−1B b ≥ 0, (2.8)

and
xB = A−1B b, xN = 0. (2.9)

Proof. Let condition (2.8) hold and x be defined as in (2.9). Since x ≥ 0 and

Ax = ABxB + ANxN = ABxB = b,

clearly x ∈ F and P (x) ⊂ B. Because the columns of AB are linearly
independent, so are those of AP (x). By Lemma 1, x is a vertex of F .

Now suppose that x is a vertex of F . By Lemma 1, AP := AP (x) has a
full column rank |P |. If |P | = m, then B = P satisfies the conditions (2.8)
and (2.9). On the other hand, if |P | < m, we can always expand the index
set P to a larger index set B so that P ⊂ B and |B| = m = rank(AB). For
such an index set B (which is generally not unique), both (2.8) and (2.9)
hold. This proves the theorem.

2.2.3 Basic Feasible Partitions and Vertices

Definition 4 (Basic Feasible Partition). An index partition (B,N) is a basic
feasible partition for the polyhedron F whenever (2.8) holds. Moreover, a
basic feasible partition is called nondegenerate if A−1B b > 0; otherwise it is
degenerate.

In view of Theorem 1, under the condition rank(A) = m we have the
following correspondence between the vertices of F and the basic feasible
partitions for F .

1. Each basic feasible partition corresponds to a vertex of F , which is
defined as in (2.9).

2. Each nondegenerate vertex of F corresponds to a basic feasible parti-
tion. In this case, P (x) = B.

3. In general, each degenerate vertex of F corresponds to multiple ba-
sic feasible partitions. In this case, |P (x)| < m and P (x) must be
expanded to B. Many such expansions exist.

2.3. EXERCISES 19

2.3 Exercises

1. Prove that the optimal solution set of a convex program defined in (2.5)
is a convex set.

2. Consider the polytope

F = {x ∈ <4 : x1 + x2 + x3 = 1, x2 + x4 = 1, x ≥ 0}.

(a) Use Lemma 1 to determine whether or not the following points are
vertices of F : (1, 0, 0, 1)T , (1

2
, 1
2
, 0, 1

2
)T , and give your reasons.

(b) Use Theorem 1 to verify that the point x = (0, 1, 0, 0)T is a vertex
of F . Find all possible index partitions so that the conditions of the
theorem hold.

20 CHAPTER 2. VERTICES OF THE FEASIBILITY SET

Chapter 3

Simplex Method: First Look

3.1 Terminology

Due to historical reasons, the following terminology has been widely used in
the linear programming literature.

• Feasible solution: A set of values for the vector x that satisfy all the
constraints, including the nonnegativity.

• Basic feasible solution: A feasible solution that has m basic vari-
ables taking nonnegative values and n − m nonbasic variables taking
zero values. In addition, the submatrix of A corresponging the basic
variables is an m by m nonsingular matrix. The simplex method works
exclusively with basic feasible solutions.

• Degenerate basic feasible solution: A basic feasible solution that
has one or more zero basic variable. On the other hand, all basic
variables are positive in a non-degenerate basic feasible solutions.

3.2 Reduced Linear Program

3.2.1 Partitioning and Elimination

Given an index partition

B ∪N = {1, 2, · · · , n}, B ∩N = ∅

21

22 CHAPTER 3. SIMPLEX METHOD: FIRST LOOK

such that the submatrix AB of A, formed by the columns A with indices in B,
is m×m and nonsingular (therefore, |B| = m and |N | = n−m). Similarly,
we define AN as the submatrix of A formed by the columns A with indices in
N . Accordingly, we partition x and c into [xB, xN] and [cB, cN], respectively.
That is,

{1, 2, · · · , n} → [B | N]
A → [AB | AN]
c → [cB | cN]
x → [xB | xN]

The actual ordering of indices inside B or N is immaterial as long as it is
consistent for all the portioned quantities.

Under such a partition where AB is nonsingular, we have the following
equivalence:

Ax = b ⇐⇒ ABxB + ANxN = b ⇐⇒ xB = A−1B (b− ANxN). (3.1)

In this way, the really independent variable is xN , on which xB is dependent.
Upon substituting the expression for xB into that for cTx, we have

cTx = cTBxB + cTNxN

= cTBA
−1
B b− cTBA−1B ANxN + cTNxN

= bT (A−TB cB) + (cN − ATNA−TB cB)TxN ;

or equivalently,

cTx = bTy + sTNxN , (3.2)

where we have used the short-hand notation:

y = A−TB cB and sN = cN − ATNy. (3.3)

Note that y and sN depend solely on the given data (A, b, c) and the given
partitioning, but independent of x. They will change as the partitioning
changes.

3.2.2 Reduced Linear Program

For any given basic feasible partition (B,N), we have used the equation
Ax = b to eliminate the variables in xB from the original LP problem. The

3.2. REDUCED LINEAR PROGRAM 23

reduced LP problem, corresponding to a basic feasible partition (B,N), has
no more equality constraints and involves only variables in xN .

min
xN

bTy + sTNxN

s.t. A−1B b− A−1B ANxN ≥ 0 (3.4)

xN ≥ 0.

The first inequality is nothing but the nonnegativity for xB. This reduced LP
is completely equivalent to the original LP. However, we can deduce useful
information from this reduced LP that is not apparent in the original LP.

3.2.3 What Happens at A Basic Feasible Solution?

If the partitioning is associated with a basic feasible solution, then B corre-
sponds to a “basis” and N to a “nonbasis” such that the “basic variables”
xB = A−1B b ≥ 0 and the “nonbasic variables” xN = 0. In this case, we observe
the following.

• Any feasible change that can be made to xN is to increase one or more
of its elements from zero to some positive value.

• If sN ≥ 0, then it is not possible to decrease the objective function
value by increasing one or more element of xN . Hence we can conclude
that the current basic feasible solution is optimal.

• On the other hand, if any element of sN is negative, we can try to
increase the corresponding variable in xN , say xj in terms of the original
indexing, as much as possible so long as we maintain the inequality
constraints in the reduced LP.

• When xj is increased from zero to t while all other elements of xN
remain at zero, then ANxN becomes tAj where Aj is the j-th column
of A.

• In the above case, the first inequality in the reduced LP reduces to

A−1B b ≥ tA−1B Aj.

• The problem is unbounded if the above inequality poses no restriction
on how large t can be, meaning that one can arbitrarily improve the
objective by indefinitely increases t.

24 CHAPTER 3. SIMPLEX METHOD: FIRST LOOK

3.3 One Iteration of the Simplex Method

Given date A ∈ <m×n, c ∈ <n and a basic feasible solution x ∈ <n along with
its corresponding index partition (B,N) with xN = 0 and xB = A−1B b ≥ 0.
The indices in B and N are, respectively, in arbitrary but fixed orders.

Step 1 (Dual estimates)
Solve ATBy = cB for y and compute sN = cN − ATNy.

Step 2 (Check optimality)
If all sN ≥ 0, stop “Optimum Reached”.

Step 3 (Select entering variable)
Choose an index q such that (sN)q < 0, and let j be the corresponding
(the q-th) index in N . The default choice is the most negative com-
ponent of sN . Here q is a local index for sN ∈ <n−m and j is a global
index for x ∈ <n. The variable xj, currently non-basic, will be entering
the basis.

Step 4 (Compute step)
Solve ABd = Aj for d ∈ <m where Aj is the j-th column of A. This
vector d will be used to update xB from its current value A−1B b to a
new value in order to maintain Ax = b as xj increases.

Step 5 (Check Objective Unboundedness)
If all d ≤ 0, stop “Objective Unbounded”.

Step 6 (Select leaving variable)
Compute the largest step length t so that A−1B b− td ≥ 0; namely,

t∗ = min
dk>0

{
(xB)k
dk

}
≡ (xB)p

dp
for some p ∈ {1, 2, · · · ,m}. (3.5)

Here the minimum occurs at (xB)p = xi for index i ∈ B, p is a local
index for xB ∈ <m and i is a global index for x ∈ <n. The variable xi,
currently basic, will be leaving the basis to become non-basic.

Step 7 (Update variables)
Let xj = t∗ and xB ⇐ xB − t∗d. Note that after the update the p-
th basic variable (xB)p ≡ xi is zero (it has left the basis and become
non-basic).

Step 8 (Update partition)
Move the index i from B to N and j from N to B (that is, i leaves the
basis and j enters the basis). Go to Step 1.

3.4. DO WE REACH A NEW VERTEX? 25

3.4 Do We Reach a New Vertex?

After each iteration, we certainly have a new partition B and N (though they
differ with the previous one by only a single index). With the new partition,
we have a new xB ≥ 0 and a new xN = 0. Therefore, if the new basis matrix,
say A+

B, is again nonsingular, then we have a new basic feasible solution.
Is the new basis matrix A+

B still nonsingular after each update? The
matrix A+

B is nonsingular if and only if A−1B A+
B is nonsingular (prove it by

youself). We note that A+
B differs from AB only in the r-th column where

the column Ai has been replaced by Aj. If we denote the k-th column of the
identity matrix by ek, then

A−1B (A+
Bek) = A−1B (ABek) = ek, ∀ k 6= r.

In addition, we note that the new p-th column of A+
B is Aj (where j is a

global index) that satisfies A−1B Aj = d. Therefore,

A−1B A+
B = [e1 · · · ep−1 d ep+1 · · · em].

This matrix is nonsingular if and only if the p-th element of d is nonzero.
For example, when m = 7 and p = 4,

A−1B A+
B =



1 0 0 d1 0 0 0
0 1 0 d2 0 0 0
0 0 1 d3 0 0 0
0 0 0 d4 0 0 0
0 0 0 d5 1 0 0
0 0 0 d6 0 1 0
0 0 0 d7 0 0 1


,

and
| det(A−1B A+

B)| = |d4|.
Since the p-th element of d satisfies dp > 0 (see equation (3.5)), we conclude
that indeed A+

B is nonsingular and the new feasible solution is indeed a basic
feasible solution, i.e., a vertex.

3.5 Exercises

1. Let A and B are two square matrices of the same size and A is nonsin-
gular. Prove that B is nonsingular if and only if A−1B is nonsingular.

26 CHAPTER 3. SIMPLEX METHOD: FIRST LOOK

Chapter 4

Simplex Method: More Details

4.1 How to Start Simplex? – Two Phases

Our simplex algorithm is constructed for solving the following standard form
of linear programs:

min cTx
s.t. Ax = b

x ≥ 0

where A is m × n. To start the algorithm, we need an initial basic feasible
solution (or a vexter for the feasibility set). In general, such an initial basic
feasible solution is not readily available. Some work is required.

To be absolutely clear, what we need is essentially a partition (B,N) of
the index set {1, 2, · · · , n}, with m indices in B, such that the basis matrix
AB is nonsingular and A−1B b ≥ 0. Then we let the m basic variables to be
xB = A−1B b and the rest of (non-basic) variables to be zeros. This gives us a
basic feasible solution needed.

Let us see how we can start the simplex algorithm to solve the following
LP:

min cTx
s.t. Ax ≤ b

x ≥ 0,
(4.1)

where again A is m× n. We already know that the main constraint Ax ≤ b
is equivalent to Ax + Is = b for s ≥ 0. By adding thd slack variable s, we
convert the LP into the standard form with m equations and n+m variables.
The coefficient matrix bacomes Â = [A I] which is m× (n+m).

27

28 CHAPTER 4. SIMPLEX METHOD: MORE DETAILS

Whenever b ≥ 0, the LP is clearly feasible since x = 0 satisfies the
constraints. It is also easy to construct an initial basic feasible solutiuon.
We can simply set x = 0 as the non-basic variables and s = b ≥ 0 as the
m basic variables. This way, we satisfy the equation Ax + Is = b and in
fact obtain a basic feasible solution. This is true becarse the corresponding
basis matrix is the identity matrix and Â−1B b = I ∗ b = b ≥ 0. If we order
our n + m variables in the order (x; s), then we have B = {1, 2, · · · , n} and
N = {n+ 1, n+ 2, · · · , n+m}. From this partition, we can start the simplex
method.

4.1.1 Phase-I: An Auxiliary Problem

When b is not nonnegative, however, things are more complicated. First of
all, we cannot easily tell whether the LP is feasible or not. Even it is feasible,
an initial basic feasible solution is not obvious. To handle this case, we need
to do a so-called phase-I procedure.

The purpose of phase-I is tow-folds. First, we would like to determine
whether the original LP is feasible or not. Second, we would like to construct
an initial basic feasible solution wheneven the original LP is feasible. Towards
this end, we consider a so-called auxiliary linear program.

Since x = 0 and s = b do not give a feasible solution when b has one or
more negative component, we consider adding another new scalar variable t,
called the auxiliary variable, that is chosen to make si = bi + t ≥ 0 for each
component si of s. However, since this auxiliary variable is inconsistent with
the original problem, we wish to eventually make it vanish if possible. The
auxiliary problem is the following.

min t
s.t. Ax+ s− te = b

x, s, t ≥ 0.
(4.2)

where t is the auxiliary scalar variable and e = (1, 1, · · · , 1)T ∈ <m is the
vector of all ones. This linear program is always feasible and cannot be
unbounded (prove it by yourself).

We will make the auxiliary variable t one of the basix variables and con-
struct a basic feasible solution in the following manner. Recall that our of
the n + m + 1 variables in (x; s; t), we need m basic variables and n + 1
non-basic ones that are zeros.

4.1. HOW TO START SIMPLEX? – TWO PHASES 29

We still set x = 0 as our n non-basic variables, so we need one more
non-basic variable. We set

t = − min
1≤i≤m

bi := −bk > 0,

namely, t takes the absolute value of the most negative element of b which
is assumed to be sk for some index k. Since t is positive, it must be a basic
variable. Now the equation Ax+ s− te = b dictates that

s = b+ te = b− bke ≥ 0,

where clearly sk = 0 (there might be other zero elements in s as well). We
make sk to be the last non-basic variable. For example, for the vector b given
below, t = −b3 = 2 and

s = b+ te =


3
−1
−2

0

+ 2


1
1
1
1

 =


5
1
0
2

 ≥ 0.

With these choices, we have (i) the feasibility: Ax + s − te = b with
x, s, t ≥ 0; (ii) m basic variables, in t and in the m − 1 components of s
excluding sk; (iii) n + 1 non-basic variables, in x = 0 and in sk = 0. The
basis matrix consists of the m− 1 columns of the identity matrix excluding
the k-th column, plus the column −e. It is nonsingular. So we have found a
basic feasible solution for the auxiliary problem!

Starting from this basic feasible solution, we can use simplex method to
solve the auxiliary problem. In the subsequent simplex iterations, we should
always let t have the priority to leave the basis whenever it qualifies as a
candidate. Once t leave the basis, the optimal objective value is reached.

At the optimality, if t = 0, then the original LP is feasible; otherwise
(t > 0), it must be infeasible and we stop here.

4.1.2 Phase-II: The Original Problem

In the case where the original problem is feasible, we delete the column
corresponding to the auxiliary variable t (it’s non-basic and zero anyway)
from the auxiliary problem, and shrink the non-basis by one. This produces
a basic feasible solution for the original problem (since t is gone), from which
we can start the simplex method to solve the original problem.

30 CHAPTER 4. SIMPLEX METHOD: MORE DETAILS

4.2 Main Implemetational Issues

We observe that in the revised simplex algorithm, the main computational
task appears to be solving two linear systems of equations: one in Step 1 and
another in Step 4. The two systems involve the same matrix AB, though it
appears in Step 4 as the transpose.

(TBC)

4.3 Degeneracy, Cycling and Stalling

So far everything sounds so rosy. But there is one place where things can
go wrong. That is, what if xB has a zero component which happens to
correspond to a positive component of d. In this case, t∗ = 0 in (3.5), and
no real change whatsoever, except for the partitioning, has been made to the
variables. The objective value also remains the same. When this happens to
a simplex iteration, such an iteration is called a degenerate simplex iteration.
This situation is also called stalling. What are the consequences of degenerate
iterations?

First of all, degenerate iterations that make no progress are not produc-
tive. At the least, they slow down the convergence if convergence eventually
occur. Indeed, in the worst case, it can prevent convergence from occuring.
This phenomenon is called cycling where the simplex method keeps changing
basis but going on circle. Namely, after a while it comes back to a basis that
has been visited before, while staying at the same vertex.

There exist some deliberate pivoting procedures (for choosing entering
and leaving variables) that can avoid cycling. Fortunately, as dangerous as
it is in theory, cycling almost never happens in practice and therefore is not
of a real concern. On the other hand, generacy does cause real problems
for simplex methods because it occurs so frequently, even more often than
nondegeneracy, in practice (well, people prefer redundancy than inadequacy),
and it can significantly degrade the performance of simplex methods.

4.4 Exercises

1. Prove that the auxiliary LP is feasible and cannot be unbounded.

2. Prove that an m × m matrix consists of the m − 1 columns of the

4.4. EXERCISES 31

identity matrix plus the column −e, where e ∈ <m is the vector of all
ones, is nonsingular.

3. Let us arrange the variables in the order x; s; t with n variables in x, m
variables in s and one variable in t. Write down the index sets B and
N for the initial basic feasible solution constructed for the auxiliary
problem.

4. Prove that if the optimal value of the auxiliary LP is positive, then the
original LP is infeasible. Otherwise, it is feasible.

5. For the general standard-form LP: min{cTx : Ax = b, x ≥ 0}, con-
struct an auxiliary LP and an initial basic feasible solution for it. (Hint:
Put s in the objective.)

32 CHAPTER 4. SIMPLEX METHOD: MORE DETAILS

Chapter 5

Duality and Optimality
Conditions

5.1 Dual Linear Program

Consider our standard form linear program (1.4) again, i.e.,

min cTx
s.t. Ax = b

x ≥ 0

where A is m × n with m < n and full-rank, the the sizes of all the other
quantities follow accordingly. The reduced LP corresponding to (1.4) is

min
xN

bTy + sTNxN

s.t. A−1B b− A−1B ANxN ≥ 0

xN ≥ 0.

From this reduced LP, we can make the following observation.

Proposition 3. If there is a partition (B,N) of the index set {1, 2, · · · , n}
such that (i) A−1B b ≥ 0; (ii) sN = cN − ATNy∗ ≥ 0 for y∗ = A−TB cB, then x∗

solves the LP where x∗B = A−1B b and x∗N = 0. Moreover, the optimal objective
value satisfies cTx∗ = bTy∗.

Therefore, conditions (i)-(ii) are sufficient for optimality. In the nonde-
generate case where (i) becomes A−1B b > 0, condition (ii) is clearly necessary
for optimality.

33

34 CHAPTER 5. DUALITY AND OPTIMALITY CONDITIONS

Condition (ii) can be rewritten as cB − ATBy∗ = 0 and cN − ATNy∗ ≥ 0,
which implies that y∗ satisfies

c− ATy ≥ 0 or ATy ≤ c. (5.1)

It turns out that for any y satisfying (5.1) and any feasible x (satisfying
Ax = b and x ≥ 0), the following inequality holds

bTy = (Ax)Ty = xT (ATy) ≤ xT c = cTx,

where we have used the facts Ax = b, x ≥ 0 and ATy ≤ c. Consequently,

max
y
{bTy : ATy ≤ c} ≤ min

x
{cTx : Ax = b, x ≥ 0}, (5.2)

as long as both extreme values exist.
The right-hand side is nothing but our linear program (1.4). Appearing

on the left-hand side is another linear program, which can also be written as

max bTy
s.t. ATy + s = c

s ≥ 0
(5.3)

where a slack variable s is added.
Obviously, this pair of linear programs share the same set of data (A, b, c)

and are closely related. We call (1.4) the primal LP and (5.3) the dual LP.
Whenever this primal-dual pair of LPs are both feasible, they satisfy the
property in (5.2) which is called weak duality. We now formally state the
weak duality as follows.

Proposition 4 (Weak Duality). If x is primal feasible and y is dual feasible,
then bTy ≤ cTx. As a result, (5.2) holds true.

The objective values of the primal and the dual serve as bounds for each
other. Once they coincide, then they must have reached their optimal values
simultaneously. In fact, optimality can occur only if the primal and the dual
objective values coincide. This property is called strong duality.

Proposition 5 (Strong Duality). A primal feasible x∗ is optimal for the
primal if and only if there is a dual feasible y∗ such that cTx∗ = bTy∗. In this
case, y∗ is optimal for the dual.

5.2. OPTIMALITY CONDITIONS 35

5.2 Optimality Conditions

Strong duality states that the optimality of the primal is inseparable from
that of the dual. The pair is one entity as far as optimality is concerned.
Now we can state the optimality conditions for the pair as follows.

Proposition 6 (Optimality Conditions). The points x∗ and y∗ are optimal
for the primal and the dual, respectively, if and only if they together satisfy
(1) the primal feasibility: Ax = b and x ≥ 0; (2) the dual feasibility ATy ≤ c;
and (3) the closure of the duality gap: cTx− bTy = 0.

5.3 How to find a dual?

We have seen that as far as optimality conditions are concerned, a linear
program is inseparable with its dual and vice versa. Hence, being able to
find a dual for any given LP is crucial. There exist mathematical techniques
for finding duals that are applicable not only to linear programming but also
to more general problem classes. It is also possible to always convert an LP
to one of the standard forms, get the corresponding dual and then simplify.
Nonetheless, for linear programming it is much easier to just follow a verified
recipe.

For convenience, we will classify constraints into two classes: (1) sign
restrictions and (2) main constraints. A sign restriction on a variable xi is
either xi ≥ 0 or xi ≤ 0. A variable without any sign restriction is called
a free variable. Any constraint that is not a sign restriction is treated as a
main constraint which can be an equality or an inequality. The coefficients
for all main constraints form an m by n coefficient matrix A ∈ <m×n, i.e.,
there are n variables and m main constraints.

We consider the following linear program of a general form:

min /max cTx

s.t. aTi x


≥ bi
= bi
≤ bi

i = 1, 2, · · · ,m,

xj


≥ 0
free
≤ 0

j = 1, 2, · · · , n,

(5.4)

36 CHAPTER 5. DUALITY AND OPTIMALITY CONDITIONS

where aTi is the i-th row of A. In this LP, the objective can be either min-
imization or maximization, and each constraint and each variable can take,
respectively, one of the three given forms. The recipe for finding a dual for
thus LP is given in the following chart, where if an LP is a minimization
problem, we go from the left column to the right column to find its dual;
otherwise, we go from right to left.

minimization ⇔ maximization
rhs/obj vectors ⇔ obj/rhs vectors

[coefficients] ⇔ [coefficients]T

#variables ⇔ #constraints
#constraints ⇔ #variables
variable ≥ 0 ⇔ constraint ≤
variable free ⇔ constraint =
variable ≤ 0 ⇔ constraint ≥
constraint ≥ ⇔ variable ≥ 0
constraint = ⇔ variable free
constraint ≤ ⇔ variable ≤ 0

Figure 5.1: Chart for Finding a Dual

The chart says that to find a dual for a given primal, we flip the opti-
mization goals, switch the objective and right-hand side vectors, and take a
transpose of the coefficient matrix for the main constraints. This way, the
numbers of (main) constraints and variables in the dual are always equal to,
respectively, the numbers of variables and constraints in the primal, and vice
versa. In addition, the types of the constraints and variables follow the rules
stipulated in the chart. The chart also reveals one-to-one relationships be-
tween the variables in the primal and the constraints in the dual and vice
versa.

Example 1. Find the dual of ...

Now let us use the chart to find the dual of the general LP 5.4. We
partition the index set {1, 2, · · · ,m} into three subsets:

1. G corresponding to constraints of the type aTi x ≥ bi;

5.3. HOW TO FIND A DUAL? 37

2. E corresponding to constraints of the type aTi x = bi;

3. L corresponding to constraints of the type aTi x ≤ bi.

Similarly, we partition the index set {1, 2, · · · , n} into three subsets:

1. P corresponding to variables of the type xi ≥ 0;

2. F corresponding to free variables;

3. M corresponding to variables of the type xi ≤ 0.

Now we partition the rows of A according to the partition (G,E,L), and the
columns of A according to the partition (P, F,M); namely,

A =

 AG

AE

AL

 =
[
AP AF AM

]
. (5.5)

With these partitions, we can write (5.4) into the following form:

min cTx
s.t. AGx ≥ bG

AEx = bE
ALx ≤ bL
xP ≥ 0
xF free
xM ≤ 0.

(5.6)

The dual readily follows from the chart in Figure 5.1.

max bTy
s.t. ATPy ≤ cP

ATFy = cF
ATMy ≥ cM
yG ≥ 0
yE free
yL ≤ 0

(5.7)

The complementarity conditions for this pair of primal-dual LPs are
(AGx− bG) ◦ yG
(ALx− bL) ◦ yL
xP ◦ (cP − ATPy)
xM ◦ (cM − ATMy)

 = 0. (5.8)

38 CHAPTER 5. DUALITY AND OPTIMALITY CONDITIONS

It is possible that some of these subsets are empty, in which case the
corresponding constraints/variables are in non-existence. For example, if
M = ∅, then the variable xM and its dual constraint ATMy ≥ cM do not exist.

5.4 Exercises

1. Use the weak duality to show that if the primal is unbounded then the
dual must be infeasible and vice versa.

2. Prove that for feasible x and y, the duality gap satisfies

cTx− bTy = sTx

where s = c− ATy ≥ 0 is the dual slack.

3. At each iteration of the primal simplex method, out of the three opti-
mality conditions, which is satisfied and which is not? Explain.

Chapter 6

Primal-Dual Interior-Point
Methods

6.1 Introduction

Consider the following primal linear program:

min cTx
s.t. Ax = b

x ≥ 0
(6.1)

where c, x ∈ <n, b ∈ <m and A ∈ <m×n(m < n).
Its dual linear program is:

max bTy
s.t. ATy + z = c

z ≥ 0
(6.2)

where z ∈ <n is the vector of dual slack variables.
A primal-dual method is one that treats the primal and the dual equally

and tries to solve both at the same time.
For feasible x and (y, z), the duality gap is

cTx− bTy
= xT c− xTATy (Ax = b)
= xT (c− ATy)
= xT z (c− ATy = z)
≥ 0 (x, z ≥ 0).

39

40 CHAPTER 6. PRIMAL-DUAL INTERIOR-POINT METHODS

Duality gap is closed at optimality:

cTx∗ − bTy∗ = (x∗)T z∗ = 0.

The complementarity conditions are:

x∗i z
∗
i = 0, i = 1, 2, . . . , n. (6.3)

6.2 A Primal-Dual Method

Consider F : R2n+m → R2n+m,

F (x, y, z) =


ATy + z − c
Ax− b
x1z1

...
xnzn

 = 0. (6.4)

This is a linear-quadratic square system.
The optimality conditions for the linear program is

F (x, y, z) = 0, (x, z) ≥ 0. (6.5)

It is also called the KKT (Karush-Kohn-Tucker) system for the LP.
The Jacobian matrix of F (x, y, z) is

F ′(x, y, z) =

 0 AT I
A 0 0
Z 0 X

 , (6.6)

where X = diag(x) and Z = diag(z). F ′(x, y, z) is nonsingular for (x, z) > 0
if A has full rank.

Even though (6.5) is just mildly nonlinear, one should not expect that
the pure Newton’s method would solve the system because of the presence
of nonnegativity constraints on x and z.

A main idea for interior-point methods is that one starts from an initial
point with x > 0 and z > 0 and forces all subsequent iterates for x and z to
remain positive, i.e., to stay in the interior of the nonnegative orthant. One

6.2. A PRIMAL-DUAL METHOD 41

can always enforce this interiority requirement by choosing appropriate step
parameter in a dampled Newton setting.

It is important to note the necessity of keeping the nonnegative variables x
and z strictly positive at every iteration instead of just nonnegative. Consider
a scalar complementarity condition xz = 0, x, z ∈ <. The Newton equation
(i.e., the linearized equation) for xz = 0 at a given point (x, z) is xdz+ zdx =
−xz. If one variable, say z, is zero, and the other is nonzero, then the Newton
equation becomes xdz = 0, leading to a zero update dz = 0. Consequently,
z will remain zero all the time once it becomes zero. This is fatal because
an algorithm will never be able to recover once it mistakenly sets a variable
to zero. Therefore, it is critical to keep the nonnegative variables strictly
positive at every iteration, not just nonnegative.

Even keeping nonnegative variables strictly positive, one would still ex-
pect difficulty in recovering from a situation where a variable is adversely
set to too small a value. To decrease the chances of such mistakes at early
stages, it would be desirable that all the complementarity pairs converge to
zero at the same pace, namely xki z

k
i = µk→0 as k→∞ for every index i.

Towards this goal (and for other theoretic considerations as well), one can
perturb each complementarity condition xizi = 0 into xizi − µ = 0 and let µ
go to zero in a controlled fashion. This idea, incorporated into the damped
Newton method, leads to the following primal-dual interior-point algorithm.
Recall that it is called primal-dual because it treats the primal and dual
variables equally.

Like in any iterative method, we need some initial point to start. In
particular, we need positive x and z in our initial point. A simple, and not
so bad, initial point consists of x = z = n ∗ e, where e is the vector of all
ones, and y = 0.

Algorithm 1 (A Prima-Dual Interior Point Algorithm).

Choose initial point (x > 0, y, z > 0).

WHILE “stopping criteria” not satisfied, DO

Step 1 Choose σ ∈ (0, 1) and set µ = σxT z/n.

Step 2 Solve the linear system for (dx, dy, dz)

F ′(x, y, z)

 dx
dy
dz

 = −F (x, y, z) +

 0
0
µe

 .

42 CHAPTER 6. PRIMAL-DUAL INTERIOR-POINT METHODS

Step 3 Compute the primal and dual step-length parameters:

αp = −1/min([X−1dx;−1]), αd = −1/min([Z−1dz;−1]).

Step 4 Choose τ ∈ (0, 1) and update x
y
z

⇐=

 x
y
z

+ τ

 αp dx
αd dy
αd dz

 .
END

We now make the following observations on the algorithm. There are
two basic parameters in the algorithm: σ in Step 2 and τ in Step 4. Their
sensible choices are of vital importance to both the theoretical analysis and
the practical performance of the algorithm. For starters, however, σ = .2
and τ = .99, say, will work fine most of the time.

In Step 3, each minimum is taken as the smallest element of the corre-
sponding n+1-dimensional vector. The scalars αp and αd are the largest step
lengths in [0, 1] such that x+αp dx ≥ 0 and z+αd dz ≥ 0, respectively. (The
formulas are nothing but compact expressions of the ratio tests performed in
simplex methods.)

In Step 4, tha parameter τ is chosen to step back a little from the bound-
ary of the positive orthant where the next iterate might land had a full step
αp or αd been taken. By choosing τ ∈ (0, 1), the posititivity for the variables
x and z will always hold. If the algorithm converges, it does converge most of
the time even for rather naive choices of parameters, then some components
of x and z will go to zero in order to satisfy the complementary slackness con-
ditions Xz = 0. Namely, the iterates will eventually approach the boundary
of the positive orthant.

The step computed in Step 2 is the Newton step for the so-called per-
turbed KKT equation

Fµ(x, y, z) ≡ F (x, y, z)− µk

 0
0
e

 = 0,

namely, the complementarity equation Xz = 0 is perturbed into Xz = µe.
This perturbation tends to keep all components of Xz equal and, hopefully,
forces them to converge to zero at more or less the similar pace.

6.3. SOLVING THE LINEAR SYSTEM 43

Overall, we may view the algorithm as a perturbed and damped New-
ton method.

Finally, we state a reasonable stopping criterion

‖Ax− b‖
1 + ‖b‖

+
‖ATy + z − c‖

1 + ‖c‖
+
|cTx− bTy|
1 + |bTy|

≤ tolerance,

where we use the sum of the relative errors in the three blocks of equations
to measure the total error.

6.3 Solving the Linear System

The main computation in Algorithm 1 at each iteration is to solve to the
linear system in Step 2 involving the coefficient matrix F ′(x, y, z) which is
2n+m by 2n+m but very sparse (see (6.6)). This system can be written as

ATdy + dz = rd, (6.7)

Adx = rp, (6.8)

Zdx+Xdz = rc, (6.9)

where X = diag(x) and Z = diag(z) are diagonal matrices and

rd = c− ATy − z, rp = b− Ax, rc = µe−Xz.

Multiplying (6.7) by X and subtract (6.9) from it, we obtain

XATdy − Zdx = Xrd − rc.

Multiplying the above equation by AZ−1 and invoking (6.8), we arrive at
a square system for dy in (6.10). After dy is computed, we can then easily
compute dz and dx by back substitution using (6.7) and (6.9). Hence a
procedure for solving the linear system is as follows:

(AZ−1XAT) dy = AZ−1(Xrd − rc) + rp, (6.10)

dz = rd − ATdy, (6.11)

dx = Z−1(rc −Xdz), (6.12)

Now the major computation becomes solving (6.10) which is an m by m
system with a positive definite coefficient matrix provided that A has full
rank. (For large-scale problems, (6.10) is usually solved by sparse Cholesky
factorization.)

44 CHAPTER 6. PRIMAL-DUAL INTERIOR-POINT METHODS

6.4 Convergence Considerations

To guarantee in theory that the primal-dual interior-point algorithm, Algo-
rithm 1, always converges to a solution, one needs to use rather sophisti-
cated schemes to choose the step parameter τ . On the other hand, even with
simple-minded choices such as τ = 0.9, the algorithm does converge most
of the time for problems that are not particularly difficult. Here we provide
some indications on why the algorithm usually works even for choices such
as τ = 0.9.

At each iteration, given the current iterate (x, y, z) the update direction
(dx, dy, dz) satisfies the equation

Adx = −(Ax− b), ATdy + dz = −(ATy + z − c),

and the next iterate (x+, y+, z+) is calculated as x+

y+

z+

 =

 x
y
z

+ α

 dx
dy
dz

 , (6.13)

for some α ∈ (0, 1]. Here for simplicity we are using the same step parameter
for both the primal and the dual variables. By direct substitution we have

Ax+− b = (1− α)(Ax− b), ATy+ + z+− c = (1− α)(ATy+ z− c). (6.14)

Since 1− α ∈ [0, 1), we have the following relationships

‖Ax+ − b‖ = (1− α)‖Ax− b‖ < ‖Ax− b‖,
‖ATy+ + z+ − c‖ = (1− α)‖ATy + z − c‖ < ‖ATy + z − c‖.

That is, we can improve the primal and dual feasibility at each iteration.
However, such improvements do not imply that the iterates necessarily con-
verge to a feasible (primal and dual) point (the improvements could shrink
to zero as α → 0). Moreover, it is not clear that we can also improve the
complementary slackness at each iteration.

To simplify the matter, let us assume that the initial point (x0, y0, z0) is
strictly feasible, i.e., it satisfies

Ax0 = b, ATy0 + z0 = c, x0, z0 > 0.

6.4. CONVERGENCE CONSIDERATIONS 45

It follows from the recursive relationships (6.14) that the feasibility of (x0, y0, z0)
implies the feasibility of (xk, yk, zk) for k = 1, 2, · · · . In this case,

F (xk, yk, zk) =

 0
0

Xkzk


and

‖F (xk, yk, zk)‖1 =
n∑
i=1

xki z
k
i = (xk)T (zk).

Hence, it suffices to consider driving the duality gap xT z to zero.
Now consider the duality gap at (x+, y+, z+), where (x+, y+, z+) is ob-

tained from the update formula (6.13). Hence,

(x+)T (z+) = (x+ αdx)T (z + αdz)

= xT z + α(xTdz + zTdx) + α2(dx)T (dz)

= xT z + α(xTdz + zTdx) [(dx)T (dz) = 0]

= xT z + αeT (µe−Xz) [Xdz + Zdx = µe−Xz]
= xT z + α(σ − 1)xT z [µ = σxT z/n]

= [1− α(1− σ)]xT z.

We leave the fact (dx)T (dz) = 0 as an exercise. Since by our choice α ∈ (0, 1]
and σ ∈ (0, 1), we have the recursive relationship

(x+)T (z+) = [1− α(1− σ)]xT z < xT z,

that is, the algorithm always decreases the duality after each iteration. More
precisely,

(xk)T (zk) = [1− αk−1(1− σ)](xk−1)T (zk−1) = · · ·

=

(
k−1∏
j=0

[1− αj(1− σ)]

)
(x0)T (z0).

If the step parameters αj are bounded below by a nonzero shortest step α,
i.e., αj ≥ α, then for all j

1− αj(1− σ) ≤ 1− α(1− σ) < 1.

46 CHAPTER 6. PRIMAL-DUAL INTERIOR-POINT METHODS

Consequently,

0 ≤ (xk)T (zk) ≤ [1− α(1− σ)]k(x0)T (z0)→ 0 as k →∞,

which implies the convergence of the duality gap to zero, and hence the
convergence of the algorithm. Indeed, we observe that the step parameter
α rarely shrinks to zero. That is one of the reasons the algorithm usually
works even for naive choices of step parameter.

Appendix A

Introduction to Newton’s
Method

One of the fundamental computational problems in science and engineering
is to solve nonlinear systems of equations of multiple variables. A general
nonlinear, square system of equations can be expressed as follows:

F (x) = 0, (A.1)

where x ∈ <n and F : <n → <n; namely, there are n variables and n
equations. We will assume that not all of the n equations are linear; otherwise
(A.1) becomes a linear system which is much easier to solve. In a more
detailed notation, we have

x =


x1
x2
...
xn

 , F (x) =


F1(x)
F2(x)

...
Fn(x)

 ≡

F1(x1, x2, · · · , xn)
F2(x1, x2, · · · , xn)

...
Fn(x1, x2, · · · , xn)

 ,
where we use the subscripts to denote components of vectors. For example,
a simple nonlinear system with n = 2 is

F (x) =

[
e2x1 − ex2
x21 + x22 − 5

]
= 0. (A.2)

At a given point xc ∈ <n (note that we use a superscript to denote
a particular vector), considered as the current approximate solution to the

47

48 APPENDIX A. INTRODUCTION TO NEWTON’S METHOD

equation F (x) = 0, we approximate F (x) by its first-order Taylor expansion:

F (x) ≈ Lc(x) ≡ F (xc) + F ′(xc)(x− xc),

where F ′(x) is an n× n matrix called the Jacobian matrix of F (x), which is
the first derivative of F (x). The entries of the Jacobian matrix F ′(x) consist
of all the first-order partial derivatives of the component functions Fi(x)’s,
arranged in an ordered fashion, i.e.,

[F ′(x)]ij =
∂Fi(x)

∂xj
, 1 ≤ i, j ≤ n.

In other words, the i-th row of F ′(x) is the gradient of Fi(x). For example,
when n = 2, F ′(x) is a 2× 2 matrix,

F ′(x) =

 ∂F1(x)
∂x1

∂F1(x)
∂x2

∂F2(x)
∂x1

∂F2(x)
∂x2

 .
In particular, the Jacobian of the function F (x) in (A.2) is

F ′(x) =

[
2e2x1 −ex2
2x1 2x2

]
. (A.3)

We note that since xc is a fixed point, F (xc) is a fixed n-vector and F ′(xc)
a fixed n × n matrix. Hence Lc(x) is a linear function of x and called the
linearization of F (x) at the point xc.

Solving the square linear system of equations Lc(x) = 0, we obtain a
point x+ as a new approximate solution to the equation F (x) = 0. It is easy
to verify that the solution to Lc(x) = 0 is

x+ = xc − [F ′(xc)]−1F (xc),

provided that F ′(xc) is nonsingular. We leave the verification to the reader.
In the case of n = 1, both F (x) and its derivative F ′(x) are scalar func-

tions. The linearization of F (x) at xc,

y = Lc(x) ≡ F (xc) + F ′(xc)(x− xc), (A.4)

is the tangent line of the curve y = F (x) at the point x = xc. The new
approximate solution,

x+ = xc − F (xc)

F ′(xc)
, (A.5)

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x direction

y
 d

ir
e
c
ti
o
n

f(x) = x
5
 − 0.02

x*

x* = 0.45731

x0

iter 0 x = 0.95 f(x) = 0.75378

x1

iter 1 x = 0.76491 f(x) = 0.24185

x2

iter 2 x = 0.62361 f(x) = 0.074314

Figure A.1: Newton’s method: one-dimensional case

is the intersection of the tangent line y = Lc(x) with the x-axis y = 0, see
Figure A.

In the general case of n variables and n equations, Newton’s method
computes the iteration sequence {xk} ⊂ <n by the recursive formula:

xk+1 = xk − [F ′(xk)]−1F (xk),

starting from a given initial point x0. If x0 is sufficiently close to a solution
x∗ satisfying F (x∗) = 0, then under proper conditions, we can expect that
the sequence converges to the solution x∗; namely,

lim
k→∞

xk = x∗.

The main idea behind Newton’s method can be described as follows. Instead
of trying to directly solve the hard problem, the nonlinear system, one solves
a sequence of easy problems, the linear systems, to obtain a sequence of
approximate solutions that will hopefully get closer and closer to the true
solution.

Introducing a step parameter αk ∈ (0, 1] at each iteration, we obtain the
so-called damped Newton’s method:

xk+1 = xk − αk[F ′(xk)]−1F (xk).

It is known that properly chosen step parameters can help enhance the con-
vergence of Newton’s method, which is corresponding to the case where
αk = 1 for all k.

50 APPENDIX A. INTRODUCTION TO NEWTON’S METHOD

A.1 An Example

Let us consider solving the simple nonlinear system defined in (A.2), namely,

F (x) =

[
e2x1 − ex2
x21 + x22 − 5

]
= 0.

It has two equations and two variables. Incidently, it also has two solutions:
x = [1; 2] and x = [−1;−2]. The Jacobian matrix of this function is given in
(A.3).

The following Matlab functions implement Newton’s method for solving
the nonlinear system (A.2).

% main program

function x = newton(x0);

% input x0 -- the starting point

% output x -- hopefully a solution

% make x0 a column vector if not already

if size(x0,1) < size(x0,2) x0 = x0’; end;

x = x0;

iter = 1; % iteration counter

tol = 1.e-8; % error tolerance

maxiter = 50; % maximum iteration

while iter <= maxiter % begin loop

F = func(x); % evaluate F(x)

resnrm = norm(F); % residual norm

% print out information at each iteration

fprintf(’iter %2i residual-norm = %8.2e’,iter,resnrm);

fprintf(’ x = [%7.4f %7.4f]\n’,x);

% stopping criterion

if resnrm < tol disp(’Converged!’); break; end

J = jacobian(x); % evaluate Jacobian

x = x - J\F; % update iterate

iter = iter + 1; % increment counter

A.2. EXERCISES 51

end % end loop

% function evaluation

function F = func(x)

F = [exp(2*x(1))-exp(x(2));

x(1)^2+x(2)^2-5];

% Jacobian evaluation

function J = jacobian(x)

J = [2*exp(2*x(1)) -exp(x(2));

2*x(1) 2*x(2)];

These Matlab functions are saved into a file called newton1.m and can be
invoked with an initial point x0 = [1.5 1.5] by typing: newton1([1.5 1.5])

in Matlab. The output from Matlab is as follows.

newton1([1.5 1.5]);

iter 1 residual-norm = 1.56e+001 x = [1.5000 1.5000]

iter 2 residual-norm = 2.96e+000 x = [1.1673 1.9994]

iter 3 residual-norm = 3.93e-001 x = [1.0228 1.9937]

iter 4 residual-norm = 7.51e-003 x = [1.0005 1.9999]

iter 5 residual-norm = 3.09e-006 x = [1.0000 2.0000]

iter 6 residual-norm = 5.24e-013 x = [1.0000 2.0000]

Converged!

For this initial point, which is fairly close to the solution x∗ = [1 2],
Newton’s method takes six iterations to achieve the required accuracy.

A.2 Exercises

1. Justify the following claims:
(a) y = `c(x) in (A.4) is the tangent line of the curve y = F (x) at the
point x = xc.
(b) x+ in (A.5) is the intersection of the tangent line with the x-axis.

2. Run newton1.m with initial guesses

x0 = [1 2] + a ∗ [1 1], a = 2, 4, 6, 8, 10

52 APPENDIX A. INTRODUCTION TO NEWTON’S METHOD

and answer the following questions.
(a) Does Newton’s method always converge?
(b) When Newton’s method converges, does it always converge to the
solution closest to the initial point?
(c) When Newton’s method converges, describe how the residual norm
‖F (xk)‖ decreases at each iteration towards the end.

3. Write an M-file newton2.m, by modifying the functions in newton1.m,
to solve the following nonlinear system:

F (x) =


x1 + x2 − 1
x3 − x4 − 1
x3 − x5 − 2

x1x4
x2x5

 = 0

with the starting points x = [1 2 3 2 1] and x = [10 .1 10 .1 10].
(Observe that for the second starting point, the obtained solution is
NOT nonnegative.)

	What is Linear Programming?
	A Toy Problem
	From Concrete to Abstract
	A Standard Form
	Feasibility and Solution Sets
	Three Possibilities

	Vertices of the Feasibility Set
	Matrix and Vector Partitions
	Convex Set, Polyhedron and Extreme Point
	Definitions
	Vertices of Feasibility Set
	Basic Feasible Partitions and Vertices

	Exercises

	Simplex Method: First Look
	Terminology
	Reduced Linear Program
	Partitioning and Elimination
	Reduced Linear Program
	What Happens at A Basic Feasible Solution?

	One Iteration of the Simplex Method
	Do We Reach a New Vertex?
	Exercises

	Simplex Method: More Details
	How to Start Simplex? – Two Phases
	Phase-I: An Auxiliary Problem
	Phase-II: The Original Problem

	Main Implemetational Issues
	Degeneracy, Cycling and Stalling
	Exercises

	Duality and Optimality Conditions
	Dual Linear Program
	Optimality Conditions
	How to find a dual?
	Exercises

	Primal-Dual Interior-Point Methods
	Introduction
	A Primal-Dual Method
	Solving the Linear System
	Convergence Considerations

	Introduction to Newton's Method
	An Example
	Exercises

