
� � � � � � �

�	�

�������������
������������� ���!�"���#�$

%'&)(*,+-&-.0/2143657+98-:-365;*<.>=?3A@�. B 1C365ED-.21F(:-3>GH3A1A&I80JK*H=L8 5M/)5N3O+A8PD-JQ(1R(8PD)(SDIT>.UB (SD-3O.)5*WVI*X1C36GZY[%'&-39*C3\GH3A1A&I80JK*,.)5N3]*9^)(1C. _ B 3,@H&-36D`19&-3ZJ 39*F(S5N3OJUT68K. Ba(*H148bGH.2cK(dG<(eO3/-.)5N. B B 36B (*9GZYf%'&-3b*R(SGg/ B 39*X1>.0/ /65N8).6+-&h(*`19&-3iJQ(.IT)8QD-.0BkjE805mlI.6+A8P_)(nU/)5N3O+A8PD-JQ(o1R(8PD)(dDIT!Yapq=r1436D0st19&)(*Z/)5N3O+98QD-JQ(1F(8QD-365u(*ZDI861H:-365SVi^I*C3A=X^ B s[*R(SD-+O3Z1A&-3\D ^ Gg_K3-5786=(1C365N.21F(8QDI*q86=719&-3>5N39*9^ B 1F(SDITv(1C365N.21F(8QDg1C36D-JK*q1X8w_K3>Gg^-+6&xB .)5;TK365y19&-. DZ1A&-3`Gz805N3*W1C. D-J .)5rJz:-.)5?(.0D21X*OsI*9^-+6&z.I*'{;|Q}w8 5P~!~!pg�fY2��&-3-DMJ 3A:-36B 8Q/)(SDIT]/-.)5N. B B 36B-/)5N3O+A8PD-JQ(o1R(8PD-3-5N*9s)8PD-3M*9&I8Q^ B J>_K3A@�.)5N3'19&-.21�19&-3,_)36D-3A�014*78-=f(dD-+65N3O.-*43OJ�/-.)5N. B B 36B (*9G�.)5N3gDI8-18Q^21E@�3I(TP&-39J�_9V]19&-3>(SD-+65N3O.I*C3OJU. Gz8P^ D21z86=q+98PGg/ ^214.I1R(8PDI*OY�%M&-3�Gm.)(SD>�!^-39*X1F(8PD1X8�.-*9�w(*<@z&-3A19&-3-5'8 5<DI861>(1`(*v/68)*4*F(d_ B 3�1X8i�[D-Jh/)5N3O+A8PD-JQ(1R(8PD)(SDIT\1C3O+6& D)(�!^-39*1A&-.I1z&-.2:-3<.�&)(TQ&ZJ 39TP5N3O3,8-='/-.)5N.0B B 36B (*9GZs .I*q@�36B B .-*'T68 80Jw(SD21A5L(SDI*F(+z�!^-.0B (1F(3A*OY

�E�`���,�h�i�>�,���N���
�Z���I�

As seen in the previous chapter, a limited amount of parallelism can be extracted from
the standard preconditioners such as ILU and SSOR. Fortunately, a number of alternative
techniques can be developed that are specifically targeted at parallel environments. These
are preconditioning techniques that would normally not be used on a standard machine,
but only for parallel computers. There are at least three such types of techniques discussed
in this chapter. The simplest approach is to use a Jacobi or, even better, a block Jacobi
approach. In the simplest case, a Jacobi preconditioner may consist of the diagonal or a
block-diagonal of � . To enhance performance, these preconditioners can themselves be
accelerated by polynomial iterations, i.e., a second level of preconditioning called polyno-
mial preconditioning.

A different strategy altogether is to enhance parallelism by using graph theory algo-
rithms, such as graph-coloring techniques. These consist of coloring nodes such that two
adjacent nodes have different colors. The gist of this approach is that all unknowns associ-
ated with the same color can be determined simultaneously in the forward and backward
sweeps of the ILU preconditioning operation.

Finally, a third strategy uses generalizations of “partitioning” techniques, which can

�t�[�

������� � |)p��
	yoWl��� p � {�������� p����M{ %M{ p����[�a~ �t�[�

be put in the general framework of “domain decomposition” approaches. These will be
covered in detail in the next chapter.

Algorithms are emphasized rather than implementations. There are essentially two
types of algorithms, namely, those which can be termed coarse-grain and those which can
be termed fine-grain. In coarse-grain algorithms, the parallel tasks are relatively big and
may, for example, involve the solution of small linear systems. In fine-grain parallelism, the
subtasks can be elementary floating-point operations or consist of a few such operations.
As always, the dividing line between the two classes of algorithms is somewhat blurred.

����� ����� �"!>�g�#�v��$]�&%M�g�h�U�b�S� �N�h�'%,�)(
�Z�b�A�

Overlapping block-Jacobi preconditioning consists of a general block-Jacobi approach as
described in Chapter 4, in which the sets *�+ overlap. Thus, we define the index sets

*+-,/.1032546+8790:7<;5+>=
with

4@?�,BA
; CD,FE
; +8G 4 +IH ?KJLA�7NM)7PORQSA

where O is the number of blocks. Now use the block-Jacobi method with this particular
partitioning, or employ the general framework of additive projection processes of Chapter
5, and use an additive projection method onto the sequence of subspacesT +,VUXWZY\[].K^�+>=�J_^Z+-,a` b�cId1Jeb5cfdgH ? Jih�hihiJjbKk>dmlmh

Each of the blocks will give rise to a correction of the formn�oqp H ?er+ , n�osp r+ut ��v ?+ ^Dw+yx{z Q ��| osp rX} h j�~��QY�~In
One problem with the above formula is related to the overlapping portions of the | vari-
ables. The overlapping sections will receive two different corrections in general. According
to the definition of “additive projection processes” seen in Chapter 5, the next iterate can
be defined as

| p H ? ,�| p t
C�
+s� ? ^Z+X��v ?+ ^Dw+ ; p

where ; p , z Q���| p is the residual vector at the previous iteration. Thus, the corrections
for the overlapping regions simply are added together. It is also possible to weigh these
contributions before adding them up. This is equivalent to redefining (12.1) inton osp H ?er+ , n osp r+utN� + � v ?+ ^�w+ x{z Q ��| p }
in which � + is a nonnegative diagonal matrix of weights. It is typical to weigh a nonover-
lapping contribution by one and an overlapping contribution by A���� where � is the number

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

of times the unknown is represented in the partitioning.

��?

���
���

���

�	�
��

�	�
�� ��������� ��� �

The block-Jacobi matrix with overlapping
blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation parameter� . The iteration can be defined in the form

| p H ? ,�| p t
C�
+s� ?

� + ^ + � v ?+ ^�w+ ; p h
Recall that the residual at step � t A is then related to that at step � by

; p H ? ,
���

Q
C�
+s� ?

� + � ^Z+��m^�w+ � ^Z+! v ? ^�w+#" ; p h
The solution of a sparse linear system is required at each projection step. These systems
can be solved by direct methods if the subblocks are small enough. Otherwise, iterative
methods may be used. The outer loop accelerator should then be a flexible variant, such as
FGMRES, which can accommodate variations in the preconditioners.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t�a�

$,�#���b�v�	� � !R� $`� %z�<���\�b�;���N��� %,��(
�Z�b��

In polynomial preconditioning the matrix � is defined by

� v ? ,� x � }
where is a polynomial, typically of low degree. Thus, the original system is replaced by
the preconditioned system

 x � } ��| ,� x � } z j�~��QY �Kn
which is then solved by a conjugate gradient-type technique. Note that x � } and � com-
mute and, as a result, the preconditioned matrix is the same for right or left preconditioning.
In addition, the matrix x � } or �� x � } does not need to be formed explicitly since �� x � }��
can be computed for any vector � from a sequence of matrix-by-vector products.

Initially, this approach was motivated by the good performance of matrix-vector oper-
ations on vector computers for long vectors, e.g., the Cyber 205. However, the idea itself is
an old one and has been suggested by Stiefel [204] for eigenvalue calculations in the mid
1950s. Next, some of the popular choices for the polynomial are described.

����������� ��� �"!$#����&%('�)�*+�,'-!/. #0)21

The simplest polynomial which has been used is the polynomial of the Neumann series
expansion �

t43 t53 � t7686�6Kt43:9
in which

3 ,
�
Q � �

and � is a scaling parameter. The above series comes from expanding the inverse of � �
using the splitting � �V,

�
Q x

�
Q � � } h

This approach can also be generalized by using a splitting of the form� �V, � Q x � Q � � }
where � can be the diagonal of � or, more appropriately, a block diagonal of � . Then,

x � � } v ? ,<; � x
�
Q x

�
Q � � v ? � }e}>= v ?

, ;
�
Q x

�
Q � � v ? � } = v ? � v ? h

Thus, setting

3 ,
�
Q � � v ? �

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

results in the approximate -term expansion

x � � } v ?�� � v ?�� `
�
t43 t&6�6865t43 9 l � v ? h j�~��QY �)n

Since � v ? �V, � v ? `
�
Q 3 l J note that

� v ? �V,B`
�
t43 t&6�686Kt43 9 l � v ? �

, A� `
�
t43 t7686�65t43 9 l x

�
Q 3 }

, A� x
�
Q 3:9 H ?i} h

The matrix operation with the preconditioned matrix can be difficult numerically for large . If the original matrix is Symmetric Positive Definite, then � v ? � is not symmetric, but
it is self-adjoint with respect to the � -inner product; see Exercise 1.

��������� � �	����
 * 1������%('�)�*+� ' !/. #0)21

The polynomial can be selected to be optimal in some sense, and this leads to the use of
Chebyshev polynomials. The criterion that is used makes the preconditioned matrix x � } �
as close as possible to the identity matrix in some sense. For example, the spectrum of the
preconditioned matrix can be made as close as possible to that of the identity. Denoting by� x � } the spectrum of � , and by � p the space of polynomials of degree not exceeding � ,
the following may be solved.

Find ���� p which minimizes:� Y������� o�� r 2 A�Q�� x � } 2 h j�~��QY �Kn
Unfortunately, this problem involves all the eigenvalues of � and is harder to solve than
the original problem. Usually, problem (12.4) is replaced by the problem

Find ���� p which minimizes:� Y��� ��! 2fA�Q�� x � } 2fJ j�~��QY ")n
which is obtained from replacing the set � x � } by some continuous set # that encloses it.
Thus, a rough idea of the spectrum of the matrix � is needed. Consider first the particular
case where � is Symmetric Positive Definite, in which case # can be taken to be an interval
` $)J&%
l containing the eigenvalues of � .

A variation of Theorem 6.4 is that for any real scalar ' such with '#7($, the minimum�*) [C �,+.-0/ C o21 r � ? � Y��3 �54 67/ 8 9 2 O x;: } 2
is reached for the shifted and scaled Chebyshev polynomial of the first kind,

<= p x;: } �
= p?> A t�@ 6 v 38 v 6BA= p?> A t�@ 6 v 18 v 6 A

h

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t���
Of interest is the case where ' ,�� which gives the polynomial� p x : } � A� p = p

� % t $yQ @ :% Q $ � with � p � = p
� % t $% Q $�� h

Denote the center and mid-width of the interval ` $ J %�l , respectively, by� � % t $@ J
	 � % Q $@ h
Using these parameters instead of $ J % , the above expressions then become� p x : } � A� p = p

� � Q :	 � with � p � = p
� � 	 � h

The three-term recurrence for the Chebyshev polynomials results in the following three-
term recurrences: � p H ? , @ � 	 � p Q � p v ?�J��3,BA\J @ h�hih J
with � ?�,

� 	 J ��� ,/A J
and � p H ? x : } � A� p H ?� @ � Q :	 � p � p x : } Q � p v ? � p v ? x;: }��

, � p� p H ?� @ � Q :	 � p x : } Q � p v ?� p � p v ? x : }�� Ju��� A\J
with � ? x;: } ,BA�Q :� J � � x;: } ,BA\h
Define �

p � � p� p H ? Ju�R,/A\J @ Jih�hih h j�~��QY �Kn
Note that the above recurrences can be put together as�

p , A@ � ?)Q
�
p v ?

j�~��QY �Kn� p H ? x : } ,
�
p @ x � ?�Q :	 } � p x;: } Q

�
p v ?
� p v ? x;: } � Ju��� A\h j�~��QY �Kn

Observe that formulas (12.7–12.8) can be started at �#,�� provided we set
�
v ? � � and

�
v ? � � , so that

� � ,BAK� x @ � ? } .
The goal is to obtain an iteration that produces a residual vector of the form ; p H ? ,� p H ? x � } ; � where

� p is the polynomial defined by the above recurrence. The difference
between two successive residual vectors is given by

; p H ? Q9; p , x � p H ? x � } Q � p x � }e} ; � h
The identity A , x @ � ?�Q

�
p v ? }

�
p and the relations (12.8) yield� p H ? x : } Q � p x : } , � p H ? x;: } Q x @ � ?�Q

�
p v ? }

�
p � p x;: }

�t��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

,
�
p Q @ :	 � p x;: } t � p v ? x � p x : } Q � p v ? x : }X} � h

As a result, � p H ? x : } Q � p x : }: ,
�
p � p v ? � p x : } Q � p v ? x : }: Q @	 � p x;: } � h j�~��QY �)n

Define
� p � | p H ? QP| p J

and note that ; p H ? QP; p , � � p . If | p H ? , | � t p x � } ; � , then ; p H ? , x
�
Q �� p x � }e} ; � ,

and
� p , � v ? x � p H ? x � } Q � p x � }X} ; � . Therefore the relation (12.9) translates into the

recurrence,

� p ,
�
p � p v ? � p v ? Q @	 ; p � h

Finally, the following algorithm is obtained.

�����	�U��
N�v�� � � � ��� ����������������� !�������� �����! #"%$'&
1. ; � , z Q ��| � ; � ? , 	\� � ;
2.

� � ,/A�� � ? ; � � , ?(; � ;
3. For �3,�� J�hihihiJ until convergence Do:
4. | p H ? ,�| p t � p
5. ; p H ? ,�; p Q�� � p
6.

�
p H ? , x @ � ? Q

�
p } v ? ;

7.
� p H ?�,

�
p H ?
�
p � p Q �*) -,+�-. ; p H ?

8. EndDo

Lines 7 and 4 can also be recast into one single update of the form

| p H ?�,F| p t
�
p � p v ? x | p Q9| p v ? } Q @ 	 x{z Q ��| p } � h

It can be shown that when $S, ��? and %<, ��/ , the resulting preconditioned matrix
minimizes the condition number of the preconditioned matrices of the form �� x � } over all
polynomials of degree 7��'QSA . However, when used in conjunction with the Conjugate
Gradient method, it is observed that the polynomial which minimizes the total number
of Conjugate Gradient iterations is far from being the one which minimizes the condition
number. If instead of taking $, � ? and % , � / , the interval [$)J&%] is chosen to be
slightly inside the interval [� ? J � /], a much faster convergence might be achieved. The true
optimal parameters, i.e., those that minimize the number of iterations of the polynomial
preconditioned Conjugate Gradient method, are difficult to determine in practice.

There is a slight disadvantage to the approaches described above. The parameters $
and % , which approximate the smallest and largest eigenvalues of � , are usually not avail-
able beforehand and must be obtained in some dynamic way. This may be a problem mainly
because a software code based on Chebyshev acceleration could become quite complex.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �t���
To remedy this, one may ask whether the values provided by an application of Gersh-

gorin’s theorem can be used for $ and % . Thus, in the symmetric case, the parameter$, which estimates the smallest eigenvalue of � , may be nonpositive even when � is a
positive definite matrix. However, when $ 7�� , the problem of minimizing (12.5) is not
well defined, since it does not have a unique solution due to the non strict-convexity of
the uniform norm. An alternative uses the � � -norm on [$)J&%] with respect to some weight
function � x � } . This “least-squares” polynomials approach is considered next.

��������� �) � # 1�����1���� #
	 � 1:%('�) *+� ' ! . #0)21

Consider the inner product on the space � p :

� OJ��� , � 8
6 O x � } � x � } � x � } � � j�~��PY�~��Kn

where � x � } is some non-negative weight function on ($ J %). Denote by ��O���� and call� -norm, the 2-norm induced by this inner product.
We seek the polynomial p v ? which minimizes

��A Q � x � } � � j�~��PY�~�~In
over all polynomials of degree 7 ��Q A . Call p v ? the least-squares iteration polynomial,
or simply the least-squares polynomial, and refer to � p x � } � A&Q�� p v ? x � } as the least-
squares residual polynomial. A crucial observation is that the least squares polynomial is
well defined for arbitrary values of $ and % . Computing the polynomial p v ? x � } is not a
difficult task when the weight function � is suitably chosen.

Computation of the least-squares polynomials There are three ways to compute the
least-squares polynomial p defined in the previous section. The first approach is to use an
explicit formula for � p , known as the kernel polynomials formula,

� p x � } ,�� p+s� � �i+ x � } �i+ x � }
� p+I� � �i+ x � } � j�~��PY�~1�Kn

in which the � + ’s represent a sequence of polynomials orthogonal with respect to the weight
function � x � } . The second approach generates a three-term recurrence satisfied by the
residual polynomials � p x � } . These polynomials are orthogonal with respect to the weight
function ��� x � } . From this three-term recurrence, we can proceed exactly as for the Cheby-
shev iteration to obtain a recurrence formula for the sequence of approximate solutions | p .
Finally, a third approach solves the Normal Equations associated with the minimization of
(12.11), namely, � A�Q � p v ? x � } J0����� x � } � , � J 0�,��ZJiA J @ J�hih�h�Jj� Q<A
where ���\Jm0 , A Jihih�h Jj�#QaA is any basis of the space p v ? of polynomials of degree
7S� Q<A .

These three approaches can all be useful in different situations. For example, the first
approach can be useful for computing least-squares polynomials of low degree explicitly.
For high-degree polynomials, the last two approaches are preferable for their better numer-

�7��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

ical behavior. The second approach is restricted to the case where $ � � , while the third is
more general.

Since the degrees of the polynomial preconditioners are often low, e.g., not exceeding
5 or 10, we will give some details on the first formulation. Let � + x � } JeM�, � J�A\Jih�hih�JeE8Jihih�h ,
be the orthonormal polynomials with respect to � x � } . It is known that the least-squares
residual polynomial � p x � } of degree � is determined by the kernel polynomials formula
(12.12). To obtain p v ? x � } , simply notice that

 p v ? x � } , A�Q � p x � }�
, � p+I� � � + x � } : + x � }

� p+s� � � + x � } � J with
j�~��QY ~0�Kn

: + x � } , ��+ x � } Q �i+ x � }� h j�~1�PY�~0�Kn
This allows p v ? to be computed as a linear combination of the polynomials : + x � } . Thus,
we can obtain the desired least-squares polynomials from the sequence of orthogonal poly-
nomials ��+ which satisfy a three-term recurrence of the form:

%�+sH ? ��+IH ? x � } , x � Q $�+ } �i+ x � } Q %�+ �i+ v ? x � } JXM , A J @ Jihih�h h
From this, the following recurrence for the : + ’s can be derived:

% +sH ? : +sH ? x � } , x �RQ $ + } : + x � } Q % + : + v ? x � } t � + x � } JeM�,BA\J @ Jih�hih�h
The weight function � is chosen so that the three-term recurrence of the orthogonal

polynomials � + is known explicitly and/or is easy to generate. An interesting class of weight
functions that satisfy this requirement is considered next.

Choice of the weight functions This section assumes that $, � and %<, A . Consider
the Jacobi weights

� x � } , ��� v ? x A�Q � }�� J where � G � and � �VQ A@ h j�~1�PY�~ ")n
For these weight functions, the recurrence relations are known explicitly for the polyno-
mials that are orthogonal with respect to � x � } , ��� x � } , or � � � x � } . This allows the use of
any of the three methods described in the previous section for computing p v ? x � } . More-
over, it has been shown [129] that the preconditioned matrix �� p x � } is Symmetric Positive
Definite when � is Symmetric Positive Definite, provided that � Q<A ��� �VQ ?� .

The following explicit formula for � p x � } can be derived easily from the explicit ex-
pression of the Jacobi polynomials and the fact that .�� p = is orthogonal with respect to the
weight ��� x � } :

� p x � } ,
p�
� � � 	 osp r� x A�Q�� } p v � x Q � } � j�~1�PY�~ �)n

	 oqp r� , � p� � v ?

+s� � � Q9M t �
M t A t � h

Using (12.13), the polynomial p v ? x � } , x A Q � p x � }e} � � can be derived easily “by hand”
for small degrees; see Exercise 4.

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �7� �
���������	� � � � � �

As an illustration, we list the least-squares polynomials p for �R, A , h�hih ,

, obtained for the Jacobi weights with � , ?� and �3,BQ ?� . The polynomials listed are for

the interval ` � J���l as this leads to integer coefficients. For a general interval ` �ZJ&%�l , the best
polynomial of degree � is p x ���]� % } . Also, each polynomial p is rescaled by x� t @ � } ��� to
simplify the expressions. However, this scaling factor is unimportant if these polynomials
are used for preconditioning.

1 � ��� ��� ��� ��� ��� ��� ������ 5 � 1�
� 14 � 7 1�
� 30 � 27 9 � 1�
� 55 � 77 44 � 11 1�
� 91 � 182 156 � 65 13 � 1�
� 140 � 378 450 � 275 90 � 15 1�
� 204 � 714 1122 � 935 442 � 119 17 � 1�
� 285 � 1254 2508 � 2717 1729 � 665 152 � 19 1

We selected �a, ?� and �F, Q ?� only because these choices lead to a very simple re-
currence for the polynomials � + , which are the Chebyshev polynomials of the first kind.

Theoretical considerations An interesting theoretical question is whether the least-
squares residual polynomial becomes small in some sense as its degree increases. Consider
first the case ��� $��(% . Since the residual polynomial � p minimizes the norm � � � � as-
sociated with the weight � , over all polynomials � of degree 7 � such that � x � } ,BA , the
polynomial x A�Q x � � � }X}jp with

� , x $ t % } � @ satisfies

� � p � � 7

�
A�Q �

! � p � 7
 z Q#"

z t "
� p � , 	 % Q $% t $ � p

where 	 is the � -norm of the function unity on the interval ` $ J %�l . The norm of � p will
tend to zero geometrically as � tends to infinity, provided $ G � .

Consider now the case $F, � , % , A and the Jacobi weight (12.15). For this choice
of the weight function, the least-squares residual polynomial is known to be O p x � } �1O p x � }
where O p is the � 3%$ degree Jacobi polynomial associated with the weight function �'& x � } ,� � x A Q � } � . It can be shown that the 2-norm of such a residual polynomial with respect to
this weight is given by

�>O p ��O p x � } � ��)(, * � x � t A } * x � t � t A }
x @ � t � t � t A } x * x � t � t � t A }

* x � t A }* x � t � t A }
in which

*
is the Gamma function. For the case �#, ?� and �R,/Q ?� , this becomes

�>O p ��O p x � } � �� (, ` * x �� } l �
x @ � t A } x � t ?� } , +

@ x @ � t A } � h
Therefore, the � & -norm of the least-squares residual polynomial converges to zero like AK�\�
as the degree � increases (a much slower rate than when $ G �). However, note that the
condition O x � } , A implies that the polynomial must be large in some interval around the

�7�a� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

origin.

����� ����� � ���	� ' �,1 *+! ! ��� 	 . � �(# 1 �
Given a set of approximate eigenvalues of a nonsymmetric matrix � , a simple region # can
be constructed in the complex plane, e.g., a disk, an ellipse, or a polygon, which encloses
the spectrum of the matrix � . There are several choices for # . The first idea uses an ellipse# that encloses an approximate convex hull of the spectrum. Consider an ellipse centered
at
�
, and with focal distance 	 . Then as seen in Chapter 6, the shifted and scaled Chebyshev

polynomials defined by � p x � } ,
= p � (v �. = p � (.

are nearly optimal. The use of these polynomials leads again to an attractive three-term
recurrence and to an algorithm similar to Algorithm 12.1. In fact, the recurrence is identi-
cal, except that the scalars involved can now be complex to accommodate cases where the
ellipse has foci not necessarily located on the real axis. However, when � is real, then the
symmetry of the foci with respect to the real axis can be exploited. The algorithm can still
be written in real arithmetic.

An alternative to Chebyshev polynomials over ellipses employs a polygon � that
contains � x � } . Polygonal regions may better represent the shape of an arbitrary spectrum.
The best polynomial for the infinity norm is not known explicitly but it may be computed
by an algorithm known in approximation theory as the Remez algorithm. It may be simpler
to use an � � -norm instead of the infinity norm, i.e., to solve (12.11) where � is some weight
function defined on the boundary of the polygon � .

Now here is a sketch of an algorithm based on this approach. We use an � � -norm as-
sociated with Chebyshev weights on the edges of the polygon. If the contour of � consists
of � edges each with center

� + and half-length 	 + , then the weight on each edge is defined
by

� + x � } , @+ 2 	 + Q x � Q � + } � 2 v ?�� � J M�,BA\J�hihihiJj�]h j�~1�PY�~ �)n
Using the power basis to express the best polynomial is not a safe practice. It is preferable to
use the Chebyshev polynomials associated with the ellipse of smallest area containing � .
With the above weights or any other Jacobi weights on the edges, there is a finite procedure
which does not require numerical integration to compute the best polynomial. To do this,
each of the polynomials of the basis (namely, the Chebyshev polynomials associated with
the ellipse of smallest area containing �) must be expressed as a linear combination of
the Chebyshev polynomials associated with the different intervals ` � +�Q 	�+XJ � + t 	�+6l . This
redundancy allows exact expressions for the integrals involved in computing the least-
squares solution to (12.11).

Next, the main lines of a preconditioned GMRES algorithm are described based on
least-squares polynomials. Eigenvalue estimates are obtained from a GMRES step at the
beginning of the outer loop. This GMRES adaptive corrects the current solution and the
eigenvalue estimates are used to update the current polygon � . Correcting the solution
at this stage is particularly important since it often results in a few orders of magnitude

������� �tpg|�� �7p��x{ �M|'������� p����M{ %z{ p����a�a~ �7�a�
improvement. This is because the polygon � may be inaccurate and the residual vector is
dominated by components in one or two eigenvectors. The GMRES step will immediately
annihilate those dominating components. In addition, the eigenvalues associated with these
components will now be accurately represented by eigenvalues of the Hessenberg matrix.

���!� �U�
r�v�� � � �;� � $ $'� � &�$�� " � � $ � ����$ &��'" #"%$ &������ � � %�(
1. Start or Restart:
2. Compute current residual vector ; � , z Q ��| .
3. Adaptive GMRES step:
4. Run � ? steps of GMRES for solving � � , ; .
5. Update | by | � , | t �

.
6. Get eigenvalue estimates from the eigenvalues of the
7. Hessenberg matrix.
8. Compute new polynomial:
9. Refine � from previous hull � and new eigenvalue estimates.

10. Get new best polynomial p .
11. Polynomial Iteration:
12. Compute the current residual vector ;�, z Q�� | .
13. Run � � steps of GMRES applied to p x � } � � ,� p x � } ; .
14. Update | by | � , | t �

.
15. Test for convergence.
16. If solution converged then Stop; else GoTo 1.

���������	� � � � �;�
Table 12.1 shows the results of applying GMRES(20) with polynomial

preconditioning to the first four test problems described in Section 3.7.

Matrix Iters Kflops Residual Error
F2DA 56 2774 0.22E-05 0.51E-06
F3D 22 7203 0.18E-05 0.22E-05
ORS 78 4454 0.16E-05 0.32E-08
F2DB 100 4432 0.47E-05 0.19E-05

� ���	� � � � � �
A test run of ILU(0)-GMRES accelerated with

polynomial preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In fact, the system
is preconditioned by ILU(0) before polynomial preconditioning is applied to it. Degree 10
polynomials (maximum) are used. The tolerance for stopping is A � v � . Recall that Iters
is the number of matrix-by-vector products rather than the number of GMRES iterations.
Notice that, for most cases, the method does not compare well with the simpler ILU(0)
example seen in Chapter 10. The notable exception is example F2DB for which the method
converges fairly fast in contrast with the simple ILU(0)-GMRES; see Example 10.2. An
attempt to use the method for the fifth matrix in the test set, namely, the FIDAP matrix
FID, failed because the matrix has eigenvalues on both sides of the imaginary axis and the
code tested does not handle this situation.

�7� � ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

It is interesting to follow the progress of the algorithm in the above examples. For the
first example, the coordinates of the vertices of the upper part of the first polygon � are

� b x ! + } � � x ! + }
0.06492 0.00000
0.17641 0.02035
0.29340 0.03545
0.62858 0.04977
1.18052 0.00000

This hull is computed from the 20 eigenvalues of the @ ��� @ � Hessenberg matrix result-
ing from the first run of GMRES(20). In the ensuing GMRES loop, the outer iteration
converges in three steps, each using a polynomial of degree 10, i.e., there is no further
adaptation required. For the second problem, the method converges in the 20 first steps of
GMRES, so polynomial acceleration was never invoked. For the third example, the initial
convex hull found is the interval ` � h ��� A�� JiA h �	� @ � l of the real line. The polynomial pre-
conditioned GMRES then convergences in five iterations. Finally, the initial convex hull
found for the last example is

� b x ! + } � � x ! + }
0.17131 0.00000
0.39337 0.10758
1.43826 0.00000

and the outer loop converges again without another adaptation step, this time in seven steps.

� ���K���?�<�#�����`�E� �
�Z����

The general idea of multicoloring, or graph coloring, has been used for a long time by
numerical analysts. It was exploited, in particular, in the context of relaxation techniques
both for understanding their theory and for deriving efficient algorithms. More recently,
these techniques were found to be useful in improving parallelism in iterative solution
techniques. This discussion begins with the 2-color case, called red-black ordering.

����� �,� � 	��� �
,) #	���5' 	��0� 	 . ���
The problem addressed by multicoloring is to determine a coloring of the nodes of the
adjacency graph of a matrix such that any two adjacent nodes have different colors. For
a 2-dimensional finite difference grid (5-point operator), this can be achieved with two

����� � ��}k|F%M{ � pg|)p<�f{f��� �7�t�
colors, typically referred to as “red” and “black.” This red-black coloring is illustrated in
Figure 12.2 for a � ��� mesh where the black nodes are represented by filled circles.

1 3 5

8 10 12

13 15 17

20 22 24

2 4 6

7 9 11

14 16 18

19 21 23

�� �����!� � � �;�
Red-black coloring of a � � � grid. Natural la-

beling of the nodes.

Assume that the unknowns are labeled by listing the red unknowns first together, fol-
lowed by the black ones. The new labeling of the unknowns is shown in Figure 12.3.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

�� �����!� � � �;�
Red-black coloring of a � �#� grid. Red-black

labeling of the nodes.

Since the red nodes are not coupled with other red nodes and, similarly, the black
nodes are not coupled with other black nodes, the system that results from this reordering
will have the structure � � ? �# � � � � |]?| � � ,

� z ?
z � � J j�~��PY�~ �Kn

in which � ? and � � are diagonal matrices. The reordered matrix associated with this new
labeling is shown in Figure 12.4.

Two issues will be explored regarding red-black ordering. The first is how to exploit
this structure for solving linear systems. The second is how to generalize this approach for
systems whose graphs are not necessarily 2-colorable.

�7�7� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

�� ��������� ��� �
Matrix associated with the red-black reordering

of Figure 12.3.

����� �,��� 1�'�) � ��. ' � '�� 	��� �0
,) # � �51 * 1���� ! 1
The easiest way to exploit the red-black ordering is to use the standard SSOR or ILU(0)
preconditioners for solving the block system (12.18) which is derived from the original sys-
tem. The resulting preconditioning operations are highly parallel. For example, the linear
system that arises from the forward solve in SSOR will have the form� � ? �# � � � � | ?|�� � ,

� z ?
z � � h

This system can be solved by performing the following sequence of operations:

1. Solve � ?1|�?�, z ? .
2. Compute

<z � � , z ��Q #�| ? .
3. Solve � � |��&, <z � .

This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-by-
vector product. Therefore, the degree of parallelism, is at least E-� @ if an atomic task is
considered to be any arithmetic operation. The situation is identical with the ILU(0) pre-
conditioning. However, since the matrix has been reordered before ILU(0) is applied to it,
the resulting LU factors are not related in any simple way to those associated with the orig-
inal matrix. In fact, a simple look at the structure of the ILU factors reveals that many more
elements are dropped with the red-black ordering than with the natural ordering. The result
is that the number of iterations to achieve convergence can be much higher with red-black
ordering than with the natural ordering.

A second method that has been used in connection with the red-black ordering solves
the reduced system which involves only the black unknowns. Eliminating the red un-
knowns from (12.18) results in the reduced system:

x � � Q # � v ?? � } |�� , z � Q # � v ?? z ? h

����� � ��}k|F%M{ � pg|)p<�f{f��� �7���
Note that this new system is again a sparse linear system with about half as many un-
knowns. In addition, it has been observed that for “easy problems,” the reduced system
can often be solved efficiently with only diagonal preconditioning. The computation of the
reduced system is a highly parallel and inexpensive process. Note that it is not necessary
to form the reduced system. This strategy is more often employed when � ? is not diag-
onal, such as in domain decomposition methods, but it can also have some uses in other
situations. For example, applying the matrix to a given vector | can be performed using
nearest-neighbor communication, and this can be more efficient than the standard approach
of multiplying the vector by the Schur complement matrix � ��Q # � v ?? � . In addition, this
can save storage, which may be more critical in some cases.

����� �,��� !/�)�+. � '�) ' 	 . ��� � ' 	 �"� ��� 	 #0) 1 % #
	 1 �:! # ��	 . � � 1
Chapter 3 discussed a general greedy approach for multicoloring a graph. Given a general
sparse matrix � , this inexpensive technique allows us to reorder it into a block form where
the diagonal blocks are diagonal matrices. The number of blocks is the number of colors.
For example, for six colors, a matrix would result with the structure shown in Figure 12.5
where the � + ’s are diagonal and # , � are general sparse. This structure is obviously a
generalization of the red-black ordering.

� ?
� �

� �
�

� �
� �

F

E

�� �����!� � � �S�
A six-color ordering of a general sparse matrix.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can be used
on this reordered system. The parallelism of SOR/SSOR is now of order E-��O where O is
the number of colors. A loss in efficiency may occur since the number of iterations is likely
to increase.

A Gauss-Seidel sweep will essentially consist of O scalings and O�Q A matrix-by-vector
products, where O is the number of colors. Specifically, assume that the matrix is stored in
the well known Ellpack-Itpack format and that the block structure of the permuted matrix
is defined by a pointer array MqO : ; . The index MqO : ; x 0 } is the index of the first row in the 0 -th
block. Thus, the pair � x E8A � E @ J � } J � � x E8A � E @ J � } represents the sparse matrix consisting
of the rows E8A to E @ in the Ellpack-Itpack format. The main diagonal of � is assumed to

�7��� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

be stored separately in inverted form in a one-dimensional array
� M "�� . One single step of

the multicolor SOR iteration will then take the following form.

�����	�U��
N�v�� � � �;� � ��� � #" ��$'� $ �&('���/(�������� " & ��� % � ��������	�
�$ � � ��

1. Do col = 1, ncol
2. n1 = iptr(col)
3. n2 = iptr(col+1) – 1
4. y(n1:n2) = rhs(n1:n2)
5. Do j = 1, ndiag
6. Do i = n1, n2
7. y(i) = y(i) – a(i,j)*y(ja(i,j))
8. EndDo
9. EndDo

10. y(n1:n2) = diag(n1:n2) * y(n1:n2)
11. EndDo

In the above algorithm, E !� 4 is the number of colors. The integers E8A and E @ set in lines
2 and 3 represent the beginning and the end of block !� 4 . In line 10, � x E8A � E @ } is mul-
tiplied by the diagonal � v ? which is kept in inverted form in the array

� M "�� . The outer
loop, i.e., the loop starting in line 1, is sequential. The loop starting in line 6 is vectoriz-
able/parallelizable. There is additional parallelism which can be extracted in the combina-
tion of the two loops starting in lines 5 and 6.

� ���K�����K% �u��� �E� !M���r�h� �@�u�
�Z�����

The discussion in this section begins with the Gaussian elimination algorithm for a general
sparse linear system. Parallelism in sparse Gaussian elimination can be obtained by find-
ing unknowns that are independent at a given stage of the elimination, i.e., unknowns that
do not depend on each other according to the binary relation defined by the graph of the
matrix. A set of unknowns of a linear system which are independent is called an indepen-
dent set. Thus, independent set orderings can be viewed as permutations to put the original
matrix in the form � � #

�
= � j�~1�PY�~ �)n

in which � is diagonal, but
=

can be arbitrary. This amounts to a less restrictive form of
multicoloring, in which a set of vertices in the adjacency graph is found so that no equation
in the set involves unknowns from the same set. A few algorithms for finding independent
set orderings of a general sparse graph were discussed in Chapter 3.

The rows associated with an independent set can be used as pivots simultaneously.
When such rows are eliminated, a smaller linear system results, which is again sparse.
Then we can find an independent set for this reduced system and repeat the process of

������� ��}k|F%M{ oe�a|Q{ �x{ �]�a%M{ p�� {S|P} �7���
reduction. The resulting second reduced system is called the second-level reduced system.
The process can be repeated recursively a few times. As the level of the reduction increases,
the reduced systems gradually lose their sparsity. A direct solution method would continue
the reduction until the reduced system is small enough or dense enough to switch to a dense
Gaussian elimination to solve it. This process is illustrated in Figure 12.6. There exists a
number of sparse direct solution techniques based on this approach.

�� �����!� � � �2�
Illustration of two levels of multi-elimination for

sparse linear systems.

After a brief review of the direct solution method based on independent set orderings,
we will explain how to exploit this approach for deriving incomplete LU factorizations by
incorporating drop tolerance strategies.

�������,� � !/�)�+. � �) . !/. � # �+.�' �
We start by a discussion of an exact reduction step. Let � � be the matrix obtained at the
0 -th step of the reduction, 0:, � J�hihihiJXE
4@b � with � � , � . Assume that an independent set
ordering is applied to � � and that the matrix is permuted accordingly as follows:

 �6� � w� ,
� � � � �# � = � � j�~��PY � �Kn

where � � is a diagonal matrix. Now eliminate the unknowns of the independent set to get
the next reduced matrix,

� � H ? , = ��Q # � � v ?� � � h j�~��PY ��~In
This results, implicitly, in a block LU factorization

 � � � w� ,
� � � � �# � = � � ,

� �
�# � � v ?�
� � �

� � � � �
� � � H ? �

with � � H ? defined above. Thus, in order to solve a system with the matrix � � , both a
forward and a backward substitution need to be performed with the block matrices on the
right-hand side of the above system. The backward solution involves solving a system with
the matrix � � H ? .

This block factorization approach can be used recursively until a system results that is
small enough to be solved with a standard method. The transformations used in the elimina-
tion process, i.e., the matrices # � � v ?� and the matrices � � must be saved. The permutation

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

matrices � can also be saved. Alternatively, the matrices involved in the factorization at
each new reordering step can be permuted explicitly.

�������,��� .) �"!

The successive reduction steps described above will give rise to matrices that become more
and more dense due to the fill-ins introduced by the elimination process. In iterative meth-
ods, a common cure for this is to neglect some of the fill-ins introduced by using a simple
dropping strategy as the reduced systems are formed. For example, any fill-in element in-
troduced is dropped, whenever its size is less than a given tolerance times the 2-norm of
the original row. Thus, an “approximate” version of the successive reduction steps can be
used to provide an approximate solution � v ? � to � v ? � for any given � . This can be used
to precondition the original linear system. Conceptually, the modification leading to an
“incomplete” factorization replaces (12.21) by

� � H ?�, x = ��Q # � � v ?� � � } Q � � j�~1�PY �5�)n
in which �
� is the matrix of the elements that are dropped in this reduction step. Globally,
the algorithm can be viewed as a form of incomplete block LU with permutations.

Thus, there is a succession of block ILU factorizations of the form

 �K� � �w� ,
� � � � �# � = � �

,
� �

�# � � v ?�
� � �

� � � � �
� � � H ? � t

�
� �
� � � �

with � � H ? defined by (12.22). An independent set ordering for the new matrix ��� H ? will
then be found and this matrix is reduced again in the same manner. It is not necessary to
save the successive �
� matrices, but only the last one that is generated. We need also to
save the sequence of sparse matrices

� � H ? ,
� � � � �# � � v ?� � � j�~1�PY � �)n

which contain the transformation needed at level 0 of the reduction. The successive per-
mutation matrices � can be discarded if they are applied to the previous

� + matrices as
soon as these permutation matrices are known. Then only the global permutation is needed,
which is the product of all these successive permutations.

An illustration of the matrices obtained after three reduction steps is shown in Figure
12.7. The original matrix is a 5-point matrix associated with a A�� �:A�� grid and is therefore
of size 3 , @ @ � . Here, the successive matrices

� + (with permutations applied) are shown
together with the last �
� matrix which occupies the location of the � block in (12.23).

������� ��}k|F%M{ oe�a|Q{ �x{ �]�a%M{ p�� {S|P} ��� �

�� �����!� � � � �
Illustration of the processed matrices obtained

from three steps of independent set ordering and reductions.

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination). The
preprocessing phase consists of a succession of E
4{b � applications of the following three
steps: (1) finding the independent set ordering, (2) permuting the matrix, and (3) reducing
it.

���!� �U�
r�v�� � � � � � �@�u�$����$	� ����� $ ����� � " &�� $ ����� �
1. Set � � , � .
2. For 0', �ZJiA\J�hih�h JXE
4{b � QSA Do:
3. Find an independent set ordering permutation � for � � ;
4. Apply � to � � to permute it into the form (12.20);
5. Apply � to

� ? J�hihihiJ � � ;
6. Apply � to � J�hihih�J � v ? ;
7. Compute the matrices � � H ? and

� � H ? defined by (12.22) and (12.23).
8. EndDo

In the backward and forward solution phases, the last reduced system must be solved but
not necessarily with high accuracy. For example, we can solve it according to the level of
tolerance allowed in the dropping strategy during the preprocessing phase. Observe that
if the linear system is solved inaccurately, only an accelerator that allows variations in
the preconditioning should be used. Such algorithms have been discussed in Chapter 9.
Alternatively, we can use a fixed number of multicolor SOR or SSOR steps or a fixed
polynomial iteration. The implementation of the ILUM preconditioner corresponding to

���a� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

this strategy is rather complicated and involves several parameters.
In order to describe the forward and backward solution, we introduce some notation.

We start by applying the “global permutation,” i.e., the product

 �� c���� v ?\J �� c���� v � h�hihiJ �
to the right-hand side. We overwrite the result on the current solution vector, an 3 -vector
called | � . Now partition this vector into

| � ,
�
� �
|]? �

according to the partitioning (12.20). The forward step consists of transforming the second
component of the right-hand side as

|�? � ,�|]?�Q # � � v ?� � � h
Now |�? is partitioned in the same manner as | � and the forward elimination is continued
the same way. Thus, at each step, each |�� is partitioned as

| � ,
�

� �| � H ? � h
A forward elimination step defines the new |�� H ? using the old |�� H ? and � � for 0 ,� J�hihihiJXE
4@b � QaA while a backward step defines � � using the old � � and | � H ? , for 0 ,
E
4@b � Q�A\Jih�hih J � . Algorithm 12.5 describes the general structure of the forward and back-
ward solution sweeps. Because the global permutation was applied at the beginning, the
successive permutations need not be applied. However, the final result obtained must be
permuted back into the original ordering.

�����	�U��
N�v�� � � �S� � �{���$���
�$ � ���� � � &�� � ��� 	 ����� �S('$'� �! #"%$'&��
1. Apply global permutation to right-hand-side z and copy into | � .
2. For 0 , �ZJiA Jihih�h JXE
4{b � Q<A Do: [Forward sweep]
3. |�� H ? � ,F|�� H ?�Q # � � v ?� � �
4. EndDo
5. Solve with a relative tolerance � :
6. � � c�����| � c���� � ,F| � c���� .
7. For 0 , E
4{b � Q<A Jih�hih J�A\J � Do: [Backward sweep]
8. � � � , � v ?� x � ��Q � �i|�� H ? } .
9. EndDo

10. Permute the resulting solution vector back to the original
11. ordering to obtain the solution | .

Computer implementations of ILUM can be rather tedious. The implementation issues
are similar to those of parallel direct-solution methods for sparse linear systems.

������� �M{ ~!%M�f{ � }�% �Z� {S|P} � ����~P~�p<� ���a�
�b�I(k���`�@�>�g� %H���{��� !w�\� (�('���

�Z�b���

This section describes parallel variants of the block Successive Over-Relaxation (BSOR)
and ILU(0) preconditioners which are suitable for distributed memory environments.
Chapter 11 briefly discussed distributed sparse matrices.. A distributed matrix is a ma-
trix whose entries are located in the memories of different processors in a multiprocessor
system. These types of data structures are very convenient for distributed memory com-
puters and it is useful to discuss implementations of preconditioners that are specifically
developed for them. Refer to Section 11.5.6 for the terminology used here. In particular, the
term subdomain is used in the very general sense of subgraph. For both ILU and SOR, mul-
ticoloring or level scheduling can be used at the macro level, to extract parallelism. Here,
macro level means the level of parallelism corresponding to the processors, or blocks, or
subdomains.

��������� � ��. 1���	 .�
,� �+�� 1 % #
	 1 �:! # ��	 . � � 1
In the ILU(0) factorization, the LU factors have the same nonzero patterns as the original
matrix � , so that the references of the entries belonging to the external subdomains in
the ILU(0) factorization are identical with those of the matrix-by-vector product operation
with the matrix � . This is not the case for the more accurate ILU(O) factorization, with
O G � . If an attempt is made to implement a wavefront ILU preconditioner on a distributed
memory computer, a difficulty arises because the natural ordering for the original sparse
problem may put an unnecessary limit on the amount of parallelism available. Instead, a
two-level ordering is used. First, define a “global” ordering which is a wavefront ordering
for the subdomains. This is based on the graph which describes the coupling between
the subdomains: Two subdomains are coupled if and only if they contain at least a pair
of coupled unknowns, one from each subdomain. Then, within each subdomain, define a
local ordering.

To describe the possible parallel implementations of these ILU(0) preconditioners, it is
sufficient to consider a local view of the distributed sparse matrix, illustrated in Figure 12.8.
The problem is partitioned into O subdomains or subgraphs using some graph partitioning
technique. This results in a mapping of the matrix into processors where it is assumed that
the M -th equation (row) and the M -th unknown are mapped to the same processor. We dis-
tinguish between interior points and interface points. The interior points are those nodes
that are not coupled with nodes belonging to other processors. Interface nodes are those
local nodes that are coupled with at least one node which belongs to another processor.
Thus, processor number 10 in the figure holds a certain number of rows that are local rows.
Consider the rows associated with the interior nodes. The unknowns associated with these
nodes are not coupled with variables from other processors. As a result, the rows associ-
ated with these nodes can be eliminated independently in the ILU(0) process. The rows
associated with the nodes on the interface of the subdomain will require more attention.
Recall that an ILU(0) factorization is determined entirely by the order in which the rows
are processed. The interior nodes can be eliminated first. Once this is done, the interface

��� � ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

rows can be eliminated in a certain order. There are two natural choices for this order.
The first would be to impose a global order based on the labels of the processors. Thus,
in the illustration, the interface rows belonging to Processors 2, 4, and 6 are processed be-
fore those in Processor 10. The interface rows in Processor 10 must in turn be processed
before those of Processors 13 and 14. The local order, i.e., the order in which we process
the interface rows in the same processor (e.g. Processor 10), may not be as important. This
global order based on PE-number defines a natural priority graph and parallelism can be
exploited easily in a data-driven implementation.

Internal interface points

External interface points

Proc. 2
Proc. 4

Proc. 6

Proc. 14

Proc. 13

Proc. 10

�� ��������� ��� �
A local view of the distributed ILU(0).

It is somewhat unnatural to base the ordering just on the processor labeling. Observe
that a proper order can also be defined for performing the elimination by replacing the PE-
numbers with any labels, provided that any two neighboring processors have a different
label. The most natural way to do this is by performing a multicoloring of the subdomains,
and using the colors in exactly the same way as before to define an order of the tasks.
The algorithms will be written in this general form, i.e., with a label associated with each
processor. Thus, the simplest valid labels are the PE numbers, which lead to the PE-label-
based order. In the following, we define � " z � as the label of Processor number 0 .

�����	�U��
N�v�� � � �2� � � "%� �," � �! ��� �@�u��������� ��� $ � "	���� #" $'&
1. In each processor + JM8, A\J�hih�hiJ@O Do:
2. Perform the ILU(0) factorization for interior local rows.
3. Receive the factored rows from the adjacent processors 0 with
4. � " z � � � " z + .
5. Perform the ILU(0) factorization for the interface rows with
6. pivots received from the external processors in step 3.
7. Perform the ILU(0) factorization for the boundary nodes, with
8. pivots from the interior rows completed in step 2.
9. Send the completed interface rows to adjacent processors 0 with

������� pM% ���a��% �������q{ �<}��Q~ ���t�
10. � " z � G � " z + .
11. EndDo

Step 2 of the above algorithm can be performed in parallel because it does not depend on
data from other subdomains. Once this distributed ILU(0) factorization is completed, the
preconditioned Krylov subspace algorithm will require a forward and backward sweep at
each step. The distributed forward/backward solution based on this factorization can be
implemented as follows.

���!� �U�
r�v�� � � � � � � "%� �," � �! ���
�$ � ����� � � &�� � ����	 ���� � (����� �
1. In each processor + J�M�,/A\J�hihihiJ@O Do:
2. Forward solve:
3. Perform the forward solve for the interior nodes.
4. Receive the updated values from the adjacent processors 0
5. with � " z � � � " z + .
6. Perform the forward solve for the interface nodes.
7. Send the updated values of boundary nodes to the adjacent
8. processors 0 with � " z � G � " z + .
9. Backward solve:

10. Receive the updated values from the adjacent processors 0
11. with � " z � G � " z + .
12. Perform the backward solve for the boundary nodes.
13. Send the updated values of boundary nodes to the adjacent
14. processors, 0 with � " z � � � " z + .
15. Perform the backward solve for the interior nodes.
16. EndDo

As in the ILU(0) factorization, the interior nodes do not depend on the nodes from the
external processors and can be computed in parallel in lines 3 and 15. In the forward solve,
the solution of the interior nodes is followed by an exchange of data and the solution on
the interface. The backward solve works in reverse in that the boundary nodes are first
computed, then they are sent to adjacent processors. Finally, interior nodes are updated.

�b���'%m� � %M���\�w�����D%�(
�Z�b�	�

This section gives a brief account of other parallel preconditioning techniques which are
sometimes used. The next chapter also examines another important class of methods, which
were briefly mentioned before, namely, the class of Domain Decomposition methods.

���7� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~
����������� #0% %�	('���. ! # ���	. � +� 	 1 � 1

Another class of preconditioners that require only matrix-by-vector products, is the class
of approximate inverse preconditioners. Discussed in Chapter 10, these can be used in
many different ways. Besides being simple to implement, both their preprocessing phase
and iteration phase allow a large degree of parallelism. Their disadvantage is similar to
polynomial preconditioners, namely, the number of steps required for convergence may be
large, possibly substantially larger than with the standard techniques. On the positive side,
they are fairly robust techniques which can work well where standard methods may fail.

��������� � �) � ! � �����0
 *�� �) � ! � ��� �+��� ��� . ���"� 1
A somewhat specialized set of techniques is the class of Element-By-Element (EBE) pre-
conditioners which are geared toward finite element problems and are motivated by the
desire to avoid assembling finite element matrices. Many finite element codes keep the
data related to the linear system in unassembled form. The element matrices associated
with each element are stored and never added together. This is convenient when using di-
rect methods since there are techniques, known as frontal methods, that allow Gaussian
elimination to be performed by using a few elements at a time.

It was seen in Chapter 2 that the global stiffness matrix � is the sum of matrices � 4
�
9

associated with each element, i.e.,

� ,
/ ��c�
��� ? �

4
�
9 h

Here, the matrix � 4
�
9

is an E � E matrix defined as

� 4
�
9 , �2����� �w�

in which ���	� is the element matrix and � is a Boolean connectivity matrix which maps
the coordinates of the small � � � matrix into those of the full matrix � . Chapter 2 showed
how matrix-by-vector products can be performed in unassembled form. To perform this
product in parallel, note that the only potential obstacle to performing the matrix-by-vector
product in parallel, i.e., across all elements, is in the last phase, i.e., when the contributions
are summed to the resulting vector � . In order to add the contributions � 4

�
9 | in paral-

lel, group elements that do not have nodes in common. Referring to Equation (2.35), the
contributions

� � , � � � x w� | }
can all be computed in parallel and do not depend on one another. The operations

� � , � t � � �

can be processed in parallel for any group of elements that do not share any vertices. This
grouping can be found by performing a multicoloring of the elements. Any two elements
which have a node in common receive a different color. Using this idea, good performance
can be achieved on vector computers.

������� pM% ���a��% �������q{ �<}��Q~ �����
EBE preconditioners are based on similar principles and many different variants have

been developed. They are defined by first normalizing each of the element matrices. In the
sequel, assume that � is a Symmetric Positive Definite matrix. Typically, a diagonal, or
block diagonal, scaling is first applied to � to obtain a scaled matrix �� ,

�� , � v ?�� � � � v ?�� � h j�~��PY � � n
This results in each matrix � 4

�
9

and element matrix � �	� being transformed similarly:

�� 4
�
9 , � v ? � � � 4

�
9 � v ?�� �

, � v ? � � �2���	� � v ? � �
, � x �w� � v ?�� � �

} � 4
�
9 x � � v ?�� � �w� }� � �� � � �w� h

The second step in defining an EBE preconditioner is to regularize each of these trans-
formed matrices. Indeed, each of the matrices � 4

�
9

is of rank O � at most, where O � is the
size of the element matrix � � � , i.e., the number of nodes which constitute the b -th ele-
ment. In the so-called Winget regularization, the diagonal of each � 4

�
9

is forced to be the
identity matrix. In other words, the regularized matrix is defined as

�� 4
�
9 ,

�
t �� 4

�
9 Q �) Y�� x �� 4

�
9 } h j�~��PY � "Kn

These matrices are positive definite; see Exercise 8.
The third and final step in defining an EBE preconditioner is to choose the factorization

itself. In the EBE Cholesky factorization, the Cholesky (or Crout) factorization of each
regularized matrix

�� 4
�
9

is performed,
�� 4
�
9 , � � � � �)w � h j�~��PY � �Kn

The preconditioner from it is defined as

� ,
� � c

�>� ? � � �
� ��c

��� ? � � �
?

��� � � c � w � h j�~��PY � �Kn
Note that to ensure symmetry, the last product is in reverse order of the first one. The fac-
torization (12.26) consists of a factorization of the small O � �3O � matrix

�� � � . Performing
the preconditioning operations will therefore consist of a sequence of small O � �'O � back-
ward or forward solves. The gather and scatter matrices � defined in Chapter 2 must also
be applied for each element. These solves are applied to the right-hand side in sequence. In
addition, the same multicoloring idea as for the matrix-by-vector product can be exploited
to perform these sweeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioner is that an additional set of
element matrices must be stored. That is because the factorizations (12.26) must be stored
for each element. In EBE/SSOR, this is avoided. Instead of factoring each

�� 4
�
9
, the usual

splitting of each
�� 4
�
9

is exploited. Assuming the Winget regularization, we have
�� 4
�
9 ,

�
Q # � Q #�w� j�~��PY � �Kn

in which Q�# � is the strict-lower part of
�� 4
�
9
. By analogy with the SSOR preconditioner,

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~

the EBE-SSOR preconditioner is defined by

� ,
� � c

��� ? x
�
Q � # �

} �
� � c

��� ? � � �
?

��� � ��c x
�
Q � #�w� } h j�~1�PY � �)n

��������� � % #
	 #0)) �) 	('�� % 	('�� ��� ��. ' �&%�	���� ' � ��. ��. ' ��� 	 1
One of the attractions of row-projection methods seen in Chapter 8 is their high degree of
parallelism. In Cimmino’s method, the scalars 	 + as well as the new residual vector can
be computed in parallel. In the Gauss-Seidel-NE (respectively Gauss-Seidel-NR), it is also
possible to group the unknowns in such a way that any pair of rows (respectively columns)
have disjointed nonzero patterns. Updates of components in the same group can then be
performed in parallel. This approach essentially requires finding a multicolor ordering for
the matrix

� , �]� w (respectively
� , � w �).

It is necessary to first identify a partition of the set .�A\J @ Jih�hih�J 3 = into subsets * ? , hih�h ,
* p such that the rows (respectively columns) whose indices belong to the same set * + are
structurally orthogonal to each other, i.e., have no nonzero elements in the same column
locations. When implementing a block SOR scheme where the blocking is identical with
that defined by the partition, all of the unknowns belonging to the same set * � can be
updated in parallel. To be more specific, the rows are reordered by scanning those in *)?
followed by those in * � , etc.. Denote by � + the matrix consisting of the rows belonging to
the M -th block. We assume that all rows of the same set are orthogonal to each other and
that they have been normalized so that their 2-norm is unity. Then a block Gauss-Seidel
sweep, which generalizes Algorithm 8.1, follows.

�����	�U��
N�v�� � � � � �
�$ � ���� �/��� $ ��	�� %� � � ��� � ��('��" � ���-(��������
1. Select an initial | � .
2. For M�,/A J @ Jihih�h Jj� Do:
3.

� +�, z +�Q � +{|
4. | � ,F| t � w+ � +
5. EndDo

Here, | + and z + are subvectors corresponding to the blocking and
� + is a vector of length

the size of the block, which replaces the scalar 	K+ of Algorithm 8.1. There is parallelism in
each of the steps 3 and 4.

The question that arises is how to find good partitions *8+ . In simple cases, such as
block-tridiagonal matrices, this can easily be done; see Exercise 7. For general sparse ma-
trices, a multicoloring algorithm on the graph of �Z� w (respectively � w �) can be em-
ployed. However, these matrices are never stored explicitly. Their rows can be generated,
used, and then discarded.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �����
%��R%m�g�>�I(�%�(

1 Let � be a Symmetric Positive Definite matrix and consider ���	�)��
� � � where
 is a block
diagonal of � .
��� Show that
 is a Symmetric Positive Definite matrix. Denote by ������� ��� the associated inner

product.� � Show that � is self-adjoint with respect to to ������� ��� .
��� Show that �� is self-adjoint with respect to to ������� � � for any integer ! ." � Show that the Neumann series expansion preconditioner defined by the right-hand side of

(12.3) leads to a preconditioned matrix that is self-adjoint with respect to the
 -inner prod-
uct.

#�� Describe an implementation of the preconditioned CG algorithm using this preconditioner.

2 The development of the Chebyshev iteration algorithm seen in Section 12.3.2 can be exploited to
derive yet another formulation of the conjugate algorithm from the Lanczos algorithm. Observe
that the recurrence relation (12.8) is not restricted to scaled Chebyshev polynomials.
��� The scaled Lanczos polynomials, i.e., the polynomials $ � �&%'�'(�$ � �*)+� , in which $ � �&%'� is the

polynomial such that , �.- � �/$ � �*�0�1, � in the Lanczos algorithm, satisfy a relation of the
form (12.8). What are the coefficients 2 � and 3 in this case?� � Proceed in the same manner as in Section 12.3.2 to derive a version of the Conjugate Gradient
algorithm.

3 Show that 2 � as defined by (12.7) has a limit 2 . What is this limit? Assume that Algorithm 12.1
is to be executed with the 2 � ’s all replaced by this limit 2 . Will the method converge? What is
the asymptotic rate of convergence of this modified method?

4 Derive the least-squares polynomials for 45� �
�
� ��67� �

� for the interval 8)9��:<; for !=�>:?��@���A��'B .
Check that these results agree with those of the table shown at the end of Section 12.3.3.

5 Consider the mesh shown below. Assume that the objective is to solve the Poisson equation with
Dirichlet boundary conditions.

��� Consider the resulting matrix obtained (before boundary conditions are applied) from order-
ing the nodes from bottom up, and left to right (thus, the bottom left vertex is labeled 1 and
the top right vertex is labeled 13). What is the bandwidth of the linear system? How many
memory locations would be needed to store the matrix in Skyline format? (Assume that the
matrix is nonsymmetric so both upper and lower triangular parts must be stored).

����� ���]� �t% �a� ��� ���z�"�M|Q| �a| ������� p����z{ %M{ p����a�a~
� � Is it possible to find a 2-color ordering of the mesh points? If so, show the ordering, or

otherwise prove that it is not possible.
��� Find an independent set of size 5. Show the pattern of the matrix associated with this inde-

pendent set ordering." � Find a multicolor ordering of the mesh by using the greedy multicolor algorithm. Can you
find a better coloring (i.e., a coloring with fewer colors)? If so, show the coloring [use letters
to represent each color].

6 A linear system ��� � �
where � is a 5-point matrix, is reordered using red-black ordering as�
 � ��
 � � � � � � �

���
� � �

� � Write the block Gauss-Seidel iteration associated with the above partitioned system (where
the blocking in block Gauss-Seidel is the same as the above blocking).� � Express the

�
iterates, independently of the � iterates, i.e., find an iteration which involves

only
�

-iterates. What type of iteration is the resulting scheme?

7 Consider a tridiagonal matrix 	 ��
����������������1� � �'����� � . Find a grouping of the rows such that
rows in each group are structurally orthogonal, i.e., orthogonal regardless of the values of the en-
try. Find a set of three groups at most. How can this be generalized to block tridiagonal matrices
such as those arising from 2-D and 3-D centered difference matrices?

8 Why are the Winget regularized matrices ���� "! defined by (12.25) positive definite when the
matrix #� is obtained from � by a diagonal scaling from � ?

NOTES AND REFERENCES. As vector processing appeared in the middle to late 1970s, a number
of efforts were made to change algorithms, or implementations of standard methods, to exploit the
new architectures. One of the first ideas in this context was to perform matrix-by-vector products
by diagonals [133]. Matrix-by-vector products using this format can yield excellent performance.
Hence, came the idea of using polynomial preconditioning. Polynomial preconditioning was ex-
ploited independently of supercomputing, as early as 1952 in a paper by Lanczos [141], and later
for eigenvalue problems by Stiefel who employed least-squares polynomials [204], and Rutishauser
[171] who combined the QD algorithm with Chebyshev acceleration. Dubois et al. [75] suggested us-
ing polynomial preconditioning, specifically, the Neumann series expansion, for solving Symmetric
Positive Definite linear systems on vector computers. Johnson et al. [129] later extended the idea by
exploiting Chebyshev polynomials, and other orthogonal polynomials. It was observed in [129] that
least-squares polynomials tend to perform better than those based on the uniform norm, in that they
lead to a better overall clustering of the spectrum. Moreover, as was already observed by Rutishauser
[171], in the symmetric case there is no need for accurate eigenvalue estimates: It suffices to use the
simple bounds that are provided by Gershgorin’s theorem. In [175] it was also observed that in some
cases the least-squares polynomial approach which requires less information than the Chebyshev
approach tends to perform better.

The use of least-squares polynomials over polygons was first advocated by Smolarski and Saylor
[200] and later by Saad [176]. The application to the indefinite case was examined in detail in [174].
Still in the context of using polygons instead of ellipses, yet another attractive possibility proposed
by Fischer and Reichel [91] avoids the problem of best approximation altogether. The polygon can
be conformally transformed into a circle and the theory of Faber polynomials yields a simple way of
deriving good polynomials from exploiting specific points on the circle.

Although only approaches based on the formulation (12.5) and (12.11) have been discussed,
there are other lesser known possibilities based on minimizing $: (� � � �%� ��$&% . There has been

��� �a����{ ~��Q~ � ���N�7pM% �Q~ ��� �
very little work on polynomial preconditioning or Krylov subspace methods for highly non-normal
matrices; see, however, the recent analysis in [207]. Another important point is that polynomial
preconditioning can be combined with a subsidiary relaxation-type preconditioning such as SSOR
[2, 153]. Finally, polynomial preconditionings can be useful in some special situations such as that
of complex linear systems arising from the Helmholtz equation [93].

Multicoloring has been known for a long time in the numerical analysis literature and was used
in particular for understanding the theory of relaxation techniques [232, 213] as well as for deriving
efficient alternative formulations of some relaxation algorithms [213, 110]. More recently, it became
an essential ingredient in parallelizing iterative algorithms, see for example [4, 2, 82, 155, 154, 164].
It is also commonly used in a slightly different form — coloring elements as opposed to nodes —
in finite elements techniques [23, 217]. In [182] and [69], it was observed that ! -step SOR pre-
conditioning was very competitive relative to the standard ILU preconditioners. Combined with
multicolor ordering, multiple-step SOR can perform quite well on supercomputers. Multicoloring
is especially useful in Element-By-Element techniques when forming the residual, i.e., when multi-
plying an unassembled matrix by a vector [123, 88, 194]. The contributions of the elements of the
same color can all be evaluated and applied simultaneously to the resulting vector. In addition to the
parallelization aspects, reduced systems can sometimes be much better conditioned than the original
system, see [83].

Independent set orderings have been used mainly in the context of parallel direct solution tech-
niques for sparse matrices [66, 144, 145] and multifrontal techniques [77] can be viewed as a par-
ticular case. The gist of all these techniques is that it is possible to reorder the system in groups of
equations which can be solved simultaneously. A parallel direct solution sparse solver based on per-
forming several successive levels of independent set orderings and reduction was suggested in [144]
and in a more general form in [65].

� � � � � � �

���

� ��� ���y� ���������
 ��$ � ���!���
� � ��� ��� $

�7*MGZ^ B 1F(S/65N80+939*4*F(SDITz1C3O+-& DI8PB 86T6V<(*f*X1C39.6JQ(SB VHT).K(dD)(SDITmTQ5N8Q^ D-J�sPD-3A@h+6B .I*4*C39*786=7D ^2oGH365L(+9.0B-GH3A19&I80JK*[19&-.21 +9.0Dq14.0�A3'_K3F1X1C3-5Q.6J):-. D21C.ITK3�86= /-.)5N. B B 36B (*9Gh.)5N3u36GH365;T0(SDITPY
�'Gz8PDIT>1A&-39*C3,1C39+6& D)(�!^-39*OsQJK8QGm.)(SD]J 3O+98QGg/)86*F(1F(8PD�GH3A19&I80JK*z.)5N3>^ D-JK8P^ _21C39J!B V1A&-3`_K3A*X1<�)DI82@zD`. D-Ji/K365E&-. /I*q19&-3>Gz8)*X1</65;8PG,(*F(SDIT]=L8 57+O365S14.K(SDg1EV /)39*M86=M/)5;8P_2oB 36Gz*OYk%'&-39*C3 GH3A1A&I80JK*\+A8PGg_)(SD-3�(J 3O.I*>=X5;8QG �P.)5;1R(. B8�k(�[365N36D21F(.0B-�Q�!^-.I1R(8PDI*OsB (SD-3O.)5'. B T)36_)5N.0sqGm.219&-3-Gm.21F(+O.0By. D-.0B VI*F(*Os7. D-J�1C39+6& D)(�!^-39*g=X5;8PG�TQ5r. / &w1A&-398 5;VOY%'&)(*H+6&-. /21C3657(*,J 3A:I8-1C3OJ�148��WJ 39+98PGg/68)*F(1R(8PD
	bGH3A19&I80JK*9s�@H&)(+-&>.)5N3v_-.-*C39JU8PD1A&-3mTK3-D-365N.0B0+A8PD-+O36/21X*'86=fTQ5N.0/ &�/-.)5S1F(1R(8PD)(dDIT)*OY

�E�`���,�h�i�>�,���N���
�+
��I�

Domain decomposition methods refer to a collection of techniques which revolve around
the principle of divide-and-conquer. Such methods have been primarily developed for solv-
ing Partial Differential Equations over regions in two or three dimensions. However, similar
principles have been exploited in other contexts of science and engineering. In fact, one of
the earliest practical uses for domain decomposition approaches was in structural engi-
neering, a discipline which is not dominated by Partial Differential Equations. Although
this chapter considers these techniques from a purely linear algebra view-point, the ba-
sic concepts, as well as the terminology, are introduced from a model Partial Differential
Equation.

���a�

�����s� { �f%M�[p��z}��y%M{ p�� ���a�

� ? � �

� �

* ? �
* ? �

�� �����!� � � � �
An L-shaped domain subdivided into three sub-

domains.

Consider the problem of solving the Laplace Equation on an L-shaped domain
�

parti-
tioned as shown in Figure 13.1. Domain decomposition or substructuring methods attempt
to solve the problem on the entire domain

� , 9�
+s� ?
� + J

from problem solutions on the subdomains
� + . There are several reasons why such tech-

niques can be advantageous. In the case of the above picture, one obvious reason is that the
subproblems are much simpler because of their rectangular geometry. For example, fast
solvers can be used on each subdomain in this case. A second reason is that the physical
problem can sometimes be split naturally into a small number of subregions where the
modeling equations are different (e.g., Euler’s equations on one region and Navier-Stokes
in another). Substructuring can also be used to develop “out-of-core” solution techniques.
As already mentioned, such techniques were often used in the past to analyze very large
mechanical structures. The original structure is partitioned into pieces, each of which
is small enough to fit into memory. Then a form of block-Gaussian elimination is used
to solve the global linear system from a sequence of solutions using subsystems. More
recent interest in domain decomposition techniques has been motivated by parallel pro-
cessing.

����� �(��� � ' � # ��. ' �
In order to review the issues and techniques in use and to introduce some notation, assume
that the following problem is to be solved:

��� ,�� in
�

��� � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~
� , ��� on

* , � � h
Domain decomposition methods are all implicitly or explicitly based on different ways
of handling the unknown at the interfaces. From the PDE point of view, if the value of the
solution is known at the interfaces between the different regions, these values could be used
in Dirichlet-type boundary conditions and we will obtain uncoupled Poisson equations.
We can then solve these equations to obtain the value of the solution at the interior points.
If the whole domain is discretized by either finite elements or finite difference techniques,
then this is easily translated into the resulting linear system.

Now some terminology and notation will be introduced for use throughout this chapter.
Assume that the problem associated with domain shown in Figure 13.1 is discretized with
centered differences. We can label the nodes by subdomain as shown in Figure 13.3. Note
that the interface nodes are labeled last. As a result, the matrix associated with this problem
will have the structure shown in Figure 13.4. For a general partitioning into subdomains,
the linear system associated with the problem has the following structure:�����

�
� ? # ?� � #��

. . .
...�

9 # 9� ? � � 686�6 � 9
=

������
	

�����
�
| ?
|��
...
| 9�

������
	 ,

�����
�
�\?
� �
...
� 9�

������
	 j�~ �QY ~2n

where each | + represents the subvector of unknowns that are interior to subdomain
� + and

� represents the vector of all interface unknowns. It is useful to express the above system
in the simpler form,

�
� |
� � ,

� �
� � with � ,

� � #
�

= � h j�~ �QY �)n
Thus, # represents the subdomain to interface coupling seen from the subdomains, while
� represents the interface to subdomain coupling seen from the interface nodes.

����� �(� � � *�% � 1 '�� % #
	 �+. �+.�' �". ����1
When partitioning a problem, it is common to use graph representations. Since the sub-
problems obtained from a given partitioning will eventually be mapped into distinct pro-
cessors, there are some restrictions regarding the type of partitioning needed. For example,
in Element-By-Element finite element techniques, it may be desirable to map elements into
processors instead of vertices. In this case, the restriction means no element should be split
between two subdomains, i.e., all information related to a given element is mapped to the
same processor. These partitionings are termed element-based. A somewhat less restric-
tive class of partitionings are the edge-based partitionings, which do not allow edges to be
split between two subdomains. These may be useful for finite volume techniques where
computations are expressed in terms of fluxes across edges in two dimensions. Finally,
vertex-based partitionings work by dividing the origin vertex set into subsets of vertices
and have no restrictions on the edges, i.e., they allow edges or elements to straddle be-
tween subdomains. See Figure 13.2, (a), (b), and (c).

�����s� { �f%M�[p��z}��y%M{ p�� ���t�

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

� ?

� �

(b)

1 2 3 4

5 6 7 8

9 10 11 12

� ?

� �

(c)

�� �����!� � � �;�
(a) Vertex-based, (b) edge-based, and (c)

element-based partitioning of a � � mesh into two subregions.

����� �(� � � *�% � 1 '�� �����	���". ��� � 1
The interface values can be obtained by employing a form of block-Gaussian elimination
which may be too expensive for large problems. In some simple cases, using FFT’s, it is
possible to explicitly obtain the solution of the problem on the interfaces inexpensively.

Other methods alternate between the subdomains, solving a new problem each time,
with boundary conditions updated from the most recent subdomain solutions. These meth-
ods are called Schwarz Alternating Procedures, after the Swiss mathematician who used
the idea to prove the existence for a solution of the Dirichlet problem on irregular regions.

The subdomains may be allowed to overlap. This means that the
� + ’s are such that

� , �
+I� ? / 9

� +eJ � +�� � ���,��-h
For a discretized problem, it is typical to quantify the extent of overlapping by the number
of mesh-lines that are common to the two subdomains. In the particular case of Figure
13.3, the overlap is of order one.

���7� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

�� ��������� ���;�
Discretization of problem shown in Figure 13.1.

�� ��������� ��� �
Matrix associated with the finite difference mesh

of Figure 13.3.

The various domain decomposition techniques are distinguished by four features:
���

Type of Partitioning. For example, should partitioning occur along edges, or along

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% �����
vertices, or by elements? Is the union of the subdomains equal to the original do-
main or a superset of it (fictitious domain methods)?

� �
Overlap. Should sub-domains overlap or not, and by how much?

� �
Processing of interface values. For example, is the Schur complement approach
used? Should there be successive updates to the interface values?

� �
Subdomain solution. Should the subdomain problems be solved exactly or approx-
imately by an iterative method?

The methods to be discussed in this chapter will be classified in four distinct groups. First,
direct methods and the substructuring approach are useful for introducing some definitions
and for providing practical insight. Second, among the simplest and oldest techniques are
the Schwarz Alternating Procedures. Then, there are methods based on preconditioning
the Schur complement system. The last category groups all the methods based on solving
the linear system with the matrix � , by using a preconditioning derived from Domain
Decomposition concepts.

�b�W� %z�m� ('�#�u�g� �N�h� !w�U� ���'%F(M���\�\� �<�:� $&�-%"� %m�`�
�+
b�A�

One of the first divide-and-conquer ideas used in structural analysis exploited the partition-
ing (13.1) in a direct solution framework. This approach, which is covered in this section,
introduces the Schur complement and explains some of its properties.

����� ��� �
,) '�� � � #"� 1 1 . #����) . ! .�� # ��. ' �
Consider the linear system written in the form (13.2), in which

�
is assumed to be nonsin-

gular. From the first equation the unknown | can be expressed as

| , � v ? x � Q # � } h j�~ �QY �Kn
Upon substituting this into the second equation, the following reduced system is obtained:

x = Q � � v ? # } �R, � Q � � v ? � h j�~ �QY � n
The matrix

� , = Q � � v ? # j�~ �QY "Kn
is called the Schur complement matrix associated with the � variable. If this matrix can be
formed and the linear system (13.4) can be solved, all the interface variables � will become
available. Once these variables are known, the remaining unknowns can be computed, via
(13.3). Because of the particular structure of

�
, observe that any linear system solution

with it decouples in separate systems. The parallelism in this situation arises from this
natural decoupling.

A solution method based on this approach involves four steps:

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~
���

Obtain the right-hand side of the reduced system (13.4).
� �

Form the Schur complement matrix (13.5).
� �

Solve the reduced system (13.4).
� �

Back-substitute using (13.3) to obtain the other unknowns.

One linear system solution with the matrix
�

can be saved by reformulating the algorithm
in a more elegant form. Define

& , � v ? # and � & , � v ? � h
The matrix # & and the vector � & are needed in steps (1) and (2). Then rewrite step (4) as

| , � v ? � Q � v ? # �',�� & Q # & � J
which gives the following algorithm.

�����	�U��
N�v�� � � � ��� ��� $ ��	�� � � ��� � " � &<% � " � " &��� #" $'&

1. Solve
� # & , �

, and
� � & , � for # & and � & , respectively

2. Compute �	&�, ��Q � � &
3. Compute

� , = Q � # &
4. Solve

�
�', �	&

5. Compute | , �)& Q # & � .

In a practical implementation, all the
� + matrices are factored and then the systems� + # &+ , # + and

� + � &+ , � + are solved. In general, many columns in # + will be zero. These
zero columns correspond to interfaces that are not adjacent to subdomain M . Therefore,
any efficient code based on the above algorithm should start by identifying the nonzero
columns.

����� ��� � %�	 ' % � 	 ��. � 1 ' � � ��� 1�� �"� 	 � ' ! %) � ! � ���
Now the connections between the Schur complement and standard Gaussian elimination
will be explored and a few simple properties will be established. Start with the block-LU
factorization of � , � � #

�
= � ,

� �
�

� � v ?
� � � � #

� � � j�~ �QY �)n
which is readily verified. The Schur complement can therefore be regarded as the (2,2)
block in the � part of the block-LU factorization of � . From the above relation, note that
if � is nonsingular, then so is

�
. Taking the inverse of � with the help of the above equality

yields � � #
�

= � v ? ,
� � v ? Q � v ? # � v ?
� � v ? � �

�
�

Q � � v ?
� �

,
� � v ? t � v ? # � v ? � � v ? Q � v ? # � v ?Q � v ? � � v ? � v ? � h j�~ �QY �)n

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% �����
Observe that

� v ? is the (2,2) block in the block-inverse of � . In particular, if the original
matrix � is Symmetric Positive Definite, then so is � v ? . As a result,

�
is also Symmetric

Positive Definite in this case.
Although simple to prove, the above properties are nonetheless important. They are

summarized in the following proposition.

�H� �U� ���
N�
 ��� � � � �
Let � be a nonsingular matrix partitioned as in (13.2) and such

that the submatrix
�

is nonsingular and let ��� be the restriction operator onto the interface
variables, i.e, the linear operator defined by

� � � | � � , �]h
Then the following properties are true.

� �
The Schur complement matrix

�
is nonsingular.

� �
If � is SPD, then so is

�
.

� �
For any � ,

� v ? �3, ��� � v ? > �� A .

The first property indicates that a method that uses the above block Gaussian elimi-
nation algorithm is feasible since

�
is nonsingular. A consequence of the second property

is that when � is positive definite, an algorithm such as the Conjugate Gradient algorithm
can be used to solve the reduced system (13.4). Finally, the third property establishes a
relation which may allow preconditioners for

�
to be defined based on solution techniques

with the matrix � .

��������� � 1��	�"� 	 � '-!/%) � ! � ��� � ' 	 +� 	 �+� ���0
 # 1 ��% #
	 ��. ��. ' �".�����1

The partitioning used in Figure 13.3 is edge-based, meaning that a given edge in the graph
does not straddle two subdomains. If two vertices are coupled, then they must belong to the
same subdomain. From the graph theory point of view, this is perhaps less common than
vertex-based partitionings in which a vertex is not shared by two partitions (except when
domains overlap). A vertex-based partitioning is illustrated in Figure 13.5.

We will call interface edges all edges that link vertices that do not belong to the same
subdomain. In the case of overlapping, this needs clarification. An overlapping edge or
vertex belongs to the same subdomain. Interface edges are only those that link a vertex
to another vertex which is not in the same subdomain already, whether in the overlapping
portion or elsewhere. Interface vertices are those vertices in a given subdomain that are
adjacent to an interface edge. For the example of the figure, the interface vertices for sub-
domain one (bottom, left subsquare) are the vertices labeled 10 to 16. The matrix shown
at the bottom of Figure 13.5 differs from the one of Figure 13.4, because here the inter-
face nodes are not relabeled the last in the global labeling as was done in Figure 13.3.
Instead, the interface nodes are labeled as the last nodes in each subdomain. The number
of interface nodes is about twice that of the edge-based partitioning.

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

1 2 3

4 5 6

7 8 9

10

11

12

13141516

17 18 19

20 21 22

23 24 25

26 27 28

29

30

31

32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

�� ��������� ���S�
Discretization of problem shown in Figure 13.1

and associated matrix.

Consider the Schur complement system obtained with this new labeling. It can be
written similar to the edge-based case using a reordering in which all interface variables
are listed last. The matrix associated with the domain partitioning of the variables will have

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% ��� �
a natural -block structure where is the number of subdomains. For example, when &,
(as is the case in the above illustration), the matrix has the block structure defined by the
solid lines in the figure, i.e.,

�V,
�� � ? � ? � � ? ��	� ? �	� �	� �� ��? � � � � �

�	 h j�~ �QY �Kn
In each subdomain, the variables are of the form

� + ,
� | +
� + � J

where | + denotes interior nodes while � + denotes the interface nodes associated with sub-
domain M . Each matrix � + will be called the local matrix. The structure of � + is as follows:

� +�,
� � + #�+
��+ = + � j�~ �QY �Kn

in which, as before,
� + represents the matrix associated with the internal nodes of subdo-

main M and # + and ��+ represent the couplings to/from external nodes. The matrix
= + is the

local part of the interface matrix
=

defined before, and represents the coupling between
local interface points. A careful look at the matrix in Figure 13.5 reveals an additional
structure for the blocks � + � 0 �, M . Each of these blocks contains a zero sub-block in the
part that acts on the variable |�� . This is expected since | + and |�� are not coupled. There-
fore,

�&+ � ,
� �# + � � h j�~ �PY�~��Kn

In addition, most of the # + � matrices are zero since only those indices 0 of the subdomains
that have couplings with subdomain M will yield a nonzero # + � .

Now write the part of the linear system that is local to subdomain M , as
� + | + t # + � + , � +
� + | + t = + � + t � � � /-d # + � � � , � + h j�~ �PY�~�~In

The term # + � � � is the contribution to the equation from the neighboring subdomain number
0 , and 3 + is the set of subdomains that are adjacent to subdomain M . Assuming that

� + is
nonsingular, the variable |]+ can be eliminated from this system by extracting from the first
equation | +-, � v ?+ x ��+�Q #�+ � + } which yields, upon substitution in the second equation,

� + �\+ t �
� � /�d #�+ � � � , �\+�Q �-+ � v ?+ ��+XJ M�,BA\Jih�hih J j�~ �PY�~1�Kn

in which
� + is the “local” Schur complement

� +-, = +
Q ��+ � v ?+ #�+Xh j�~ �PY�~0�Kn
When written for all subdomains M , the equations (13.12) yield a system of equations which
involves only the interface points � � , 0 ,BA\J @ J�hihih�J and which has a natural block structure

���a� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

associated with these vector variables

� ,

������
�

� ? #&? � #&? � 6�686 #&? 9# � ? � � # � � 6�686 # � 9...
. . .

...
...

. . .
...# 9 ? # 9 � # 9 � 6�686 �

9

� �����
	 h j�~0�PY�~0�Kn

The diagonal blocks in this system, namely, the matrices
� + , are dense in general, but the

offdiagonal blocks # + � are sparse and most of them are zero. Specifically, # + � �, � only if
subdomains M and 0 have at least one equation that couples them.

A structure of the global Schur complement
�

has been unraveled which has the fol-
lowing important implication: For vertex-based partitionings, the Schur complement ma-
trix can be assembled from local Schur complement matrices (the

� + ’s) and interface-to-
interface information (the #&+ � ’s). The term “assembled” was used on purpose because a
similar idea will be exploited for finite element partitionings.

��������� � 1,�	�"� 	 � ' ! %) � ! � ��� � ' 	 ��. �". ��� � �) � ! � ���% #
	 ��. ��. ' �".�����1

In finite-element partitionings, the original discrete set
�

is subdivided into subsets
� + ,

each consisting of a distinct set of elements. Given a finite element discretization of the
domain

�
, a finite dimensional space ^ $ of functions over

�
is defined, e.g., functions

that are piecewise linear and continuous on
�

, and that vanish on the boundary
*

of
�

.
Consider now the Dirichlet problem on

�
and recall that its weak formulation on the finite

element discretization can be stated as follows (see Section 2.3):

Find
� �#^ $ such that " x � J ��} , x � J ��} J � � � ^ $ J

where the bilinear form " x hIJ�h } is defined by

" x � J ��} ,
�

�

� � h � � � | ,
�

�

� � �� | ?
� �� | ? t

� �� |�� � �� |�� � � |h
It is interesting to observe that since the set of the elements of the different

� + ’s are disjoint,
" x hsJih } can be decomposed as

" x � J �"} , 9�
+s� ? "�+ x

� J ��} J
where

" + x � J �"} ,
�

� d
� � h � � � |-h

In fact, this is a generalization of the technique used to assemble the stiffness matrix from
element matrices, which corresponds to the extreme case where each

� + consists of exactly
one element.

If the unknowns are ordered again by subdomains and the interface nodes are placed

������� �M{S�����y%�~!pg|Q}�%M{ p�� � ��� % ���U~����q}u� � p+�D��|\����� �f% ���a�
last as was done in Section 13.1, immediately the system shows the same structure,�����

�
� ? # ?� � #��

. . .
...�

9 # 9� ? � � 68686 � 9
=

������
	

�����
�
| ?
|��
...
| 9�

������
	 ,

�����
�
�\?
� �
...
� 9�

������
	 j�~ �PY�~0"Kn

where each
� + represents the coupling between interior nodes and #�+ and �-+ represent the

coupling between the interface nodes and the nodes interior to
� + . Note that each of these

matrices has been assembled from element matrices and can therefore be obtained from
contributions over all subdomain

� � that contain any node of
� + .

In particular, assume that the assembly is considered only with respect to
� + . Then the

assembled matrix will have the structure

� + ,
� � + #�+
� + = + � J

where
= + contains only contributions from local elements, i.e., elements that are in

� + .
Clearly,

=
is the sum of the

= + ’s,

= , 9�
+I� ?

= + h
The Schur complement associated with the interface variables is such that

� , = Q � � v ? #
, = Q 9�

+s� ? �-+
� v ?+ # +

, 9�
+s� ?

= + Q 9�
+s� ? � +

� v ?+ # +

, 9�
+s� ? ;

= + Q � + � v ?+ # + = h
Therefore, if

� + denotes the local Schur complement
� + , = + Q � + � v ?+ # + J

then the above proves that,

� , 9�
+I� ?

� + J j�~ �PY�~ �Kn
showing again that the Schur complement can be obtained easily from smaller Schur com-
plement matrices.

Another important observation is that the stiffness matrix � p , defined above by re-
stricting the assembly to

� p , solves a Neumann-Dirichlet problem on
� p . Indeed, consider

the problem � � p # p
� p = p � � | p

� p � ,
� z p
� p � h j�~ �PY�~ �Kn

��� � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The elements of the submatrix
= p are the terms " p x � + J ��� } where � + J ��� are the basis func-

tions associated with nodes belonging to the interface
* p . As was stated above, the matrix=

is the sum of these submatrices. Consider the problem of solving the Poisson equa-
tion on

� p with boundary conditions defined as follows: On
* p � , the part of the boundary

which belongs to
* p , use the original boundary conditions; on the interfaces

* p � with
other subdomains, use a Neumann boundary condition. According to Equation (2.36) seen
in Section 2.3, the 0 -th equation will be of the form,�

� - � � h � ��� � | ,
�

� - � ��� � | t
� � - ���

� ����E � h j�~0�PY�~ �)n
This gives rise to a system of the form (13.17) in which the � p part of the right-hand side
incorporates the Neumann data related to the second integral on the right-hand side of
(13.18).

It is interesting to note that if a problem were to be solved with all-Dirichlet conditions,
i.e., if the Neumann conditions at the interfaces were replaced by Dirichlet conditions, the
resulting matrix problem would be of the form,� � p # p� � � � | p

� p � ,
� z p
� p � j�~0�PY�~ �)n

where � p represents precisely the Dirichlet data. Indeed, according to what was seen in
Section 2.3, Dirichlet conditions are handled simply by replacing equations associated with
boundary points by identity equations.

(M�����F!i���B!R�K� %,�]�&!M� �E� � $`�m� � %m�i�x� %�(
�+
��

The original alternating procedure described by Schwarz in 1870 consisted of three parts:
alternating between two overlapping domains, solving the Dirichlet problem on one do-
main at each iteration, and taking boundary conditions based on the most recent solution
obtained from the other domain. This procedure is called the Multiplicative Schwarz pro-
cedure. In matrix terms, this is very reminiscent of the block Gauss-Seidel iteration with
overlap defined with the help of projectors, as seen in Chapter 5. The analogue of the
block-Jacobi procedure is known as the Additive Schwarz procedure.

����������� !/�)�+. %) . �(# ��. +� 1�� � �/#
	��5%�	('�� ���� 	��
In the following, assume that each pair of neighboring subdomains has a nonvoid overlap-
ping region. The boundary of subdomain

� + that is included in subdomain 0 is denoted by* + / � .

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ ���t�

� ?

� �

� �

* ? / �
* � / ?

* � / ? * ? / �* ? / � * � / �

* ? / �

�� �����!� � � �2�
An L-shaped domain subdivided into three over-

lapping subdomains.

This is illustrated in Figure 13.6 for the L-shaped domain example. Each subdomain ex-
tends beyond its initial boundary into neighboring subdomains. Call

* + the boundary of
� +

consisting of its original boundary (which is denoted by
* + / �) and the

* + / � ’s, and denote
by
� � + the restriction of the solution

�
to the boundary

* � + . Then the Schwarz Alternating
Procedure can be described as follows.

���!� �U�
r�v�� � � �;� � (�!3$
1. Choose an initial guess

�
to the solution

2. Until convergence Do:
3. For M�,BA\J 68686 J Do:
4. Solve

� � , � in
� + with

� , � + � in
* + �

5. Update
�

values on
* � + J � 0

6. EndDo
7. EndDo

The algorithm sweeps through the subdomains and solves the original equation in each
of them by using boundary conditions that are updated from the most recent values of

�
.

Since each of the subproblems is likely to be solved by some iterative method, we can take
advantage of a good initial guess. It is natural to take as initial guess for a given subproblem
the most recent approximation. Going back to the expression (13.11) of the local problems,
observe that each of the solutions in line 4 of the algorithm will be translated into an update
of the form

� + � , � + t 	 + J

���7� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

where the correction 	 + solves the system

� + 	 + ,�; + h
Here, ; + is the local part of the most recent global residual vector z Q���| , and the above
system represents the system associated with the problem in line 4 of the algorithm when
a nonzero initial guess is used in some iterative procedure. The matrix �D+ has the block
structure (13.9). Writing

� + ,
� | +
� + � J 	 + , � 	�� / +	 � / + � J ; + ,

� ;�� / +
; � / + � J

the correction to the current solution step in the algorithm leads to� |�+
� + � � ,

� | +
� + � t

� � + # +
� + = + � v ? � ; � / +; � / + � h j�~0�PY ���)n

After this step is taken, normally a residual vector ; would have to be computed again to
get the components associated with domain M t A and to proceed with a similar step for
the next subdomain. However, only those residual components that have been affected by
the change of the solution need to be updated. Specifically, employing the same notation
used in equation (13.11), we can simply update the residual ; � / � for each subdomain 0 for
which M � 3 � as

; � / � � ,F; � / ��Q # � + 	 � / + h
This amounts implicitly to performing Step 5 of the above algorithm. Note that since the
matrix pattern is assumed to be symmetric, then the set of all indices 0 such that M�� 3 � ,
i.e., 3 �+ , .10 2 M � 3 +>= , is identical to 3 + . Now the loop starting in line 3 of Algorithm
13.2 and called domain sweep can be restated as follows.

�����	�U��
N�v�� � � �;� � ��� � #"�� � "%���� #" ���y('��� ����� �y(�������� � � �! �," �
�$ � �

1. For M�,/A J 6�686 J Do:
2. Solve �&+ 	�+-,F;�+
3. Compute | + � ,F|�+ t 	 � / + , � + � , �\+ t 	 � / + , and set ;5+ � , �
4. For each 0 � 3 + Compute ; � / � � , ; � / � Q # � +�	 � / +
5. EndDo

Considering only the � iterates, the above iteration would resemble a form of Gauss-Seidel
procedure on the Schur complement matrix (13.14). In fact, it is mathematically equivalent,
provided a consistent initial guess is taken. This is stated in the next result established by
Chan and Goovaerts [48]:

�v��� �U�m� � � � � �
Let the guess

� ���	��
d
�����
d � for the Schwarz procedure in each subdomain

be chosen such that

| o � r+ , � v ?+ ` � + Q # + � o � r+ lmh j�~0�PY �\~2n
Then the � iterates produced by the Algorithm 13.3 are identical to those of a Gauss-Seidel
sweep applied to the Schur complement system (13.12).

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ �����
� ������� �

We start by showing that with the choice (13.21), the � components of the initial
residuals produced by the algorithm are identical to those of the Schur complement system
(13.12). Refer to Section 13.2.3 and the relation (13.10) which defines the # + � ’s from
the block structure (13.8) of the global matrix. Observe that � + � � �N, # + � � � and note
from (13.11) that for the global system the � components of the initial residual vectors are

; o � r� / + , � + Q � + | o � r+ Q = + � o � r+ Q �
� � /�d # + � � o � r�

, � + Q � + � v ? ` � + Q # + � o � r+ lZQ = + � o � r+ Q �
� � / d # + � � o � r�

, � + Q � + � v ? � + Q � + � o � r+ Q �
� � / d # + � � o � r� h

This is precisely the expression of the residual vector associated with the Schur comple-
ment system (13.12) with the initial guess �

o � r+ .
Now observe that the initial guess has been selected so that ; o � r� / + ,�� for all M . Because

only the � components of the residual vector are modified, according to line 4 of Algorithm
13.3, this property remains valid throughout the iterative process. By the updating equation
(13.20) and the relation (13.7), we have

� + � , �\+ t � v ?+ ; � / +eJ
which is precisely a Gauss-Seidel step associated with the system (13.14). Note that the
update of the residual vector in the algorithm results in the same update for the � compo-
nents as in the Gauss-Seidel iteration for (13.14).

It is interesting to interpret Algorithm 13.2, or rather its discrete version, in terms of
projectors. For this we follow the model of the overlapping block-Jacobi technique seen in
the previous chapter. Let * + be an index set

* + , .10�?KJ 0 � Jih�hihiJ 0 ��d1= J
where the indices 0 p are those associated with the E + mesh points of the interior of the
discrete subdomain

� + . Note that as before, the * + ’s form a collection of index sets such
that �

+s� ? /������ / 9
*+�, .�A\Jih�hih JeE�= J

and the *-+ ’s are not necessarily disjoint. Let ��+ be a restriction operator from
�

to
� + .

By definition, ��+@| belongs to
� + and keeps only those components of an arbitrary vector

| that are in
� + . It is represented by an E+ �PE matrix of zeros and ones. The matrices� + associated with the partitioning of Figure 13.4 are represented in the three diagrams of

Figure 13.7, where each square represents a nonzero element (equal to one) and every other
element is a zero. These matrices depend on the ordering chosen for the local problem.
Here, boundary nodes are labeled last, for simplicity. Observe that each row of each � + has
exactly one nonzero element (equal to one). Boundary points such as the nodes 36 and 37
are represented several times in the matrices ��?�J � � , and � � because of the overlapping
of the boundary points. Thus, node � is represented in matrices �'? and � � , while � is
represented in all three matrices.

����� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

� ? ,

� � ,

� � ,

�� ��������� ��� �
Patterns of the three matrices � + associated

with the partitioning of Figure 13.4.

From the linear algebra point of view, the restriction operator � + is an E + ��E matrix formed
by the transposes of columns b � of the E � E identity matrix, where 0 belongs to the index
set *+ . The transpose � w+ of this matrix is a prolongation operator which takes a variable
from

� + and extends it to the equivalent variable in
�

. The matrix

� +-, �&+X� ��w+
of dimension E + � E + defines a restriction of � to

� + . Now a problem associated with � +
can be solved which would update the unknowns in the domain

� + . With this notation, the
multiplicative Schwarz procedure can be described as follows:

1. For M�,/A Jih�hih J Do
2. | � ,F| t � w+ ��v ?+ � + xmz Q � | }
3. EndDo

We change notation and rewrite step 2 as

| � � � ,F| t ��w+ � v ?+ � + xmz Q�� | } h j�~0�PY �5�)n
If the errors

� , | � QS| are considered where | � is the exact solution, then notice that
z Q���|<,�� x | � QN| } and, at each iteration the following equation relates the new error�
� � � and the previous error

�
,
�
� � � , � Q ��w+ � v ?+ � + � � h

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ �����
Starting from a given | � whose error vector is

� � ,B| � Q | , each sub-iteration produces
an error vector which satisfies the relation

� + , � + v ?�Q ��w+ � v ?+ � + � � + v ?�J
for M�, A Jih�hih J . As a result,

� +-, x
�
Q �+ } � + v ?

in which

 -+�, ��w+ �Dv ?+ �&+X�Dh j�~ �PY � �Kn
Observe that the operator + � � w+ � v ?+ � + � is a projector since

x � w+ ��v ?+ � + � } � , � w+ ��v ?+ x � + � � w+ } ��v ?+ � + �V, � w+ �Dv ?+ � + �Dh
Thus, one sweep produces an error which satisfies the relation

�
9 , x

�
Q 9 } x

�
Q 9 v ? } h�hih x

�
Q �? } � � h j�~ �PY � � n

In the following, we use the notation

� 9 � x
�
Q 9 } x

�
Q 9 v ? } hihih x

�
Q 8? } h j�~ �PY � "Kn

��������� � ! �)���.�%) . �(# �+. +� 1�� � � #
	 �4%�	���� ' � ��. ��. ' �".����
Because of the equivalence of the multiplicative Schwarz procedure and a block Gauss-
Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in the form of a
global fixed-point iteration of the form | � � � ,���| t � . Recall that this is a fixed-point
iteration for solving the preconditioned system � v ? ��| ,�� v ? z where the precondition-
ing matrix � and the matrix � are related by �/,

�
Q � v ? � . To interpret the operation

associated with � v ? , it is helpful to identify the result of the error vector produced by this
iteration with that of (13.24), which is | � � � Q9| � , � 9 x |RQP| � } . This comparison yields,

| � � � , � 9 | t x
�
Q � 9 } | � J

and therefore,

�B, � 9 � , x
�
Q � 9 } | � h

Hence, the preconditioned matrix is � v ? � ,
�
Q � 9 . This result is restated as follows.

�H� �U� ���
N�
 ��� � � �;�
The multiplicative Schwarz procedure is equivalent to a fixed-

point iteration for the “preconditioned” problem

� v ? � | ,�� v ? z J
in which

� v ? � ,
�
Q � 9 j�~ �PY � �Kn

� v ? z , x
�
Q � 9 } | � , x

�
Q � 9 } � v ? z h j�~ �PY � �Kn

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The transformed right-hand side in the proposition is not known explicitly since it is ex-
pressed in terms of the exact solution. However, a procedure can be found to compute
it. In other words, it is possible to operate with � v ? without invoking � v ? . Note that� v ? , x

�
Q � 9 } � v ? . As the next lemma indicates, � v ? , as well as � v ? � , can be

computed recursively.

�y�'� ��� � � � �
Define the matrices

� +,
�
Q ��+ j�~0�PY � �)n

� +, � + � v ? j�~0�PY � �)n� + , + � v ? , ��w+ � v ?+ � + j�~0�PY ���)n
for M ,aA\Jih�hih J . Then � v ? , � 9 , � v ? � , �

9 , and the matrices
� + and � + satisfy the

recurrence relations
� ?�, �?�J

� + , � + v ? t + x
�
Q � + v ? } J M�, @ Jih�hih J j�~0�PY �\~2n

and

� ? , � ? J
� +,�� + v ? t � + x � Q ��� + v ? } J M8, @ Jihih�h J h j�~0�PY �5�)n

� � � � � �
It is clear by the definitions (13.28) and (13.29) that � 9 , � v ? and that � ? ,� ? , � ? , ? . For the cases M G A , by definition of ��+ and ��+ v ?

� + ,
�
Q x

�
Q + } x

�
Q � + v ? } , + t � + v ?)Q + � + v ?�J

j�~0�PY � �)n
which gives the relation (13.31). Multiplying (13.33) to the right by � v ? yields,

� + , � + t � + v ?�Q + � + v ?�h
Rewriting the term + as

� + � above yields the desired formula (13.32).

Note that (13.31) yields immediately the important relation

� + ,
+�
� � ? ����� v ?�h

j�~0�PY � �Kn
If the relation (13.32) is multiplied to the right by a vector � and if the vector � +X� v ? � is
denoted by � + , then the following recurrence results.

� +-, � + v ? t � + x � Q � � + v ? } h
Since � 9 , x

�
Q � 9 } � v ? � ,�� v ? � , the end result is that � v ? � can be computed for an

arbitrary vector � , by the following procedure.

�����	�U��
N�v�� � � � � � ��� � #"�� � "%���� #" ���y('��� ����� � $	� ����$'&��'" #" $'&����
1. Input: � ; Output: � ,7� v ? � .
2. �

� , � ? �
3. For M�, @ Jih�hih J Do:

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ � � �
4. �

� , � t � + x � Q�� � }
5. EndDo

By a similar argument, a procedure can be found to compute vectors of the form
� ,7� v ? � � . In this case, the following algorithm results:

���!� �U�
r�v�� � � �S� � ��� � #"�� � " � �! #" ���#('��� ���� �<$	� ����$'&��'" #"%$'&�� � � � ��� �� $ �

1. Input: � , Output: � ,�� v ? � � .
2. �

� , 8? �
3. For M�, @ Jihih�h J Do
4. �

� , � t + x � Q � }
5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the “pre-
conditioned system”

x
�
Q � 9 } | , � j�~ �PY � "Kn

where the operation � , x
�
Q � 9 }�� can be computed from Algorithm 13.5 and �',�� v ? z

can be computed from Algorithm 13.4. Now the above procedures can be used within an
accelerator such as GMRES. First, to obtain the right-hand side � of the preconditioned
system (13.35), Algorithm 13.4 must be applied to the original right-hand side z . Then
GMRES can be applied to (13.35) in which the preconditioned operations

�
Q � 9 are

performed by Algorithm 13.5.
Another important aspect of the Multiplicative Schwarz procedure is that multicolor-

ing can be exploited in the same way as it is done traditionally for block SOR. Finally, note
that symmetry is lost in the preconditioned system but it can be recovered by following the
sweep 1, 2, h�hih�J by a sweep in the other direction, namely, �QPA\J �Q @ Jihih�hXJ�A . This yields
a form of the block SSOR algorithm.

��������� � # � ��. ��. +� 1��	� �/#
	��4%�	 ' � ���� 	 �
The additive Schwarz procedure is similar to a block-Jacobi iteration and consists of up-
dating all the new (block) components from the same residual. Thus, it differs from the
multiplicative procedure only because the components in each subdomain are not updated
until a whole cycle of updates through all domains are completed. The basic Additive
Schwarz iteration would therefore be as follows:

1. For M�,/A Jihih�h J Do
2. Compute 	 + , � w+ ��v ?+ � + xmz Q�� | }
3. EndDo
4. | � � � ,F| t � 9+s� ? 	 +

The new approximation (obtained after a cycle of the substeps in the above algorithm

� �[� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

are applied) is

| � � � ,F| t 9�
+I� ? ��w+ �Dv ?+ � + x{z Q ��| } h

Each instance of the loop redefines different components of the new approximation and
there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz proce-
dure. Using the matrix notation defined in the previous section, notice that the new iterate
satisfies the relation

| � � � ,F| t 9�
+I� ?
� + x{z Q�� | } ,

� �
Q 9�

+s� ? -+�� | t 9�
+I� ?
� + z h

Thus, using the same analogy as in the previous section, this iteration corresponds to a
fixed-point iteration | � � � , ��| t � with

�/,
�
Q 9�

+I� ? + J � , 9�
+I� ?
� + z h

With the relation � ,
�
Q � v ? � , between � and the preconditioning matrix � , the result

is that

� v ? �V, 9�
+s� ? + J

and

� v ? , 9�
+I� ? + � v ? , 9�

+s� ?
� + h

Now the procedure for applying the preconditioned operator � v ? becomes clear.

�����	�U��
N�v�� � � �2� � ! � �'" #" ���y('��� ����� �N$ � ����$'&��'" #" $'&����
1. Input: � ; Output: � ,7� v ? � .
2. For M�,/A Jih�hih J Do:
3. Compute � + � , � + �
4. EndDo
5. Compute �

� , � ? t � � hih�h t � 9 .
Note that the do loop can be performed in parallel. Step 5 sums up the vectors � + in each
domain to obtain a global vector � . In the nonoverlapping case, this step is parallel and
consists of just forming these different components since the addition is trivial. In the
presence of overlap, the situation is similar except that the overlapping components are
added up from the different results obtained in each subdomain.

The procedure for computing � v ? � � is identical to the one above except that
� + in

line 3 is replaced by �+ .

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ � �[�
��������� � � ' � +� 	 �"� �	� �

Throughout this section, it is assumed that � is Symmetric Positive Definite. The projectors + defined by (13.23) play an important role in the convergence theory of both additive and
multiplicative Schwarz. A crucial observation here is that these projectors are orthogonal
with respect to the � -inner product. Indeed, it is sufficient to show that + is self-adjoint
with respect to the � -inner product,

x + |J � } � , x ��� w+ � v ?+ � + � |J � } , x ��|J� w+ � v ?+ � + � � } , x |J + � } � h
Consider the operator,

���:, 9�
+I� ? �+Xh

j�~ �PY � �Kn
Since each � is self-adjoint with respect to the � -inner product, i.e., � -self-adjoint, their
sum � � is also � -self-adjoint. Therefore, it will have real eigenvalues. An immediate con-
sequence of the fact that the + ’s are projectors is stated in the following theorem.

�v��� �U�H�'� � � �;�
The largest eigenvalue of � � is such that

����� � x � � } 7 J
where is the number of subdomains.

� ������� �
For any matrix norm, � ��� � x ��� } 7��I��� � . In particular, if the � -norm is used,

we have

����� � x � � } 7 9�
+s� ? � + � � h

Each of the � -norms of �+ is equal to one since �+ is an � -orthogonal projector. This
proves the desired result.

This result can be improved substantially by observing that the projectors can be grouped
in sets that have disjoint ranges. Graph coloring techniques seen in Chapter 3 can be used
to obtain such colorings of the subdomains. Assume that ! sets of indices

� + JeM8,BA\J�hihihiJ !
are such that all the subdomains

� � for 0 � � + have no intersection with one another.
Then,

 	�
d8, �
� � � d �

j�~ �PY � �Kn
is again an orthogonal projector.

This shows that the result of the previous theorem can be improved trivially into the
following.

�v��� �U�H�'� � � �;�
Suppose that the subdomains can be colored in such a way that two

subdomains with the same color have no common nodes. Then, the largest eigenvalue of��� is such that

� ��� � x ��� } 7 ! J

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

where ! is the number of colors.

In order to estimate the lowest eigenvalue of the preconditioned matrix, an assumption
must be made regarding the decomposition of an arbitrary vector | into components of

� + .
Assumption 1. There exists a constant

T � such that the inequality

9�
+s� ? x �

� + J � + } 7 T � x � � J � } J
is satisfied by the representation of

� � � as the sum

� , 9�
+s� ?
� +>J � + � � +eh

The following theorem has been proved by several authors in slightly different forms and
contexts.

�v��� �U�m� � � � � �
If Assumption 1 holds, then

� � + � x � � } � AT � h
� � � � � �

Unless otherwise stated, all summations in this proof are from A to . Start with
an arbitrary

�
decomposed as

� , � � + and write

x � J � } � , � x � + J � } � , � x + � + J � } � , � x � + J + � } � h
The last equality is due to the fact that 8+ is an � -orthogonal projector onto

� + and it is
therefore self-adjoint. Now, using Cauchy-Schwarz inequality, we get

x � J � } � , � x � + J + � } � 7 > � x � + J � + } � A ?�� � > � x + � J + � } � A ?�� � h
By Assumption 1, this leads to

� � � �� 7 T ?�� �� � � � � > � x + � J + � } � A ?�� � J
which, after squaring, yields

� � � �� 7 T � � x + � J + � } � h
Finally, observe that since each 8+ is an � -orthogonal projector, we have� x + � J + � } � , � x + � J � } � , > � + � J � A � h
Therefore, for any

�
, the inequality

x � � � J � } � � AT � x � J � } �
holds, which yields the desired upper bound by the min-max theorem.

������� ~���� � �M���:�M|F% �a���]�a%M{ � � � �[p��� �M}k���Q~ � �a�
Note that the proof uses the following form of the Cauchy-Schwarz inequality:

C�
+I� ? x | + J � +

} 7
� C�
+s� ? x | + Je| +

} � ?�� � � C�
+I� ? x � + J � +

} � ?�� �
h

See Exercise 1 for a proof of this variation.
We now turn to the analysis of the Multiplicative Schwarz procedure. We start by

recalling that the error after each outer iteration (sweep) is given by
� , � 9 � � h

We wish to find an upper bound for � � 9 � � . First note that (13.31) in Lemma 13.1 results
in

� + , � + v ?�Q + � + v ?KJ
from which we get, using the � -orthogonality of + ,

� � + � � �� , � � + v ? � � �� Q � + � + v ? � � �� h
The above equality is valid for M&, A , provided � � � �

. Summing these equalities from
M�,/A to gives the result,

� � 9 � � �� , � � � �� Q 9�
+s� ? � + � + v ? � � �� h j�~ �PY � �Kn

This indicates that the � -norm of the error will not increase at each substep of the sweep.
Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subset
�

of .�A\J @ Jih�hih�J �= � and
� +XJ � � � �

, the following in-
equality holds:

�
o + / �er � �

x �+ � +eJ � � � } � 7 T ?
� 9�
+s� ? � �+

� + � �� � ?�� � �� 9�
� � ? � �

� � � �� �	 ?�� �
h j�~ �PY � �Kn

�y�'� ��� � � �;�
If Assumptions 1 and 2 are satisfied, then the following is true,

9�
+I� ? � +

� � �� 7 x A t T ? } � 9�
+s� ? � + � + v ? � � �� h j�~ �PY ���Kn

� ������� �
Begin with the relation which follows from the fact that + is an � -orthogonal

projector,

x -+ � J -+ �"} � , x -+ � J -+ ��+ v ? ��} � t x �+ � J x
�
Q ��+ v ? }��"} � J

which yields, with the help of (13.34),

9�
+I� ? � +

� � �� , 9�
+s� ? x +

� J + � + v ? �"} � t 9�
+I� ?

+ v ?�
� � ? x +

� J � ��� v ? ��} � h j�~ �PY �\~In

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

For the first term of the right-hand side, use the Cauchy-Schwarz inequality to obtain

9�
+s� ? x +

� J + � + v ? ��} � 7
� 9�
+s� ? � +

� � �� � ?�� � � 9�
+s� ? � + � + v ? � � �� � ? � �

h
For the second term of the right-hand side of (13.41), use the assumption (13.39) to get

9�
+s� ?

+ v ?�
� � ? x +

� J ����� v ? �"} � 7 T ?
� 9�
+s� ? � +

� � �� } � ?�� � �� 9�
� � ? � ����� v ?

� � �� }
�	 ?�� �

h
Adding these two inequalities, squaring the result, and using (13.41) leads to the inequality
(13.40).

From (13.38), it can be deduced that if Assumption 2 holds, then,

� � 9 � � �� 7 � � � �� Q A
x A t T ? } � 9�

+s� ? � +
� � �� h j�~0�PY �K�)n

Assumption 1 can now be exploited to derive a lower bound on � 9+I� ? � �+ � � �� . This will
yield the following theorem.

�v��� �U�m� � � � �S�
Assume that Assumptions 1 and 2 hold. Then,

� � 9 � � 7 A�Q AT � x A t T ? } � � ?�� � h j�~0�PY � �)n
� � � � � �

Using the notation of Section 13.3.3, the relation � + � � �� , x + � J ��} � yields

9�
+s� ? � �+

� � �� ,
� 9�
+I� ? �+

� J � � � , x ��� � J ��} � h
According to Theorem 13.4, � � + � x ��� } � ?

� � , which implies x � � � J �"} � � x � J �"} � � T � .
Thus,

9�
+I� ? � +

� � �� � x � J �"} �T � J
which upon substitution into (13.42) gives the inequality

� � 9 � � ��� � � �� 7 A�Q AT � x A t T ? } � h
The result follows by taking the maximum over all vectors � .

This result provides information on the speed of convergence of the multiplicative
Schwarz procedure by making two key assumptions. These assumptions are not verifiable
from linear algebra arguments alone. In other words, given a linear system, it is unlikely
that one can establish that these assumptions are satisfied. However, they are satisfied for
equations originating from finite element discretization of elliptic Partial Differential Equa-
tions. For details, refer to Drya and Widlund [72, 73, 74] and Xu [230].

����� � ~����q}u� � p+�D��|\����� �f%9� �]� �[p�������Q~ � ���
(z���\�x���<�:� $&�-%"� %m�]� !3$ $`�m� !>��� %�(

�+
b�

Schur complement methods are based on solving the reduced system (13.4) by some pre-
conditioned Krylov subspace method. Procedures of this type involve three steps.

1. Get the right-hand side �	&�, ��Q � � v ? � .
2. Solve the reduced system

�
�3, �	& via an iterative method.

3. Back-substitute, i.e., compute | via (13.3).

The different methods relate to the way in which step 2 is performed. First observe
that the matrix

�
need not be formed explicitly in order to solve the reduced system by

an iterative method. For example, if a Krylov subspace method without preconditioning
is used, then the only operations that are required with the matrix

�
are matrix-by-vector

operations � , � � . Such operations can be performed as follows.

1. Compute � &�, # � ,
2. Solve

�
� , � &

3. Compute � , = � Q � � .

The above procedure involves only matrix-by-vector multiplications and one lin-
ear system solution with

�
. Recall that a linear system involving

�
translates into -

independent linear systems. Also note that the linear systems with
�

must be solved ex-
actly, either by a direct solution technique or by an iterative technique with a high level of
accuracy.

While matrix-by-vector multiplications with
�

cause little difficulty, it is much harder
to precondition the matrix

�
, since this full matrix is often not available explicitly. There

have been a number of methods, derived mostly using arguments from Partial Differential
Equations to precondition the Schur complement. Here, we consider only those precondi-
tioners that are derived from a linear algebra viewpoint.

�������,��� . � ��� � ��7%�	 ��� ' � ��. ��. ' ��� 	 1
One of the easiest ways to derive an approximation to

�
is to exploit Proposition 13.1

and the intimate relation between the Schur complement and Gaussian elimination. This
proposition tells us that a preconditioning operator � to

�
can be defined from the (ap-

proximate) solution obtained with � . To precondition a given vector � , i.e., to compute�F,�� v ? � , where � is the desired preconditioner to
�

, first solve the system

�
� |
� � ,

� �� � J j�~ �PY � � n
then take � , � . Use any approximate solution technique to solve the above system. Let� � be any preconditioner for � . Using the notation defined earlier, let � � represent the
restriction operator on the interface variables, as defined in Proposition 13.1. Then the

� ��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

preconditioning operation for
�

which is induced from � � is defined by

� v ?�
� , � � � v ?� � �� � , ��� � v ?� � w� � h

Observe that when � � is an exact preconditioner, i.e., when � � , � , then according to
Proposition 13.1, � � is also an exact preconditioner, i.e., � � , �

. This induced precon-
ditioner can be expressed as

� � , � ��� � v ?� � w� v ? h j�~0�PY � ")n
It may be argued that this uses a preconditioner related to the original problem to be solved
in the first place. However, even though the preconditioning on

�
may be defined from a

preconditioning of � , the linear system is being solved for the interface variables. That is
typically much smaller than the original linear system. For example, GMRES can be used
with a much larger dimension of the Krylov subspace since the Arnoldi vectors to keep in
memory are much smaller. Also note that from a Partial Differential Equations viewpoint,
systems of the form (13.44) correspond to the Laplace equation, the solutions of which
are “Harmonic” functions. There are fast techniques which provide the solution of such
equations inexpensively.

In the case where � � is an ILU factorization of � , � � can be expressed in an ex-
plicit form in terms of the entries of the factors of � � . This defines a preconditioner to

�
that is induced canonically from an incomplete LU factorization of � . Assume that the

preconditioner � � is in a factored form � � , � � � � , where

� � ,
� ��� �
� � v ?� � � � � � ,

�
��� ��v ?� #� � � � h

Then, the inverse of � � will have the following structure:

� v ?� , � v ?� ��v ?�
,
��� �� � v ?� � ��� �� � v ?� �

,
� � �
�

� v ?� � v ?� �
where a star denotes a matrix whose actual expression is unimportant. Recall that by defi-
nition,

� ��, x � �
} J

where this partitioning conforms to the above ones. This means that

� � � v ?� � w� , �'v ?� ��v ?�

and, therefore, according to (13.45), � � , � � � � . This result is stated in the following
proposition.

�H� �U� ���
r��
 ��� � � �;�
Let � � , � � � � be an ILU preconditioner for � . Then the

preconditioner � � for
�

induced by � � , as defined by (13.45), is given by

� � , � � � � J with � � , � � � � ��w� J � � , � � � � ��w� h

����� � ~����q}u� � p+�D��|\����� �f%9� �]� �[p�������Q~ � ���
In words, the proposition states that the L and U factors for � � are the x @ J @ } blocks
of the L and U factors of the ILU factorization of � . An important consequence of the
above idea is that the parallel Gaussian elimination can be exploited for deriving an ILU
preconditioner for

�
by using a general purpose ILU factorization. In fact, the � and �

factors of � � have the following structure:

�V, � � � � Q � with J

� � ,

�����
�

� ? � �
. . . � 9� ? � v ?? ��� � v ?� 68686 � 9 � v ?9 �

� ����
	

� � ,

�����
�

�)? � v ?? #&?
� � ��v ?� # �

. . .
...

� 9 � v ?9 # 9�

� ����
	 h

Each �)+>J � + pair is an incomplete LU factorization of the local
� + matrix. These ILU

factorizations can be computed independently. Similarly, the matrices ��v ?+ #�+ and ��+ � v ?+
can also be computed independently once the LU factors are obtained. Then each of the
matrices

�
� + , = + Q � + � v ?+ � v ?+ # + J

which are the approximate local Schur complements, is obtained. Note that since an incom-
plete LU factorization is being performed, some drop strategy is applied to the elements in
�

� + . Let
� + be the matrix obtained after this is done,� + , �

� + Q � + h
Then a final stage would be to compute the ILU factorization of the matrix (13.14) where
each

� + is replaced by
� + .

����� �,� � %�	('
,.����
To derive preconditioners for the Schur complement, another general purpose technique
exploits ideas used in approximating sparse Jacobians when solving nonlinear equations.
In general,

�
is a dense matrix. However, it can be observed, and there are physical justi-

fications for model problems, that its entries decay away from the main diagonal. Assume
that

�
is nearly tridiagonal, i.e., neglect all diagonals apart from the main diagonal and the

two codiagonals, and write the corresponding tridiagonal approximation to
�

as

� ,

�����
�
" ? z �! � " � z �

. . .
. . .

. . .!
� v ? " � v ? z �!

� " �

� ����
	 h

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

Then, it is easy to recover
�

by applying it to three well-chosen vectors. Consider the three
vectors

� ?�, x A\J � J � JiA J �ZJ � J�A\J � J �ZJih�hihXJ } w J
� � , x � J�A\J � J �ZJiA J � J � J�A\J �ZJih�hihXJ } w J� � , x � J � J�A\J �ZJ �ZJiA\J � J � JiA Jih�hihXJ } w h

Then we have � � ? , x " ? J ! �\J z
 J�"
\J ! � J�hihih�J z � +sH ? J " � +sH ? J ! � +sH � Jih�hih } w J� � � , x{z ��J�" �\J ! � J z � J�" � J ! ��J�hihihiJ z � +IH��\J " � +sH ��J ! � +sH � Jih�hih } w J� � � , x{z ��J�" �\J !
 J z � J�" � J ! ��J�hihihiJ z � + J " � + J ! � +IH ?�J�hihih } w)h
This shows that all the coefficients of the matrix

�
are indeed all represented in the above

three vectors. The first vector contains the nonzero elements of the columns A , � , � , hih�h ,
 M t A , hih�h , in succession written as a long vector. Similarly,

� � � contains the columns@ J �"J
 Jih�hih , and
� � � contains the columns J �ZJ � J�hih�h . We can easily compute

� � + JeM�,BA\J
and obtain a resulting approximation

�
which can be used as a preconditioner to

�
. The

idea can be extended to compute any banded approximation to
�

. For details and analysis
see [49].

����� �,��� % 	���� ' � ��. �+.�'-� . ��� +� 	 �+� ���0
 # 1 ��41,�	�"� 	� '-!/%) � ! � ���"1
We now discuss some issues related to the preconditioning of a linear system with the
matrix coefficient of (13.14) associated with a vertex-based partitioning. As was mentioned
before, this structure is helpful in the direct solution context because it allows the Schur
complement to be formed by local pieces. Since incomplete LU factorizations will utilize
the same structure, this can be exploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph coloring
can be used to color the interface values � + in such a way that no two adjacent interface
variables will have the same color. In fact, this can be achieved by coloring the domains.
In the course of a multicolor block-SOR iteration, a linear system must be solved with the
diagonal blocks

� + . For this purpose, it is helpful to interpret the Schur complement. Call the canonical injection matrix from the local interface points to the local nodes. If E +
points are local and if � + is the number of the local interface points, then is an E�+�� � +
matrix whose columns are the last �#+ columns of the E+ �yE
+ identity matrix. Then it is
easy to see that

� +-, x �w��Dv ?c���� / + } v ? h j�~0�PY � �)n
If � c���� / + , � � is the LU factorization of � c���� / + then it can be verified that

� v ?+ , �w � v ? � v ? , �w � v ? �w � v ? J j�~0�PY � �)n
which indicates that in order to operate with w � v ? , the last � + � � + principal submatrix
of � must be used. The same is true for w � v ? which requires only a back-solve with
the last � + � � + principal submatrix of � . Therefore, only the LU factorization of � c���� / + is

������� � }k|Q| ���a%z�f{ � ���Q% �7p���~ � ���
needed to solve a system with the matrix

� + . Interestingly, approximate solution methods
associated with incomplete factorizations of � c�� � / + can be exploited.

'� �-�7� !z���`� � � %k���v�h�D(
�+
b� �

We call any technique that iterates on the original system (13.2) a full matrix method. In the
same way that preconditioners were derived from the LU factorization of � for the Schur
complement, preconditioners for � can be derived from approximating interface values.

Before starting with preconditioning techniques, we establish a few simple relations
between iterations involving � and

�
.

�H� �U� ���
N�
 ��� � � � �
Let

� � ,
� �

�
� � v ?

� � J � � ,
� � #
�

� � j�~ �PY � �Kn
and assume that a Krylov subspace method is applied to the original system (13.1) with left
preconditioning � � and right preconditioning � � , and with an initial guess of the form� | �

� � � ,
� � v ? x � Q # � � }

� � � h j�~ �PY � �Kn
Then this preconditioned Krylov iteration will produce iterates of the form� |��

� � � ,
� � v ? x � Q # � � }

� � � j�~ �PY " �Kn
in which the sequence � � is the result of the same Krylov subspace method applied without
preconditioning to the reduced linear system

�
�', ��& with ��& , �DQ � � v ? � starting with

the vector � � .
� ������� �

The proof is a consequence of the factorization� � #
�

= � ,
� �

�
� � v ?

� � �
�

�
� � � � � #

�
� � h j�~ �PY "�~In

Applying an iterative method (e.g., GMRES) on the original system, preconditioned from
the left by � � and from the right by � � , is equivalent to applying this iterative method to

��v ?� � � v ?� ,
� �

�
� � � � � & h j�~ �PY "��Kn

The initial residual for the preconditioned system is

� v ?� � �
� � Q x � v ?� � � v ?� } � � � | �� � �

,
� �

�
Q � � v ?

� � � � � � � Q
� �
� � v ? x � Q # � � } t =

� � � �

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

,
� �
��&"Q �

� � � � � �
; � � h

As a result, the Krylov vectors obtained from the preconditioned linear system associated
with the matrix � & have the form� �

; � � J
� �

� ; � � 6�686 J
� �

� � v ? ; � � j�~0�PY " �)n
and the associated approximate solution will be of the form� | �

� � � ,
� | �
� � � t

� � v ? Q � v ? #
�

� � � �
� � v ?+s� � $ + � + ; � �

,
� � v ? x �:Q # � � } Q � v ? # x � �VQ � � }

� � �
,
� � v ? x �:Q # � � }

� � � h
Finally, the scalars $ + that express the approximate solution in the Krylov basis are ob-
tained implicitly via inner products of vectors among the vector sequence (13.53). These
inner products are identical to those of the sequence ; � J � ; � J 68686 J � � v ? ; � . Therefore, these
coefficients will achieve the same result as the same Krylov method applied to the reduced
system

�
�3,�� & , if the initial guess gives the residual guess ; � .

A version of this proposition should allow
�

to be preconditioned. The following result
is an immediate extension that achieves this goal.

�H� �U� ���
r��
 ��� � � �S�
Let

� , � � � � Q � be an approximate factorization of
�

and
define

� � ,
� �

�
� � v ? � � � J � � ,

� � #
� � � � h j�~0�PY " �Kn

Assume that a Krylov subspace method is applied to the original system (13.1) with left
preconditioning � � and right preconditioning � � , and with an initial guess of the form� | �

� � � ,
� � v ? x �:Q # � � }

� � � h j�~0�PY " ")n
Then this preconditioned Krylov iteration will produce iterates of the form� | �

� � � ,
� � v ? x �:Q # � � }

� � � h j�~0�PY " �)n
Moreover, the sequence � � is the result of the same Krylov subspace method applied to the
reduced linear system

�
�', �-Q � � v ? � , left preconditioned with � � , right preconditioned

with � � , and starting with the vector � � .
� � � � � �

The proof starts with the equality� � #
�

= � ,
� �

�
� � v ? � � � �

�
�

� ��v ?�
�

� v ?� � � � #
� � � � h j�~0�PY " �)n

The rest of the proof is similar to that of the previous result and is omitted.

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
Also there are two other versions in which

�
is allowed to be preconditioned from

the left or from the right. Thus, if � � is a certain preconditioner for
�

, use the following
factorizations � � #

�
= � ,

� �
�

� � v ? � � � �
�

�
� � v ?�

� � � � #
�

� � j�~ �PY " �Kn
,
� �

�
� � v ?

� � �
�

�
� � � v ?� � � � #

� � � � J j�~ �PY " �Kn
to derive the appropriate left or right preconditioners. Observe that when the preconditioner� � to

�
is exact, i.e., when �u, �

, then the block preconditioner � � , � � to � induced
from � � is also exact.

Although the previous results indicate that a Preconditioned Schur Complement iter-
ation is mathematically equivalent to a certain preconditioned full matrix method, there
are some practical benefits in iterating with the nonreduced system. The main benefit in-
volves the requirement in the Schur Complement techniques to compute

� | exactly at
each Krylov subspace iteration. Indeed, the matrix

�
represents the coefficient matrix of

the linear system, and inaccuracies in the matrix-by-vector operation may result in loss
of convergence. In the full matrix techniques, the operation

� | is never needed explic-
itly. In addition, this opens up the possibility of preconditioning the original matrix with
approximate solves with the matrix

�
in the preconditioning operation � � and � � .

�\�)!3$ � $]!i�H���S� �N���U� � �
�+
b���

The very first task that a programmer faces when solving a problem on a parallel computer,
be it a dense or a sparse linear system, is to decide how to map the data into the processors.
For shared memory and SIMD computers, directives are often provided to help the user
input a desired mapping, among a small set of choices. Distributed memory computers
are more general since they allow mapping the data in an arbitrary fashion. However, this
added flexibility puts the burden on the user to find good mappings. In particular, when
implementing Domain Decomposition ideas on a parallel computer, efficient techniques
must be available for partitioning an arbitrary graph. This section gives an overview of the
issues and covers a few techniques.

����� �����
 # 1 . � �0� ��. � . ��. ' �,1
Consider a general sparse linear system whose adjacency graph is � , x ^ J # } . There are
two issues related to the distribution of mapping a general sparse linear system on a num-
ber of processors. First, a good partitioning must be found for the original problem. This
translates into partitioning the graph � into subgraphs and can be viewed independently
from the underlying architecture or topology. The second issue, which is architecture de-
pendent, is to find a good mapping of the subdomains or subgraphs to the processors, after

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

the partitioning has been found. Clearly, the partitioning algorithm can take advantage of a
measure of quality of a given partitioning by determining different weight functions for the
vertices, for vertex-based partitionings. Also, a good mapping could be found to minimize
communication costs, given some knowledge on the architecture.

Graph partitioning algorithms address only the first issue. Their goal is to subdivide the
graph into smaller subgraphs in order to achieve a good load balancing of the work among
the processors and ensure that the ratio of communication over computation is small for
the given task. We begin with a general definition.

1 2 3 4

5 6 7 8

9 10 11 12

 8? �
 �

�� ��������� ��� �
Mapping of a simple � � mesh to 4 processors.

� �
 �
r��
 � � � � � �
We call a map of ^ , any set ^�?KJ1^ � Jih�hih�Jj^ 9 , of subsets of the vertex

set ^ , whose union is equal to ^ :

^�+��S^ J �
+s� ? / 9

^Z+-, ^ h

When all the ^ + subsets are disjoint, the map is called a proper partition; otherwise we refer
to it as an overlapping partition.

The most general way to describe a node-to-processor mapping is by setting up a
list for each processor, containing all the nodes that are mapped to that processor. Three
distinct classes of algorithms have been developed for partitioning graphs. An overview of
each of these three approaches is given next.

����� ��� � �"��'-! ����	 . �:#0% %�	(' # � �
The geometric approach works on the physical mesh and requires the coordinates of the
mesh points to find adequate partitionings. In the simplest case, for a 2-dimensional rec-
tangular grid, stripes in the horizontal and vertical direction can be defined to get square
subregions which have roughly the same number of points. Other techniques utilize no-
tions of moment of inertia to divide the region recursively into two roughly equal-sized
subregions.

Next is a very brief description of a technique based on work by Miller, Teng, Thur-
ston, and Vavasis [150]. This technique finds good separators for a mesh using projections

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
into a higher space. Given a mesh in �

�
, the method starts by projecting the mesh points

into a unit sphere centered at the origin in �
� H ?

. Stereographic projection is used: A line
is drawn from a given point O in the plane to the North Pole x �ZJih�hih J � JiA } and the stereo-
graphic projection of O is the point where this line intersects the sphere. In the next step, a
centerpoint of the projected points is found. A centerpoint ! of a discrete set

�
is defined

as a point where every hyperplane passing through ! will divide
�

approximately evenly.
Once the centerpoint is found, the points of the sphere are rotated so that the centerpoint is
aligned with the North Pole, i.e., so that coordinates of ! are transformed into x �ZJih�hih J � JX; } .
The points are further transformed by dilating them so that the centerpoint becomes the ori-
gin. Through all these transformations, the point ! remains a centerpoint. Therefore, if any
hyperplane is taken that passes through the centerpoint which is now the origin, it should
cut the sphere into two roughly equal-sized subsets. Any hyperplane passing through the
origin will intersect the sphere along a large circle

=
. Transforming this circle back into

the original space will give a desired separator. Notice that there is an infinity of circles to
choose from. One of the main ingredients in the above algorithm is a heuristic for finding
centerpoints in �

�
space (actually, �

� H ?
in the algorithm). The heuristic that is used re-

peatedly replaces randomly chosen sets of
� t @ points by their centerpoint, which are easy

to find in this case.
There are a number of interesting results that analyze the quality of geometric graph

partitionings based on separators. With some minimal assumptions on the meshes, it is
possible to show that there exist “good” separators. In addition, the algorithm discussed
above constructs such separators. We start with two definitions.

� �
 �
r��
 ��� � � �;�
A � -ply neighborhood system in �

�
is a set of E closed disks � + ,

M�,/A Jih�hih JeE in �
�

such that no point in �
�

is (strictly) interior to more than � disks.

� �
 �
r��
 ��� � � �;�
Let $ � A and let � ?KJ�hihih�J � � be a � -ply neighborhood system

in �
�

. The x $)Jj� } -overlap graph for the neighborhood system is the graph with vertex set
^ ,/. A J @ Jihih�h�JXE�= and edge set, the subset of ^ � ^ defined by

. x M1Jm0 } � x � + � x $ h � � } �, � } and x � � � x $)h � + } �, � } = h
A mesh in �

�
is associated with an overlap graph by assigning the coordinate of the center! + of disk M to each node M of the graph. Overlap graphs model computational meshes in�

dimensions. Indeed, every mesh with bounded aspect ratio elements (ratio of largest to
smallest edge length of each element) is contained in an overlap graph. In addition, any
planar graph is an overlap graph. The main result regarding separators of overlap graphs is
the following theorem [150].

�v��� �U�H�'� � � �2�
Let � be an E -vertex x $)Jj� } overlap graph in

�
dimensions. Then the

vertices of � can be partitioned into three sets �DJ � , and
=

such that:
� �

No edge joins � and
�

.
� � � and

�
each have at most E x � t A } � x � t�@ } vertices.

� � =
has only � x $#� ? � � E o � v ?Xr � � } vertices.

Thus, for
� , @ , the theorem states that it is possible to partition the graph into two

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

subgraphs � and
�

, with a separator
=

, such that the number of nodes for each of � and�
does not exceed �
 E vertices in the worst case and such that the separator has a number

of nodes of the order � x $#� ? � � E ? � � } .
��������� � 1 %���� � 	 #0) �+��� ���". ���"� 1

Spectral bisection refers to a technique which exploits some known properties of the eigen-
vectors of the Laplacean of a graph. Given an adjacency graph � , x ^ J # } , we associate
to it a Laplacian matrix � which is a sparse matrix having the same adjacency graph � and
defined as follows:

46+ � ,
�� � Q�A)�� x � + J � � } � # Y�[� M �,N0���

� x) })�� M�,<0� �	��
 ����) U � h
There are some interesting fundamental properties of such matrices. Assuming the graph
is undirected, the matrix is symmetric. It can easily be seen that it is also negative semi
definite (see Exercise 9). Zero is an eigenvalue and it is the smallest one. An eigenvector
associated with this eigenvalue is any constant vector, and this eigenvector bears little in-
terest. However, the second smallest eigenvector, called the Fiedler vector, has the useful
property that the signs of its components divide the domain into roughly two equal subdo-
mains. To be more accurate, the Recursive Spectral Bisection (RSB) algorithm consists of
sorting the components of the eigenvector and assigning the first half of the sorted vertices
to the first subdomain and the second half to the second subdomain. The two subdomains
are then partitioned in two recursively, until a desirable number of domains is reached.

�����	�U��
N�v�� � � � � � ��(� �K� ��� � � � " ���P(� ���� ��� �)� "%� ��� #"%$'& �
1. Compute the Fiedler vector � of the graph � .
2. Sort the components of � , e.g., increasingly.
3. Assign first �gE-� @�� nodes to ^ ? , and the rest to ^�� .
4. Apply RSB recursively to ^ ? , ^�� , until the desired number of partitions
5. is reached.

The main theoretical property that is exploited here is that the differences between
the components of the Fiedler vector represent some sort of distance between the corre-
sponding nodes. Thus, if these components are sorted they would be grouping effectively
the associated node by preserving nearness. In addition, another interesting fact is that the
algorithm will also tend to minimize the number E � of cut-edges, i.e., the number of edges
x � + J � � } such that � + � ^]? and � � � ^ � . Let O be a partition vector whose components are
t A or Q�A in equal number, so that b w O , � where b�, x A\JiA Jih�hih�JiA } w . Assume that ^�? and
^ � are of equal size and that the components of O are set to t A for those in ^? and Q�A for
those in ^ � . Then notice that

x �
OJ{O } , �\E � J x OJjb } ,��Zh
Ideally, the objective function x �
O-J@O } should be minimized subject to the constraint that

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �
x OJjb } , � . Note that here O is a vector of signs. If, instead, the objective function
x � |-JX| } � x |Je| } were minimized with respect to the constraint x |-Jeb } , � for | real, the so-
lution would be the Fiedler vector, since b is the eigenvector associated with the eigenvalue
zero. The Fiedler vector is an eigenvector associated with the second smallest eigenvalue
of � . This eigenvector can be computed by the Lanczos algorithm or any other method ef-
ficient for large sparse matrices. Recursive Specrtal Bisection gives excellent partitionings.
On the other hand, it is rather expensive because of the requirement to compute eigenvec-
tors.

����� ��� � � 	 #0% � � ����' 	 * �+��� �"�". ��� � 1
There exist a number of other techniques which, like spectral techniques, are also based
on the adjacency graph only. The simplest idea is one that is borrowed from the technique
of nested dissection in the context of direct sparse solution methods. Refer to Chapter 3
where level set orderings are described. An initial node is given which constitutes the level
zero. Then, the method recursively traverses the � -th level (� � A), which consists of the
neighbors of all the elements that constitute level � Q<A . A simple idea for partitioning the
graph in two traverses enough levels to visit about half of all the nodes. The visited nodes
will be assigned to one subdomain and the others will constitute the second subdomain.
The process can then be repeated recursively on each of the subdomains. A key ingredient
for this technique to be successful is to determine a good initial node from which to start
the traversal. Often, a heuristic is used for this purpose. Recall that

� x |J � } is the distance
between vertices | and � in the graph, i.e., the length of the shortest path between | and � .
If the diameter of a graph is defined as	 x � } , � Y�� . � x |-J � } 2i| � ^ J � � ^3=
then, ideally, one of two nodes in a pair x |-J � } that achieves the diameter can be used as
a starting node. These peripheral nodes, are expensive to determine. Instead, a pseudo-
peripheral node, as defined through the following procedure, is often employed.

���!� �U�
r�v�� � � � � � $ � � ��� $���$ ���,"�� ������� �H��$ � �
1. Select an initial node | . Set 	�,�� .
2. Do a level set traversal from |
3. Select a node � in the last level set, with minimum degree
4. If

� x |-J � } G 	 then
5. Set | � , � and 	 � , � x |-J � }
6. GoTo 2
7. Else Stop: | is a pseudo-peripheral node.
8. EndIf

The distance
� x |J � } in line 5 is the number of levels in the level set traversal needed in Step

2. The algorithm traverses the graph from a node of the last level in the previous traversal,
until the number of levels stabilizes. It is easy to see that the algorithm does indeed stop
after a finite number of steps, typically small.

� � � ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

The above algorithm plays a key role in sparse matrix computations. It is very helpful
in the context of graph partitioning as well. A first heuristic approach based on level set
traversals is the recursive dissection procedure mentioned above and described next.

�����	�U��
N�v�� � � � � � � ����� � � " ��� ���� � �S� "%� ���� #" $'&
1. Set � � � , � ,

� � , . �'= , E �
� �

� ,BA
2. While E �

� � � Do:
3. Select in

�
the subgraph � � with largest size.

4. Find a pseudo-peripheral node O in � � and
5. Do a level set traversal from O . Let 4@b � � , number of levels.
6. Let � ? the subgraph of � � consisting of the first 4{b � � @
7. levels, and � � the subgraph containing the rest of � � .
8. Remove � � from

�
and add � ? and � � to it

9. E �
� �

� ,FE �
� � t A

10. EndWhile

The cost of this algorithm is rather small. Each traversal of a graph � , x ^ J # } costs
around 2 # 2 , where 2 # 2 is the number of edges (assuming that 2 ^ 2Z, � x 2 # 2 }). Since there
are traversals of graphs whose size decreases by 2 at each step, it is clear that the cost is
� x 2 # 2 } , the order of edges in the original graph.

As can be expected, the results of such an algorithm are not always good. Typically,
two qualities that are measured are the sizes of the domains as well as the number of cut-
edges. Ideally, the domains should be equal. In addition, since the values at the interface
points should be exchanged with those of neighboring processors, their total number, as
determined by the number of cut-edges, should be as small as possible. The first measure
can be easily controlled in a recursive Graph Bisection Algorithm — for example, by using
variants in which the number of nodes is forced to be exactly half that of the original sub-
domain. The second measure is more difficult to control. Thus, the top part of Figure 13.9
shows the result of the RGB algorithm on a sample finite-element mesh. This is a vertex-
based partitioning. The dashed lines are the cut-edges that link two different domains.

An approach that is competitive with the one described above is that of double striping.
This method uses two parameters O? , O � such that O�? O � , . The original graph is first
partitioned into O
? large partitions, using one-way partitioning, then each of these partitions
is subdivided into O � partitions similarly. One-way partitioning into O subgraphs consists
of performing a level set traversal from a pseudo-peripheral node and assigning each set of
roughly E-�1O consecutive nodes in the traversal to a different subgraph. The result of this
approach with O
?�, O � , � is shown in Figure 13.9 on the same graph as before. As can
be observed, the subregions obtained by both methods have elongated and twisted shapes.
This has the effect of giving a larger number of cut-edges.

������� �k�"� � � �5�M�a%M{ %z{ p��q{ � � � � �

�� �����!� � � � �
The RGB algorithm (top) and the double-

striping algorithm (bottom) for partitioning a graph into 16
subgraphs.

�[��� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

There are a number of heuristic ways to remedy this. One strategy is based on the
fact that a level set traversal from � nodes can be defined instead of only one node. These
� nodes are called the centers or sites. Each subdomain will expand from one of these �
centers and the expansion will stop when it is no longer possible to acquire another point
that is not already assigned. The boundaries of each domain that are formed this way will
tend to be more “circular.” To smooth the boundaries of an initial partition, find some center
point of each domain and perform a level set expansion from the set of points. The process
can be repeated a few times.

�����	�U��
N�v�� � � � � � � ��� � #" &�$ � � ��� ����� � ('� % ����� &�� "%$'&P! � � $ � " � �

1. Find a partition
� ,/. � ? J � �\Jihih�hiJ � 9 = .

2. For M : b5;�, A\J�hih�hiJXE � � : b5; Do:
3. For �R, A Jih�hih J Do:
4. Find a center ! p of � p . Set 4%" z bK4 x ! p } , � .
5. EndDo
6. Do a level set traversal from . ! ?KJ ! � J�hihih�J ! 9 = . Label each child
7. in the traversal with the same label as its parent.
8. For �R, A Jih�hih J set � p := subgraph of all nodes having label �
9. EndDo

�� ��������� ��� � �
Multinode expansion starting with the parti-

tion obtained in Figure 13.9.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �[� �
For this method, a total number of cut-edges equal to 548 and a rather small standard

deviation of 0.5 are obtained for the example seen earlier.
Still to be decided is how to select the center nodes mentioned in line 4 of the al-

gorithm. Once more, the pseudo-peripheral algorithm will be helpful. Find a pseudo-
peripheral node, then do a traversal from it until about one-half of the nodes have been
traversed. Then, traverse the latest level set (typically a line or a very narrow graph), and
take the middle point as the center.

A typical number of outer steps, nouter, to be used in line 2, is less than five. This
heuristic works well in spite of its simplicity. For example, if this is applied to the graph
obtained from the RGB algorithm, with E � � : b5;3, , the partition shown in Figure 13.10
is obtained. With this technique, the resulting total number of cut-edges is equal to 441
and the standard deviation is 7.04. As is somewhat expected, the number of cut-edges has
decreased dramatically, while the standard deviation of the various sizes has increased.

%��R%m�g�>�I(�%�(

1 In the proof of Theorem 13.4, the following form of the Cauchy-Schwarz inequality was used:

��
��� � ��� ���

� � � �
� ��
��� � ��� �1��� �*� �

���
� � ��

��� � �
� �'� � � � � ��� � �

(a) Prove that this result is a consequence of the standard Cauchy-Schwarz inequality. (b) Extend
the result to the � -inner product. (c) Assume that the � � ’s and

� � ’s are the columns of two �	�0$
matrix
 and � . Rewrite the result in terms of these matrices.

2 Using Lemma 13.1, write explicitly the vector � � � � for the Multiplicative Schwarz procedure,
in terms of the matrix � and the � ’s, when � � @�� and then when � � A .

3 (a) Show that in the multiplicative Schwarz procedure, the residual vectors � � � � � � � � obtained
at each step satisfy the recurrence,

�&� ���&� � � � ����� � � �� ���&� � �
for � � : �������.� � . (b) Consider the operator � ��� �� �� � � �� � . Show that � � is a projector. (c)
Is ��� an orthogonal projector with respect to the � -inner product? With respect to which inner
product is it orthogonal?

4 The analysis of the Additive Schwarz procedure assumes that � � �� is “exact,” i.e., that linear
systems � ��� � �

are solved exactly, each time � � �� is applied. Assume that � � �� is replaced by
some approximation � � �� . (a) Is � � still a projector? (b) Show that if � � is Symmetric Positive
Definite, then so is � � . (c) Now make the assumption that ������� ��� � � �! �"

. What becomes of
the result of Theorem 13.2?

5 In Element-By-Element (EBE) methods, the extreme cases of the Additive or the Multiplicative
Schwarz procedures are considered in which the subdomain partition corresponds to taking # � to
be an element. The advantage here is that the matrices do not have to be assembled. Instead, they
are kept in unassembled form (see Chapter 2). Assume that Poisson’s equation is being solved.

�[�a� ���]� �t% �a� ��� �up�� �M{ � � ���yp+�D�apM~y{ %z{ p��5���Q% �7p��u~

(a) What are the matrices � � ? (b) Are they SPD? (c) Write down the EBE preconditioning
corresponding to the multiplicative Schwarz procedure, its multicolor version, and the additive
Schwarz procedure.

6 Theorem 13.1 was stated only for the multiplicative version of the Schwarz procedure. There is
a similar result for the additive Schwarz procedure. State this result and prove it.

7 Show that the matrix defined by (13.37) is indeed a projector. Is it possible to formulate Schwarz
procedures in terms of projection processes as seen in Chapter 5?

8 It was stated at the end of the proof of Theorem 13.4 that if

�*����� ��� ��� � :� �	� ��� � �

for any nonzero � , then � � ��
 �*��� � � �� . (a) Prove this result without invoking the min-max
theory. (b) Prove a version of the min-max theorem with the � -inner product, i.e., prove that the
min-max theorem is valid for any inner product for which � is self-adjoint.

9 Consider the Laplacean of a graph as defined in Section 13.6. Show that

�� � ��� � � �
� �	� ������� ��� � � ���?� � �

10 Consider a rectangular finite difference mesh, with mesh size � � ��� in the � -direction and
�
�

��� closest to the
�

-direction.
� � To each mesh point $5� ��� ��� � � � , associate the closed disk
 � � of radius � centered at $ � .

What is the smallest ! such that the family �
 � ��� is a ! -ply system?� � Answer the same question for the case where the radius is reduced to � (?@ . What is the overlap
graph (and associated mesh) for any 4 such that

:
@ � 4 �

! @
@
"

What about when 4 � @ ?

11 Determine the cost of a level set expansion algorithm starting from $ distinct centers.

12 Write a FORTRAN subroutine (or C function) which implements the Recursive Graph Partition-
ing algorithm.

13 Write recursive versions of the Recursive Graph Partitioning algorithm and Recursive Spectral
Bisection algorithm. [Hint: Recall that a recursive program unit is a subprogram or function,
say foo, which calls itself, so foo is allowed to make a subroutine call to foo within its body.
Recursivity is not allowed in FORTRAN but is possible in C or C++.] (a) Give a pseudo-code
for the RGB algorithm which processes the subgraphs in any order. (b) Give a pseudo-code for
the RGB algorithm case when the larger subgraph is to be processed before the smaller one in
any dissection. Is this second version equivalent to Algorithm 13.9?

NOTES AND REFERENCES. To start with, the original paper by Schwarz is the reference [193], but
an earlier note appeared in 1870. In recent years, research on Domain Decomposition techniques has
been very active and productive. This rebirth of an old technique has been in large part motivated
by parallel processing. However, the first practical use of Domain Decomposition ideas has been in
applications to very large structures; see [166, 29], and elasticity problems; see, e.g., [169, 205, 198,
51, 28] for references.

��� �a����{ ~��Q~ � ���N�7pM% �Q~ �[�a�
Two recent monographs that describe the use of Domain Decomposition approaches in struc-

tural mechanics are [143] and [87]. Recent survey papers include those by Keyes and Gropp [135]
and another by Chan and Matthew [50]. The recent volume [136] discusses the various uses of
“domain-based” parallelism in computational sciences and engineering.

The bulk of recent work on Domain Decomposition methods has been geared toward a Partial
Differential Equations viewpoint. Often, there appears to be a dichotomy between this viewpoint
and that of “applied Domain Decomposition,” in that the good methods from a theoretical point of
view are hard to implement in practice. The Schwarz multiplicative procedure, with multicoloring,
represents a compromise between good intrinsic properties and ease of implementation. For example,
Venkatakrishnan concludes in [215] that although the use of global coarse meshes may accelerate
convergence of local, domain-based, ILU preconditioners, it does not necessarily reduce the overall
time to solve a practical aerodynamics problem.

Much is known about the convergence of the Schwarz procedure; refer to the work by Widlund
and co-authors [30, 72, 73, 74, 46]. The convergence results of Section 13.3.4 have been adapted
from Xu [230] as well as Hackbusch [116]. The result on the equivalence between Schwarz and
Schur complement iterations stated in Theorem 13.1 seems to have been originally proved by Chan
and Goovaerts [48]. The results on the equivalence between the full matrix techniques and the Schur
matrix techniques seen in Section 13.5 have been adapted from results by S. E. Eisenstat, reported
in [135]. These connections are rather interesting and useful in practice since they provide some
flexibility on ways to implement a method. A number of preconditioners have also been derived
using these connections in the PDE framework [32, 31, 33, 34, 35].

Research on graph partitioning is currently very active. So far, variations of the Recursive Spec-
tral Bisection algorithm [165] seem to give the best results in terms of overall quality of the sub-
graphs. However, the algorithm is rather expensive, and less costly multilevel variations have been
developed [119]. Alternatives of the same class as those presented in Section 13.6.4 may be quite
attractive for a number of reasons, including cost, ease of implementation, and flexibility; see [107].
There is a parallel between the techniques based on level set expansions and the ideas behind Voronoi
diagrams known in computational geometry. The description of the geometric partitioning techniques
in Section 13.6.2 is based on the recent papers [105] and [150]. Earlier approaches have been devel-
oped in [55, 56, 57].

���� ����#� � � $

:��������
	����� ��� ����������� ����� �&
������
���! #"%$'&)(%*,+.-/$10324(5+76�$981:��3; �1<�=�
�� � �?> ���@=%=@A :9B1C�B��
@���D���EF�G� ���1HI=@��JK+'(5"%L1+.-7M1(NL�O PQ$1"K-R+76�ST:VU@$1"WO�L1".PX(Y:/Z�L1"K:,(NO -R0[(%L1"\:�]�:�+'(5SN:^$10_Z�L1"`L�OROa(,O
*�$1S
ZGb�+'(5"5:��c>�de� fN�
�dg�@=��=@Ag�
���g< ��� ��E �&
�dg�@H �&
��a�,=@AGhi����jQ� ��=�
kl�1mon � ��� ��������Ap d�����<��

�=%j ��<�<���A�nq�YA :@B�C+@X���
<�=%�sri�\��� p �1�
� ���
�� �
tu�@��� �
 :@v�v) @�wX�

A���D���EF�G� ���1HI= ��� �?;^�g�1� � �����e�?xk=
�gyitz�@�1<a���%{|	g< ��� � " ��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8
��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A�v�� B�B))���?)1v�A :9B1CQ�X�

B���D���EF�G� ���1HI= ��� �����Gy �
���� ���3��HN��<
���{|�@�1<a���i�gyit�E?�
�dg� �lmR� �i> ��� ��<�<a�,< p ��HI����
�� ��=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(N�������IJK0g+'(5"K0�L1+.-.$10�L�O��V$109U9(5"%(50�*K(N$10? �L1"%L�"%L�OROa(,Og #"%$9*K(5:�:K-70�P1A���� ���,=
� A)���1v�A :9B�C @��

�������Gx5���u<������ ��AGfN��DV�g����<��,XAgt^�����g�����@��� ��A���� �!n^�g;
� �������� ���@���?��D ���g�@�,��=`{
k������< ��� ���
�d�H�m7� �
HN��<
�����<a�i=�
 ���
������sj��@�
�� ��=@�����@�Kdg���a���1<�t
�@�����
uri�gHI� ���a���1<��
���1<��=�a=
E �����g=%� ������
ur
�IBQ�9{�:?:�AG�����W�����,<a<�D ��	�� � ��
��������@=@A�E?���� �@!; ��<�<.Agri��A :@B�B����

v������gDV�g�
<�j ��� � �����3E �1���a���g<���
����1� �1� �lj �a=%���1< ��� ��
����1�3�1m�=%� �&��=%�WH ��
�����@�@=@�����
����}�$�b�"K0�L1O
$�0��V$�SiZGb�+.-R0XP1A @���:@C�v)��@?)1v�A :9B1B)��

w������ p �g�
����� ��=%�1�e�?> ��� ��<a<��@< �aHI��<��@HI�@�
 ��
������l�1mo�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�

HI�
�dg� ��=#m7� �
=%��<�j �����s=%������=%�Y=`�=�
��@HI=��1mq< ���g�����
�9¡X� ��
����1�g=@�3�e�@�5d������ ��<etu�@��� �
uC?)Q�XAp ��t
fTAgh
����jQ� ��=�
k_��m�xk<�< ���g� ��=@Agh ��	 ��� ��AgxkDVA :9B1C�C��FE3�l�#dg�@=��=@�

C������ p �g�
����� ��=%�1� ��� �l¢T��� � � ��������<�j �����N=%������=%��
�����1�����g<��&�i=`�=�
��@HI=��1�?� �&� �1<�<��@<
�,��HI�g�
�� ��=@�3JK0g+'(5"K0�L1+.-/$�0�L�Oo}�$�b�"K0�L1Oo$`U
£i-aP)6��1Z�(�(�8��V$1SiZgb�+.-70�P1A :�� w?A9��B�v�A :9B1C�B��

B��o���G���G� ���g�1< � �.�3�#dg�W� �����g�����g<��W��mqH ������H ���@� � �
�� � ��
������ ���
�d��\=%��<���
����1�3�1m
�d��\H ��
����¤
� ���1�@��j ��<��g�W�����1	g<��@H���¥#b�L1"K+'¦���ZQZ�Oa¦�2FL1+76�¦aAGB���:)w9��@1B�A :9BQ��:��

:�)�� p � p �G�u=%dg� � �)m
 �1���?tY�G§T�G§ ����HI�@=@��yi�!jQ�@�
�������������� ���g�,��HI�g<��
��\m �1�
�������� ��
������ ��� �
���gyit������@�,��� � �
��a�1�g� ��=@�F��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*NL10G8_��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A
B���: @ @@��:9��:�A :@B�C�C��

: :���yT�g�u¤��@<�=%=%�1�e�3� ���@��� � �1< ���@� �����gyitzHI�
�d�� ���3�#J1¨oA : @�� B?B+A)�+BQv�w�A :9B�w @��
: @���yT�g�u¤��@<�=%=%�1�e� p �1�1 k��� �&
���� � � � ���@�
�
'����,{|HI�
�dg� ��=�mR���
���g=`�HIHI�
����� �1� � �a���@����=��=�
��@�

=`�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@�3���@�Kdg����� �1<et
�@�����

w B�{�:�)�A p �VturTAG§i�@�g�,j ��A :@BQw B��
:�A���yT�g�u¤��@<�=%=%�1�e� p �1�1 k��� �&
���� � � � ���@�
�
'����,{|HI�
�dg� ��=�mR���
���g=`�HIHI�
����� �1� � �a���@����=��=�
��@�

=`�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@��©�-70[(%L1"i�
O PX(@ª,"%L!L10�8I-R+.:
��ZQZ�O -.*KL�+.-/$10g:�A @1B���:K��:9v�A :9B1C)��
:�B���yT�g�u¤��@<�=%=%�1�e�3� ���@��� � �1< ���@� ���,���1 k��� ��
���� � � �����@�
9Ag<�� ��=�
i=�¡X�������@=�HI�
�d�� ����«\b�SI(5"5-R:5*K6g(

2cL1+76g(5SIL�+.-¬�A���:1� @?)�B9�9@?@�w�A :@B�C�w�� �[� �

��� � �a��� ���Q~ �[�t�
:)�X��yT�G��¤��,<a=%=%�1�e��JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10�24(5+76�$981:�� p �1HT	��������1�\hi���aj�� ��=�
k!> ���,=%=@AGri����¢�� � � A

:9B�B B��
:9v���yT�G��¤��,<a=%=%�1� �1���!n^�G�Y�g� ��� � � �9����-R0g-7+'(���Oa(5S_(50�+���$1O b�+.-.$10F$`U\�u$1b�0�8QL1"K]���L�O bg(

 �"`$Qª@Oa(5SN:����u� � ���@H ���W> ���,=%=@A[y ��<��1������Ag�qDVA :9B1C?B��
:)wX��yT�G��¤��,<a=%=%�1�eAG�[�g� ����� �	� �@HI��� �9A �1� �lnT�g>o�gx'<a<�
 �e�3yi�?=%�1HI�\jQ� ��=������=��1m ���g�@�1HI�g<��
��

	g<��X� � {|H ��
����¤_m����
�� ����� �&
������ �
�� � ��
���jQ�WHI�
�d�� ��=@�?©�-70[(%L1"\�
O PX(@ª,"%LlL10�8I-R+.:
��ZQZ�O -.*KL�+.-/$10g:�A
�1C�� A9��:)�XA :9B1C?B��

:9C���yT�G��¤��,<a=%=%�1� �1���?>o�G�[��n ��=%=��<a�,j�= � �.����	g<��X� � �1�@�g� � ��< �a�,� �3�@���� `��� ��
������ � �����@�
u=%��<�jQ� �
� �
�d �a���g� ���
�� � �&
��a�1�g= �1���!j �������1	�<a�W=�
��,�������@�,��� � �
��a�1���������4��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-�
�u0�L�O]�:�-R:YL10G8s��ZQZ�O -/*�L1+.-.$10g:�A :�@�A :9B�B�:��

:9B����[�g� �1<��@XA����gfN�G§ �������eAgDV� p ���%m7H �1�3E?�,xk�g���@=@A��1� �!�
�g���[��H �
�d��?>V�V����� @��)s��=%� ��=
H �1��� ��</�?���@�Kdg����� �1<�t
�,��� �

�
riD�{'BQ����: :i{�tu�@j ��=����� @X�)�� @ B�A��������1�g���Wr ��
����1� �1<
D �1	���� ��
����%XA :9B1B�B��

@?)���t^�g���g� ��� � �1�����i�G��� p d ���e���
� ��� ��<��=��=u�1m
�d��\�@��HI���1=�
��W=�
��@��	����@�1�1 k��� �&
��� � � � ���@�

HI�
�dg� ���3«ib�SI(5"5-7:,*K6�(\2FL1+76�(5SIL1+.-¬�AGv�v�� @1�1B9��A9:@B�A :9B1B A��
@�:1�V�i��� �&�
�d �1���?�i�GE �1�
��@���[�,</�?n �&�����1	g<��WHI�
�����\�,���1 k��� ��
���� � � �����@�
uHI�
�dg� ��=@�?x'�

�u81M�L10G*K(5:^-70?«\b�S_(5"K-/*�L�OG24(5+76�$981:VU,$1"
©�L1".PX(^��Z�L1"K:,(^�[(5+.:^$kU
©q-R0[(%L1"����,b�L1+.-/$10�:���«ib�SIªK(5"
�����q2FL1+."K-�s�u0GL�O]1:�-R:WL10�8T uL�"%L�OROa(,O��V$1S
ZGb�+.-R0�P��o W��������AG� �����@= :@vQ�9� :9C1C����W�����
hi����jQ� ��=�
'XA�¢�� � ��d��1H ��A�� ��� ���eA :9B�B B��

@ @X��fN�G� ��¤
�� �9Ag���[� �1<
���AGEF�g;^�����5d��g<
���Ag��� p �G� ��=%�@��=�
 ��
9A �1� ���s� p ������<��,X���
�
�,¤���� ����HI�@�
 �1<[=�
�� ��!��mqHI�
�d�� ��=#mR���u� ��� ��<�<a�,<o�����@�,��� � �
��a�1�g� ��� �%�<a�)j_HI�
�d�� ��=@�!xk�
 �"`$9*5(�(%81-R0XP1:T$`U\+76g(s�������I£i]5Z�(5"`*,b�ª5(Y23b�O +.- ZG"%$9*K(5:�:5$1"5:_�V$10@U9(5"�(50G*K(5AG� �����@= :9v1B�C9��:)w�: :1�
> �1=�� ���@� ��A p �YAG� ���e� :9B�C1C��

@?A���EF�����@���1�
 ��� ��� �?���G���G�o<���dg� �
'X�3��=��¤!�@��<����
� ���X�@� �������\mR���
�d��\� �&� �1<�<��@<�=%�1<���
������3��m
�V<�< ����
����Y=`�=�
��,HI=��g=�����
�d�� �G���
��Y¡���� �
���@�\=�
���g�
��������!xk�?���gfi����� ���� ��A�>o��E?�,=%=�a����A
fN� p �G�������@�g=%�1�eA��1���?t^�g§T��n�� � �
9A�� ���
�� ��=@A� �"`$9*K(K(%81-70�P1:T$`U\+76g(!��$�b�"K+763��J%�
2
�V$109U9(5"%(50�*K(N$10? �L1"%L1OROa(,OG #"%$9*K(5:�:�-R0�P\U,$1"\��*,-/(50g+.- ��*l�V$1S
ZGb�+.-R0�P1Ag� � �1�@= @?A)9�9@ A�v�A :9B�B?)��

@ B���;T�g��� ��%�H �1��Ag����� �1<
���Ag���G§ ���1�g��A ��� �?tY�gE � ���Kd ��� ���1�g�5X�"� �%�<��)jlHI�
�dg� ��=
�����@�@�1� � �
����1�g� �#� �
�d �����@��HI��<a�
��@<�lm �1�
������ ��H ��
�����@�,=u�1�
�d�� p E!{�@X� }�$1b�"K0�L�O�$`U
 uL1"`L�OROa(,O�L10�8%$W-R:�+."K-/ª,b�+'(%8c�V$1S
ZGb�+.-R0�P1AgC���:9C1v)� :9B)�A :9B�B?)��

@��X��fN�G>o�g��� �
�=%� � �1=���� �?�����#=�
�=� � < ��=@�c �L1"%L1OROa(,OoL10G8&$\-R:�+."5-.ª,b�+'(%8��V$1SiZGb�+|L1+.-.$10g��> ���@�
����@�
; �1<�<.A������1<��'�#�X� � p < ���[=@AGri��A :@B�C1B��

@1v���§T�G� � � � dg���qA�t^��n ����� ��A��_t^��A��1���!fN��¢����������!�u<
�� ��� ��
������ ��� ���@�
��a�1� ��HI�g< �����
�HI�
�dg� ��=@�
xk����81M�L10G*5(5:Y-R0 �V$�SiZGb�+'(5"K:KAg� �����@= :9C1B)�9@1w?A��[�
� � ���@H ���W> ���@=%=@Agri�'�z¢�� � � A :9B�v @��

@�wX�V�^�g�e �(����� � �1���?�i����<�mRj �������3�
�,�@�@<�� � ��
����������) `�@�
����1�3HI�
�dg� ��=�mR���i�@�1HI�g�
��a���
�g=%�@�����1{ ����jQ� ��=%�\=%�1<���
�������=
��mq=`�=�
��@HI=��1m�< ���g� �&�u�9¡X� ��
����1�g=@�c��J1¨oA :@B���:�BQ�9��:@v A�A :@BQw�B��

@1C��V>q�g���G�e *) ��=�
 � � �1� �?�
� ��� ��=�;ij ����=�
��,�e�lx
�� � �&
���jQ�WHI�
�dg� ��=#mR���
=%��	g=�
�����
������ �l�@<��1=�
������
k
������	�<��@HI= ����=�
���g�
�� � �1< �1���1<��=�a=@��xk�?tu��<���� ��§i<���� ���g= � �.A�§i�@���\;T�G§i��<��g	�A�§?�� � ��� ���Y�
E?�@��� ���
9A��1����� ���9¡X�g�@=u>^�� �����1��¤[A�� ���
�����=@A+$^$�SIL1-R0"$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:VU@$1"u �L1"K+.-/L�O
$W- ,
(5"�(50�+.-/L�O-���,b�L1+.-/$10�:��[��xk�\EFAg>Vd���< � ���@<���d�����AG>��YA :9B�C1C��

@1B��V>q�g���G�e *) ��=�
 � � �1� ��yT�g�u�g� ����<���� ���?����<�j �a���s�@<�< ����
����Y������	�<��@HI=���� ��� � ������=
�����
��
������g����a�
��s=%��	g=�
�����
������@=@�!xk��§ ������

� � � � dg��� �1� �!���
�d����
���5d��X�@�g=�
 � �
9A�� � �
�����=@A���ORO - ZG+.-.*
 �"`$Qª@Oa(5S���$�O M1(5"K:iJ%JKA�� � �1�@= @ BQ�9�9@1�1v����
� � ���@H ���W> ���@=%=@AGr
�'�z¢���� � A�ru¢NA :9B1C?B��

�[�7� ��� � �a��� ���Q~

A)��V>o�g���g�e *) ��=�
 � � ��� ��yT�g�
��� ����<��g�����!x
�� � �&
���jQ�\HI�
�d�� ��=#mR���
�dg�W=%��<��
��a�1���1m��,<a< ����
����
� ����	�<a�,HI=u�1� ����� �����g=u� �&�
��
��a�1�g� � �a�
��s=%��	g=�
�����
������@=@�c��J%�u2~}�$1b�"50GL�Oo$�03«ib�S_(5"K-/*�L�O
�u0GL�O]�:K-7:KA @?A9�/v+�5��:�)1B A)� : :�@?)�A :9B1C�v��

A9:��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�
�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	Xl=%�g	g=�
�����
�����������A�x5��2FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A BXw���:)w1� �5��:�)?A)��:�A?B�A�:@B�C�v��

A+@��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�
� �
�� � ��
���jQ�WHI�
�d�� �lm7� �u�@<�< �a�
����
� ����	�<a�,HI=u�1� ����� �����g=u� �&�
��
��a�1�g� � �a�
��s=%��	g=�
�����
������@=@�32FL1+76�(5SIL1+.-/*,:^$kUI�V$�SiZGb�+|L1+.-/$�0g:�A
B�v ��:9w?A+�5� A1v9:5��A�v1B�A :9B�C1v��

A A��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�
�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	Xl=%�g	g=�
�����
�����������A�x%x5�32FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A BQB���:5��:@v�A :@B�CQwX�

A?B��V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�
�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	Xl=%�g	g=�
�����
�����������A�x%x%x5�32FL1+76g(5SsL1+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A���:1� B :)�@��B A)�A :@B�C�C��

AQ���V���G;T��� � ��HN	�<a�1AG���G���g> �1=%� � � � A �1���?�Y�g;^�G���5d���
����?�#dg�W�,���g=�
�����
���������m
� ���@�@�1� ���
�������� ��=�mR� �u�@<�< ����
����Y�����1	g<��@HI=�	Xl=%�g	g=�
�����
�����������A�xkn^��2FL�+76g(5SIL1+.-.*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A��?A���:5�9@ B�A :@B�C�B��

A�v���tY�g� � �1HI<��, �1�����^�g� �1HI�@d��?tu���z�����) `�@�
����1�3HI�
�dg� ��=#mR� �
<������1�^������=`�HIHI�
���a�u< ���g� �&�
=`�=�
��@HI=@�c��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�A���:9v1C)��:@B A�A :@B�B @��

AQw���tY�g� � �1HI<��, �1�����^�g� �1HI�@d���� ����	g��=�
�� �&� �1<�<��@<o=%��<�jQ� �um7� �u	g<��X� �
����� � �����1� �1<e=`�=�
��@HI=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(\JK0g+'(5"K0�L1+.-/$�0�L�O��V$�09U9(5"%(50�*K(T$10���b�Z�(5"`*�$1SiZGb�+.-R0XP1A[� �����@= A�B9��� B��
� p EFAG���g<� :9B1C�C��

A�C�� p �G� ���@������= � �.�3 uLQ8��(l¨g]KZ�(W��ZQZG"%$��1-RSIL1+.-.$10FL10�8��u(50[(5"`L�O��#"K+76�$�PQ$10GL�O[�$�O]�0�$1ST-/L�O :��
� � � � d (�1�g=%� �%{'nV� ��<�� ��A�� ��=%�@<�{'����=�
��1��{k�
��

�� ���
9A :9B1C)��

A�B�� p �G� ���@������= � � �1���3EF��t
� � ��jQ� � � �1<������ � �1+."`L5Z�$�O�L1+.-.$10c24(5+76�$981:��u¨e6g(%$1"K]lL10�8T #"%LQ*,+.-/*K(5�
r
� �
�d�{';
��<�<��1����Ag�
HI=�
�� � ���1H�A :9B1B9:1�

B+)�� p �G� ���@������= � � �1����EF��t
������jQ�1{ � � �1<�������;
�	 ��� �_�����X�,� ��� ���@=�mR� �u=%�1<aj �����I=`�=�
��@HI=��1m�< ���g� �&�
�@¡�����
�������=@�c«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-¬�AGvQwX��:K��:@B�A :9B1B?B��

B :�� p �G� ���@������= � �.A�EF�gtu� ����jQ��{ � ����< ����A ��� �l;T�G��� ��� � �?�
jQ� � � �����N	 ��� � � ��� ��� �1� �
��� ���%{|	 ��� � � ������� ���?D �1���@�@�1=`{
'������1< �������
�d�HI=@�c«ib�S_(5"K-/*�L�O[�
O PQ$1"K-R+76�ST:�A :1� @�v9:K�9@1C B�A
:@B�B�:��

B�@�� p �G� ���@������= � �.A�EF�gtu� ����jQ��{ � ����< ����A ��� �l;T�G��� ��� � �?��	������ � ��������{/m ���@�YD ���g�@�@�1=`{
k������< ��� ���
�d�H�m7� �
=%��<�j �����s< ���g� �&�i=`�=�
��@HI=@�3«ib�SI(5"5-7:,*K6�(W2FL1+76g(5SsL1+.-¬�AGv A�� @�B)��A1C�A :@B�B+@X�
B+A��V>o��rT�g� �������e���
�dg�,� ���
���� ��<��@�1HI� ������=%�1���1m
�d��W��������<���� �1���3§WE?t
��� �1< �������
�d�HI=@�

��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1S
ZGb�+.-R0�P1A : @�� ��C)��w�C�A :@B�B9:1�
B B��V>o��rT�g� ������� �1���?�Y� p ��; ��� ��H ����=%d��3E �&
����¤�{/m ���,�WHI�
�dg� ��=#mR� �u=�
����c=`�=�
��@HI=��1m�yifW��=@�

��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A @ A�� v9:�))��v?A�C�A :9B�C1v��
BX����r^�gxK�G���g<��@�@j��?�����gHI� ����� ��<�HI�
�dg� �ImR� ��
�dg�i=%��<���
������3��m
*���1{ ����HI�@��=����� ��< ��� �
�d ���@�,{ ����HI�@��=����� ��<[�9¡X� ��
����1�g=��1m �����[�g=���1�e��2FL1+76g¦��Gª,AG��:�� @ @1w9��@?A�C�A :9B1v)��5�����!tu�g=%=���1���5�
BQv����^� p � p � � �1����yT��� ����<��g������E?�g<
����g< ��� ��
���jQ�T���Kd � �&�����1< �������
�dgHI=�mR� �u=%�1HI�

������=`�HIHI�
���a� �1��� ��� ���'�G���
��W� ����	�<a�,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�«\b�S_(5"K-/*�L�OG�u0�L�O]�:�-R:�A
A?) � B+�5A��
������=�
 :9B�B?A��

��� � �a��� ���Q~ �[���
BXwX�V�i����� p d �1��AG���G§ �1<�<���������<���=@A[nT�g� �aHI�1�g�������/A��i�����@�
���A ��� � p � ;^�����1�����3�

¡����1=��{|H ������H �1< ���@=�������1<�j �&�����1�
u�1m
�d��W� ��{ p §W�����i� ��<��1� ���
�dgH m7� �
�g����=`�HIHI�
�����
=`�=�
��,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZGb�+.-R0XP1A :9�9� @ �5� A?A�C)��A?BQw�A :9B1B?B��

BQC��V�i����� p d �1� �1���?fN�g§i�X�)j ��� �
�=@�cyi�
�d�� ���@<���
����1�g=%d����3	��
 �#�@�,���)jQ� ��<��1��������� �1� �
�g�����)jQ� ��<��1��������� ����H ���a� ���,�@��HI���1=�
����1��HI�
�dg� ��=@����J%�u2 }�$1b�"50GL�Oq$10?2FL�+."5-�N�u0�L�O]�:�-R:
L10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :�A�� v�v A9��v�w?)�A :@B�B+@X�

BQB��V�i����� p d �1� �1�����i�G>o�GE ��
�d��'�W�3�#d����a�
�� �%m �1�@�Y� ����	������
��@�Kdg���a¡X�g� ��� ���1H � ������@�@�1HI����=�
��������F��J%�
2 }�$1b�"K0�L�O�$10?2FL1+."K-�T�u0�L�O]�:�-R:YL10G8T�#ZQZGO -/*�L1+.-/$10�:KA :�A9��: �5� @�:�@9��@?A�C�A
:9B�B @��

�?)��V�i����� p d �1� �1�����i�G>o�GE ��
�d��'�W��f\�1H � ��� ���@�@�1HI����=�
������ ��<��1� ���
�dgHI=@�c�u*,+|L
«\b�S_(5"K-/*�L1Ag� � �1�@=uv9:K��:�B A�A :@B�B?B��

��:1��;T� p � p d��@� �1���?�Y��� �1HI�@d��?��H ��
����¤ ���@�,��HI����=�
������?HI�
�dg� �ImR���i���
�dg�
���1�����
�@<��1=�
������
k?������	�<��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-�s�u0GL�O]�:K-7:YL10�8N��ZQZ�O -/*�L1+.-/$�0g:�A
:�) ��:��5� A�B)�Xv?B�A :9B�C1B��

� @X� p � p � p dg�@���,X��JK0�+."%$981b�*,+.-/$�0F+|$N�#Z�ZG"%$��1-7SIL1+.-/$�0 ¨e6g(%$1"K]��cE?�)§ � ����; ��<a<.A�r
¢TA :@B�v1v��
�?A��V��� p dg��� �1� �_¢N�G��� � ���!x`D�hW������� ���g�@�1HI�g<��
��WD�h�m �1�
������a����
������3mR���iH �&
�����@�@= ���?=%� �&��=%�

= � �< ���g�im7� ��H �&
9�?JK0g+'(5"K0�L1+.-/$�0�L�Oe}�$1b�"50GL�O�U,$1"
«ib�SI(5"5-.*KL1OG2F(5+76�$981:\-R0 ��O b�-.81:�A�@1��� w?A1B)��w BQC�A
:9B�B�w��

� B��V��� p dg��� �1� �_¢N�G��� � ���?�
�������9¤ ��H ��
�� ����jQ� ��=%�W� ���@�@�1� ���
�������� ��=�j � �T=%� ����=%�5{'=%������=%��
�� � ��
�������=@� ��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*l�V$1S
ZGb�+.-R0�P1A :9B�� B1BQ�@��:�) @?A�A :@B�B1C��
���X��rT� p d�����=%�X�5d�� �����,=@A�§i�@�1� ���5?���)¤[A��1���?���X�^�#dg�1HI�g=%�1�e��E��Vr
hW��{'>�§W§�H �1���������

�@��j � ���1�gHI�@�
#m7� �
����HI� ����� �1<[���g=�
���g�
������ � �1���!=�
���g�
������ �l� ��� ��<�<a�,< � ����� �1�@�g� � �&
������e�?xk�
 �"`$9*5(�(%81-R0XP1:T$`U\+76g(^�[(5M1(50�+76?JK0�+'(5"50GL1+.-/$10GL�O��V$10@U9(5"�(50G*5(T$10"$^$1SsL1-R0"$^(�*�$1S
Z�$1:�-R+.-/$10
24(5+76�$981:W-R03�G*,-|(50g+.- ��*sL10G8%�#0�P1-70[(�(5"5-70�P��V$�SiZGb�+.-R0XP1A :9B1B A��

�1v���rT� p d�����=%�X�5d�� �����,=@A p �G����;i����=�
���=@AG���Gr^��;
����=�
��a=@Ag>o�gr^�G> ��� ���5d��a�1�eAG�[� �s� �W���
��@=��=@A�1� �?���gt����@���?fYyWE��
x'r�fW� p yWE�>�yW����t^���N=%�1m
*� ������
��X��<�mR� �uH ���g�������s>�fW�
�@��HI����
 ��
����1�g=
��s����� �1<�<��@< �&���5d��
��@�
������,=@��xk�!t^�g§i<���� ���g= � ���
9���1<.��AG�����
�� �9A�$^$1SsL1-R0
$T(%*�$1SiZ�$1:�-R+.-.$10�2F(5+76�$981:VU@$1"
 �L1"K+.-/L�O $W- ,
(5"�(50�+.-/L�O � �,b�L1+.-/$�0g:�A�� �����@= A B :5��AQ�1w��e��xk�\E
�g�g	�< �a����
�������=@A :9B1B9:1�

��wX��rT� p d�����=%�X�5d�� �����,=@A[����;i�1�g=�
���=@A��1� �!���Gt����@����E �1��������� ��<��1� ���
�dgHI=���� �!=%��m
 � �����
�@��j � ���1�gHI�@�
#m7� � ����
 �^� �&� �1<�<��@<q>�fW� �
�� � �&
���jQ�Y=%��<�jQ� ��=@�4}�$1b�"50GL�Oo$`U
 �L1"%L�O7Oa(,O�L10G8
$W-R:�+."K-/ª,b�+'(�8��V$1SiZgb�+.-70�P1A @�:�� w��@��B���A :9B1B?B��

�1C���§T� p ��HIH ���g��� p ��<a�,��<�� �1�g� ����=%=��H ��
��I��� ��<a�W=%�1<��g��������� �����e=��=�
��@H � �����9¡X� �����������e< ���g� �&���.�
��-/*)¦���*,-|¦[#"%$�P1"@¦q+'(%*,0�¦�(%*�$10�$�S_¦o0�L��)¦aAGB�� A+@�v)��A?A A�A :9B A1C��

�1B��V�^� p < �@
������3�g� �
�dg� � ���,=%�g<
�=����?���1<������H ���1<�=ud �9j �����N<�� ��=�
iH �)¤ �aHT�gH�HI� ����<a��=��)jQ� ��1���@<�< ���g=%�����
�d��W�@��HI��<a�5¤_�g<��1�����3���,�5d������ �1<et
�,��� �
u�i�V�q� {kw?A?B�C�Agh �Y�i�V�^A
; �������#�@<�<�{|h �sA :9B�v?A��

v)��V>q� p �����@�g=���� �3§T��;T�g§i��<���	e�3� ���@��� � �1< ���@� ���,���1 k��� ��
���� � � �����@�
uHI�
�dg� �_mR� �
�g����=`�HIHI�
�����
=`�=�
��@HI=��1mq< ���g� �&���9¡X� �&
��a�1�g=@�_x'�!tY��§i<�� � ����= � � �1���!���gD���D ������=@A������
�� ��=@A
�V$1SiZGb�+.-R0XPs24(5+76�$981:W-R0?��ZQZ�O -|(%8I��*,-|(50G*5(5:^L�0�8 ��0XP1-R0[(�(5"K-R0�P1Ag� � �1�@=
�1v9��vQ�X����� ��������� �
n�� ��<�����AGr
�'��¢�� � � A :@BQw�v��

v9:1�V>q� p �����@�g=@A�§T�g;^�g§i��<��g	�A �1����§T�GE?�@��� ���
9�3��<��X� � � ���@�@�������
��������a���NmR���
�d��\�@�1�1 `��� �&
��� � � � ���@�

HI�
�dg� ���c��J%�u2~}�$1b�"50GL�Oo$�0c�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1A
v�� @ @))�9@1� @XA :@B�C����

�[��� ��� � �a��� ���Q~

v+@��V���GfN����� p ��=� ���)jQ�1A[��� p �Gf ���1�1A ��� �?�Y��§ �����'� �1� � ���
�������9¤ �aH �&
�� ����jQ� ��=%�
� ���@�@�1� ���
������������smR���u=%� ����=%�Y< ���g� �&�u=`�=�
��,HI=@��JK0�+'(5"�(5"K0�L1-R+|$�0�L�Oq}�$1b�"K0�L�O�$`U
�V$�SiZGb�+|L1+.-/$�0�L�O�2cL1+76g(5SIL�+.-/*,:�A�B B�� B9:5� : :�)�A :9B1B+@��

v A��V��� p �g<�<��gH ��� �!�
�g���Y§ ���@�@��	��1�gH��ltu�@=�������1< ���@<���
�������=%d����g=�� �
�d����
�d����,�W� � � ��=��1m�
�� � �&
���jQ� �1< �������
�d�HI=�mR� �u=%�1<aj �����_��¤ �i	e�!���@�Kdg���a���1<�t
�@�����
ux`��E tu�@=%� �����Kd�tu�@��� �
�t p
:@C�v�w @�AGx`��E �i������� ��
�=%���?t
�@=%�������Kd p �@�
�� �9A�¢���� �
������!;i��� ��d
�=@A�ri�'�z¢�� � � A�� �1�������%
:@B�B?A��c��� ���g��� �&�9A���x`�iE ����� ��� �1<��1m�E �&
����¤��u� �1<��=��=��1� �!�
���g< ��� ��
�������=@A :@B�B�v��

v?B��V�u�GrT��f��&

 ���3«\b�SI(5"5-/*�L�Og©�-70[(%L1"i�
O PX(@ª,"%L!L10�8T��ZQZ�O -/*�L1+.-.$10g:��3� ���X� � = � p �1<a�N>V��	g< ��=%d�������A
> ����� �G�T§ ���)jQ��A p �^A :9B1BQ���

vQ���V>o�g���Gf �)j ��=@�3JK0g+'(5"|Z�$�O�L1+.-/$104L10G8s��ZQZG"`$��1-RSIL�+.-/$10g�3��<�� ��=����@<�<.AG� �1<
�d ��H�AGE��YA :@B�v?A��
v�v��V�i�g�^��f��9j ��=@���zZ�L1"%L1OROa(,O�L1O PQ$1"5-7+76�S�U@$1"\:/Z�L1"K:,(Yb�0g:�]�SNSI(5+."5-/*i© � U,LQ*,+|$1"K- �9L1+.-/$10�:K��>Vd�� fN�
�d��@=��=@AGh
����jQ� ��=�
kl��mqxk<�< ���g� ��= ��
uh ��	��1��� p d ��HI� �����1�eA�h ��	��1� ��AgxkDV��A :9B�C1B��
vQw��V��������f%
 �
�,�@jQ� ����A����G�Y�G��� ��=`
�deA��1���l���g>o�G� �1������y � ��� �������sHI�
�d�� ��=#m7� �

� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��= ���g��<���� �
��s�g��=�
���g�
�� ��� � �������?�����1	g<��@HI=@�
��J%�
2~}�$1b�"K0�L�Oo$10?2FL1+."K-�I�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :�A�� B?B?B���B1v9:1A :@B�B @��

v�C��V��������f%
 �
�,�@jQ� ����A����G�Y�G��� ��=`
�deA��1���l���g>o�G� �1�����3����� ��� ��= �N�@�1=�
u�,�[�@�
���jQ�WxkDeh
� ���@�@�1� ���
�������� � � �
�d!d�� ��d?<a�,jQ�@<��G<�<.�c�#J1¨oA A9:1� B B�@@��B�v A�A :@B�B+@X�

v�B���EF�G�^��f\�9D������ �1���?����EF��y �
���� ���3�gyit �1=��N�����,�@�������
������g� �9�c��ZQZ�O -|(%8N«\b�S_(5"K-/*�L�O
2cL1+76g(5SIL�+.-/*,:�A :9C�� B A9:K��B B)�A :9B1BQ�X�

w?)��V>o��f\�@���Id �&� ��A�t^�����g�����@��� ��A���� �?�Y��� �1<
�� �9��� �1=�
u=%�@���1�
uHI�
�dg� ��=#mR� �
�d����
�� � ��
���jQ�
=%�1<���
������3��mq<��������Y�����g=`�HIHI�
�����
<������ ���
=`�=�
��@HI=@��J%2! e�^��¨�$`Us�V$1S
ZGb�+.-R0�PI-R0���*,-|(50G*K(
L�0�8 ��0XP1-R0[(�(5"K-R0�P1A @�� @ B?B��9@1w1v�A :@B�B?)��

w�:��V��������f\����� �&�� ��AGxK������f\���qA�fN�G�������@�g=%�@��A ��� �l;T�g�^��j ��� ��� �un�����=�
9�F�G$�O M9-R0�PT©�-R0�(%L1"
��]1:�+'(5ST:^$10 �G(%*,+|$1"NL10G8I��6�L1"%(�8s24(5SI$�"5]3�V$1S
ZGb�+'(5"5:��F��x`�\EFA�>�d���<�� ���@<��gd�����A�>[�^A :9B1B9:1�

w @���EF�gf �%) � �1� ��yT�g�u�g� ����<���� �������1HI� ����H � ��� ���@�@�1HI����=�
������ ��< ��� ���
�d�HI=um7� �u�@<�< �a�
����
� ����	�<a�,HI=@��xk�!D �������N; �9Q�@= �1���?f��9j � �������g� ��� �[Ag�����
�� ��=@A[JK+'(5"%L1+.-RM1(\24(5+76�$981:VU@$�"u©�L1".PX(
©q-R0[(%L1"Y��]1:�+'(5SN:�Ag� � �1�@= @�w?A9�9@�B9:����
� � ���@H ���W> ���@=%=@AGr
�'�z¢���� � A�ru¢NA :9B1C�B��

w?A���EF�gf �%) � �1� ��yT�g�u�g� ����<���� ���?����� �&� ��=��N����� �G� �
�dg�@���%l�1m ���1H � ��� ���@�@�1HI����=�
��������< ��� ���
�d�HI=um7� �u�@<�< �a�
����^� ����	�<a�,HI=@�?x'�����1�� p d��1�eA�tu��<��1���3§i<�� � ����= � �.AG� �1�9¡X���@=
>^�� �����1��¤[A �1����yT��� ����<��g����A�� � �
�����=@A#¨e6�-7"%8TJK0g+'(5"K0�L1+.-.$10�L�Oe�g]�SiZ�$1:�-Rb�S $10 $^$1SsL1-R0
$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:VU@$1"
 �L1"K+.-/L�O�$\- ,
(5"�(50g+.-.L�O ���,b�L1+.-/$10�:��V6g(,O�8I-R0?£W$1b�:K+|$�0 �
¨�� �
2cL1"%*K6�� ���/�Q���#�����X�1����xk�\EFA�>Vd���< � ���@<���d�����AG>��YA :@B�B?)��

w B���EF�gf �%) � �1� ��yT�g�u�g� ����<���� ���?� �����
���jQ�W���5d � �����WHI�
�d�� ��=#mR���u�@<�<����
��a� �g���
��\�@<��@HI�@�

� ����	�<a�,HI=����
�d����@��� �aHI�,�g=������=@�?x'���i�g��� p d��1�eAgf��9j � �!��� �W�,X�,=@AG§?�� � ��� �3�^�gE?�@� � �1�
9A
�1�,� ���,��[�G��� ��� � ��=@A �1���!tu��	�� �
i§T��n�� ����
9Ag�����
�� ��=@A-��- U5+76_JK0g+'(5"K0�L1+.-.$10�L�Oe�g]�SiZ�$1:�-Rb�S�$10
Y1SIL�-R0 $T(%*�$1SiZ�$1:�-R+.-.$10�24(5+76�$981:VU@$�"
 uL1"K+.-/L�O-$W- ,
(5"�(50�+.-/L�O � �,b�L1+.-/$�0g:��[��x`�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1B+@X�

w����V>o�g���gfi�g	�� ��=@Ag�^�G§ ���@�@��	 ���gH�A��1����§T��;T��t
� � ��� ���g�1�3�
�������9¤ ��H ��
�������
�dg� ����jQ� ��=%�W��m �
H �&
����¤lm7� �
�g=%�\�1� �
�� � ��
���jQ����< ��� ���
�d�HI=
�1�?jQ�@�
�� ��=������X�@�,=%=%� ��=@� �V$1S
ZGb�+.-R0�P1A
@?@�� @��1w9��@1v�C�A :9BQw�B��

w1v���xK�����gfi���q�!��=%����j��,_�1m�=%������=%�WH ��
����¤ ���@=%� �&���5d���x'�3 #"%$9*K(�(�8�-R0�P1:T$`U\+76g(iJ � � �����
	�A
��� �1�@=\�))9���?A�����> ���@�
����@�W; ��<a<.A�ri�'�z¢�� � � A :9B�w�w��

w�w���xK�����gfi���qA��^�gEF��� ����=%H �1��A���� ����� �s��t
� � �[� $\-R"�(%*,+�24(5+76�$981:�U@$1"i��Z�L1"K:,(W2FL1+."K-/*K(5:��p <��&���@� ������> ���@=%=@A[y
¤�mR��� ��A :9B1C�v��

��� � �a��� ���Q~ �[���
w1C���x5�G�[��f\���qA�tY�G§T�G§ ����HI�@=@A��1� �!���[§T�gDe��� �a=@����� �&��=%�WH ��
����¤
��@=�
u�����1	g<��@HI=@�3�^��2

¨g"%L10�:5LQ*,+.-/$10�:N$�032cL1+76g(5SIL�+.-/*�L�Oe�G$`U5+���L1"�(5A :)�X��:K��:.B�A :9B1C�B��
w1B��V�i��� � ���1<�� �1� �?yT�gr
�@j �1�g< ���g�����?�
�@�,�@<�� � ��
������&� �
�d � ��� � {|�����\�g� ����
��@=@��©�-R0�(%L1"i�
O PX(@ª,"%L

L10�8I-R+.:
��ZQZ�O -/*�L1+.-.$10g:�A :�@�:1� ��: :K��� @)�A :9B1C�B��
C)����[�g� ��=%�@��=�
 ��
9�3� � �����@�
���HI�g<��@HI�@�
 �&
��a�1�?��m �N�@<��1=%=u�1m��,���1 k��� ��
���� � � �����@�
uHI�
�dg� ��=@�

��J%�u2 }�$�b�"K0�L1Oq$103��*,-/(50g+.- ��*NL10G8_��+|L1+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1A @���:5�+B�A :@B�C1C��
C9:1��;T� p �G��<�H �1�e�?��=�
 ��	���< �
k ��� ��<��=��=��1m ���g�,��HI�g<��
��\Deh�m �1�
�������� ��
�������=@� 2FL1+76g(5SsL1+.-/*,:^$`U

�V$1SiZGb�+|L1+.-.$10g:�A BQw���:9B�:5�9@�:)wXA :@B�C1v��
C+@X��;T� p �G��<�H �1� ��� �����g� � ���1�e�3y � ��� �������
��@�Kdg���a¡X�g�,=#mR� ��
�dg�i�����@�@�1� � �
����1�g� �?�,���1 k��� ��
��� � � � ���@�

HI�
�dg� �!�1�?����� �1<�<��@<o�,��HI�g�
�� ��=@� �V$1SiZgb�+'(5"i �6�]�:K-.*,:I�V$1SNSTb�0�-/*�L1+.-/$10�:�A

�?A�� @1�?A)��@1v1B�A :9B1C�B��
C A���;T� p �G��<�H �1� ��� �3§T��;T�g§i�1<a��	e�?x
�� � �&
��aj��WHI�
�dg� ��=#mR� �u�,��@< ��� ��<a<� ��� �����@� �

�g����{|=%�@<�m7{ � �) `� ���

<������ ���u=`�=�
��@HI=@�32FL1+76g(5SsL1+.-/*,:^$`Us�V$1S
ZGb�+|L1+.-/$10�:KA[� B�� v�w�:5��w?)?)�A :9B1B)��
C?B���EF�g�����1<��@H �1���l�oxkf
�i> H �1�����1<�=@�_���@�Kdg����� �1<[tu�@��� �
�nV��<.� :1A�@XA��1� � A�A��o<������_fi�� ��H �a�,=

xk�
�� ��� �&
������ ��<.A���j ���g=�
�����A�x`DVA :9B1C�v��
CQ�X��nT��� �1	�� � �1���!�i�gE �1�
��@���[�@<.�lri�@�@�,=%=����% �1���l=%� � �����@�
��@�1� ���
�������=#mR����
�d��i�,¤ ��=�
��@���@�i��m�N�@���� `��� ��
������ � �����@�
uHI�
�d�� ������J%�u2~}�$1b�"50GL�Oq$10?«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:�A�@�:1� A�� @@��A�v�:�A

:9B�C B��
C�v�� �\?���1�e�!ri��
��W��� � {|H ��
�����@�@=@��¥#b�L1"K+'(5",O]l}�$1b�"K0�L�Oo$`U
2FL1+76g(5SsL1+.-/*,:��
� �`U@$1"%8I:,(5"5-/(5:� ���)A : :1� B A)�+BQB�A :@B�v?)��
CQwX� p ��� �&��d ��
���� ����� �^�gtu����¤��lx'HI�g< �����
�� ��� ��<�<a�,<������X�,�@=%=����� ����=�
���g�
���� �1<�HI�@�Kd �������@=@�

�V$1SiZGb�+|L1+.-.$10�L�O[24(%*K6�L10g-.*,:
�u81M�L�0�*K(5:�A @9��:��5��:K��:�@ B�A :@B�B B��
C�C���t^�GEF�G��� ���@�g�,��� ��Oa(5S_(50�+ �kª,]��`(,Oa(5SI(50g+qZG"%(%*K$�0�81-R+.-.$10g-R0XPl+'(%*K6�0g-��,bG(5:VU,$1"YO�L1"/PX(W:5*KL1Oa(

M1(�*,+|$�"5- �)(%8\��0g-R+'(T(,Oa(5S_(50g+#L10�L1O]1:�-R:\-7030�$10gO -R0[(%L1"Y:5$�O -/8_L10G8_:�+."Kbg*,+.b�"`L�OoS_(%*K6�L10�-/*,:��
>Vd�� fT��
�d��@=��=@AGf\�@�����
�HI�@�
���m��
���g< ��� ��E �&
�dg�@H �&
����@=@A��
 �1��mR� � �[A p �YA :@B�C1B��

C�B��V�
��� ��=%�Kdg� � �1���!tY�����g� ���@�g������yi�
�dg�i�@����=�
� � ���g� � p dg�@	X�=%dg�@j ���g�����9¤ ��H ��
������
������	�<��@H �����,<a< ���g=%�,=@� }�$1b�"50GL�Oo$kUi��ZQZG"`$��1-RSsL1+.-/$10�¨e6g(%$1"K]1AGv+@�� @�BQw9��A9:9��A :9B1B)��

B)��V�
��� ��=%�Kdg� � �1���!tY�����g� ���@�g����� p dg�@	X�=%dg�@jI���1<������H ���1<�=������Y���
��1< � �9�=u���
��aH ��<.�
}�$1b�"50GL�Oq$`U
��ZQZG"%$��1-RSIL1+.-.$10�¨e6g(%$1"5]�A[v���� @1v�:5�9@1w @XA :9B�B�:��

B9:1�V�
�G� ��=%�Kdg� ����� �!DV��t
� �a�Kdg�,</�!�z=�
 �1	�<a�Wt����5d���� ��=%��� �
�� � ��
�������HI�
�dg� �ImR� ���,��HI�g<��,¤_< ���g�����
=`�=�
��,HI=@��«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-¬�A�� B�� @?@��@�9@ B9:�A :9B1C�C��

B+@X��t^�g�o<��
��5d�� �9� p �1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��=�mR� � ��� ���'�G���
��i=`�=�
��,HI=@�?x'�3§T�g�^��� ��
�=%�1�eA
� ���
�� �9A� �"`$9*K(K(%81-70�P1:^$`UW+76g(!$\b�0�8X(�(\��-|(50g0GL�O��V$10@U9(5"�(50G*K(N$10�«\b�SI(5"5-/*�L�OG�u0�L1O]1:�-R:^�1������A
� � �1�@=iw?A)�XC�B������ ���a����� ��nV� ��<�� ��AGr
�'��¢���� � A :@BQw��X�

B A���t^�����g�����@�g����� p ���� `��� ��
������ � �����@�
%{
k����\HI�
�dg� ��=#m7� �u< ���g� �&�i=`�=�
��@HI= � �
�d��@�1HI�g<��,¤
=`�HIHI�
���a�
�@�X� � � �a�,�

H ��
�����@�,=@�F��J%�
2~}�$1b�"K0�L�Oq$�03��*,-|(50�+.- ��*sL�0�8I�g+|L1+.-R:�+.-/*�L�O
�V$1SiZGb�+.-R0XP1A :�A�� B�@1�9��B?BQC�A :@B�B @��

B?B���t^�����g�����@�g�����	�i� ��=��{ � � ���g�@<[���1<������H ���1<�=��1���?�@����jQ� �����@���@� ���@=%��<
�=�mR���
¡����1=��{|H ������H �1<���@=����� ��< �
�� � �&
������g=@�!xk�!f ���
�����@�Kd�� � ���@=%=��1� �!D �&��%?D��g���Kd���H � � � �9AX� ���
�����=@A[«ib�S_(5"K-/*�L�O
24(5+76�$981:^$`U
��ZQZG"`$��1-RSIL�+.-/$10�¨e6g(%$1"5]�� �g$1Oo�1A�xk�
�� ������
��������1<�=%� �����@=
��mq���gHI� ����� ��<
H ��
�dg�,H ��
����@=@A�� �����@= :5� :9B��G� � � � d � (�g=%� �
n�� ��< ����AG� �1=%�@<.A :9B�B @��

�[��� ��� � �a��� ���Q~

BQ����tY�����G� ���@�g�����!��� � ���g=%���1=%�,{'�����@� �i� ��=��{kE ������H ��<etu�@=�������1< �1< �������
�d�H mR� �
������{';
� ��H �
����1�?< ���g�����u=`�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZgb�+.-70�P1A
:.B � @?�5� BQw?)9��BQC @�A :9B1B A��

B�v���tY�����G� ���@�g����AgEF�g;^�g§i��
 � �g�@�Kd
9A��1� �lrT�GEF�gr �1�Kd
���� �1<.�3�u� ��HI�g<��@HI�,�
 �&
������?��mq�1m
�d��YDe�X� � {'�udg� � �?D ���g�@�,��=��1< �������
�dgH��4��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O
�V$�SiZGb�+.-R0XP1A :�B � @ �5� BXw))�+BQC+@XA :9B�B?A��

BQw���tY�����G� ���@�g��� ��� �?r^�GEF��r ���5d
�� � ��<.� �WE?t^���s¡X���1=��{|H �a����H �1< ���@=�������1<�HI�
�dg� �_mR� �
������{';
� ��H �
����1�?< ���g�����u=`�=�
��@HI=@��«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A�v)�� A9:)�@��A?A�B�A :@B�B9:1�

B�C�� �s�G§ �1<�< ��j ���eAG�^�G���1HI�,deA �1��� � � � <���
��@j��?��� �&� �1<�<��@<odX�	������_=%� ����=%�W< ���g�����
=`�=�
��,H
=%�1<�jQ� �9� �V$1S
ZGb�+.-R0�PI�g]�:�+'(5SN:W-R0#�#0�P1-R0�(�(5"5-R0XP1A : � @){ B��5��:9C?A)� :9BQ�XA����g����:9B1B)��

B�B�� �s�g�^�G§ �1<�< ��j ���eA�EF�G�i��;i� �&
�deAg����r ��AG����EF��y �
���� ��AgtY�G���G>�<��@HIHI����=@A p ��;T��tu��H ���g��A
�Y�g;^�g���1HI�,deA��1���?t^�g§T��n�� � �
9�� �L1"`L�OROa(,OG�
O PQ$1"5-7+76�SN:VU@$�"
2FL1+."K-���V$�SiZGb�+|L1+.-/$�0g:��
��x`�iEFAG>�d���<�� ���@<��gd�����A :9B1B)��

:�))��V����tY��§ ���
�H ���5d�� �9��¨e6g(l¨e6g(%$1"K]l$`U
2FL1+."K-/*K(5:�� p dg�,<a=%����A�r
�'�z¢���� � A :@BQ�1B��
:�)9:���r^��§ ��=�
����g�@<.�F�u0GL�O]1:,(i«\b�S �(5"K- �,bg(i©q-R0 �(@L�-R"�(5�?;i� ��H ���g�eA�> �&���a=@A :9B1v�v��
:�)+@��q����§ ����
�=%�Kd��.��yi� ���@��� � ��
������I���
�dg� �������1<e����<���g��H ����<a=@�F��J%�u2~}�$1b�"50GL�Oo$10��G*,-|(50g+.- ��*

L�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1A A�� @�C�B9��A9:9w�A :@B�C+@X�
:�) A��V�Y��§i�,� �����1� p ��HI����
�� � ��HI�g<��@HI�,�
 �&
������l�1m
�d��!�G���
��\�,<a�,HI�@�
�HI�
�dg� �[�?�e�@�5d������ ��<

tu�@�����
\���o�
ru{ p ��{1@?)1C�Ag�
 ����mR��� �?hi����jQ� ��=�
kXA�f\�,� ���
�HI�,�
#�1m p ��HI����
�� ���������@���@��A :@BQw�:��
:�)?B��V�����^�g§i�@������� �1�����������gD ���e���V$1SiZgb�+'(5"Y�G$�O b�+.-/$10F$`Uu©�L1".PX(^��Z�L1"K:,(\ �$1:�-R+.-RM1(!$^(R�V0�-R+'(

��]1:�+'(5ST:K�c> ���@�
����@�,{|; ��<�</Ag������<��'���X� � p <����[=@Agr\��A :9B1C9:��
:�)Q���V���GtY�G§ ��<�	�� �
9A�§T�GD���E ��<�<�� �9A �1������� {|;^�g�e�@������§i�@�1HI�
�����WHI�@=%d?�����
��
��������������

x'HI�g<��@HI�@�
 �&
��a�1� ��� �l�,¤���� ����HI�@�
�=@�?x'��J` V ��c��� �V��b�ª,SN-R+.+'(%8l+|$I��J%�u2 ��JK�e�qA :@B�BQ�X�
:�)�v������ �s�G§i� ���g����j ��� �!§T�G>o��> ����� � �����)j��!��HI�
�d�� �l��moH ������H ��< �
�� � ��
������lmR� �u�@j �1<�����
������
�d��W��� ���@��j �1<��g�,=u��m �1�?�@<�<����
��a�Y�1��� � ��
����9� � 6g¦ ��-/*K6�:KOa¦�2FL1+'¦�2FL�+'¦ ��- �)¦aA :�)���: :@C))� : :@B)�A

:@BQw)��
:�)Qw��V�i��§i�X�@d�������� �1���!¢N�g��� � �[��;i�,������=�
������1< �������
�d�HI=�mR� � �1�
���H �&
��a� � � �1��d�� �&�
��
��a�1���������

�e�@�5d������ ��<�tu�@��� �
���HI=��{'B B1{1@1B�Agh
����jQ� ��=�
kl��mVE ���g�g�,=%�
 �_������� ���@�1HI�g��
�� ��xk��=�
��
��
���A
E �����g� ������< ��=@A�E?rTAg�g�@	 ��� ���% :@B�B?B��

:�)�C���§T�g;T�g§i��<���	 �1��� A�� �!� ��� p �Gn �1�!De� ���e��2FL1+."K-�c�V$1S
ZGb�+|L1+.-/$10�:K�3�#dg�Y���1dg�?;
��� � ����=
h
����jQ� ��=�
'?> ���@=%=@AG� �1<
���HI� ����A :9B1B�v��

:�)�B���§T�g;T�g§i��<���	 �1����EF��D���yij�� �
������?�#d��W�@����jQ� �����@���@�W�1m ���g�5¤����
 p dg�,	��=%d��@j �1� �
t����5d���� ��=%��� �
�� � �&
��aj��WHI�
�dg� ��=#mR� �u=%�1<aj �����I< ���g�����u=`�=�
��@HI=@��«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A
� A�� ��w�:5���1B A�A :9B�C1C��

:?:�)���§T�g;T�g§i��<���	 �1���!tY������n ����� ��� p dg�@	X�=%dg�@j_=%�@H � �
�� � �&
��aj��WHI�
�dg� ��=�=%�g�@�@�,=%=�aj��
�)jQ� ����@<���¤���
������ �
�� � �&
���jQ�WHI�
�dg� ��= �1���!=%�@�@�1� �?��� ��� �ut����5d���� ��=%�1� �
�� � ��
���jQ�WHI�
�dg� ��=@�
«ib�S_(5"K-R:5*K6g(W2FL�+76g(5SIL1+.-a¬�A A���:.BXw9� :9v1C�A :9B1v9:��

:?: :��V�Y��§ ���,�@��	 �1��H�A p �GD �/A��1���?;T� � � p d��1����> ��� ��<a<��@< ���������_� ���@�@�������
�������� �?�@�1�1 `��� �&
����� � � �a�,�
 ��<��1� ���
�dgHI=@� �V$1SiZGb�+'(5"
 �6�]�:K-.*,:I�V$1SNSTb�0�-/*�L1+.-/$10�:�A�� A�� @1B��9��A?)�B�A :@B�C1B��
:?: @���EF��§ ���
������ �!;^�gfT�G� ��HI���e�?> ��� ��<�<a�,<o�����@�,��� � �
��a�1������� �1� � �1�������9¤ �aH �&
�� ����jQ� ��=%�@=����
�d��W�@�����g�@�
��a�1��H �1�Kd��������lxk�?tY�g����� �a���@�)jQ�@��A�fN����� �W�,Q�@=@AGD��gtY��>o�
��@�1< �[A ��� �!fT�G�Y�

tu�@� �[Ag�����
�� ��=@A� uL1"`L�OROa(,Og �"`$9*K(5:K:�-R0XPiU@$1"W�G*,-|(50g+.- ��*l�V$�SiZGb�+.-R0XP��_M�$�Oa¦��QAg��� �1�@=
��:9B9���?@?A��
��x`�iEFA :@B�B+@X�

��� � �a��� ���Q~ �[� �
:?:�A���EF�G;T�g§i�
 � ���@�Kd
9�!���@��HI��<a�
�� �
�d��@� �%!�1m
�d��\�g��=`�HIHI�
�����\D ���g�@�,��=������X�@�,=%= ��� ����@<���
�� � ��< ��� ���
�d�HI=@��> ���
uxK�F��J%�
2~}�$1b�"K0�L�Oq$�0?2FL1+."K-�I�u0�L1O]1:�-R:\L10�8N�#Z�Z�O -/*�L1+.-/$10�:�A

:�A�� ��B?B��Xv A1B�A :9B1B+@��
:?:�B���EF�G;T�g§i�
 � ���@�Kd
9�!���@��HI��<a�
�� �
�d��@� �%!�1m
�d��\�g��=`�HIHI�
�����\D ���g�@�,��=������X�@�,=%= ��� ����@<���
�� � ��< ��� ���
�d�HI=@��> ���
ux%xK�F��J%�
2~}�$1b�"K0�L�O�$10�2FL1+."K-�s�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A

:)����:9�9����C�A :@B�B?B��
:?:)�X�q���g; �1� � 	g�g=%�Kde��2�b�O +.- ���#"K-/8N24(5+76�$981:^L10G8s��ZQZ�O -.*KL�+.-/$10g:��c�����������1� ��nV� ��<�� ��Agri�'��¢�� � � A

:9B�C����
:?:9v��q���g; �1� � 	g�g=%�Kde��JK+'(5"`L1+.-RM1(^�G$�O b�+.-/$10F$`Uu©�L1".PX(\©�-R0�(%L1"W�g]�:�+'(5SN:^$`U�� �,b�L1+.-.$10g:��c�����������1� �

n�� ��<�����AGr
�'��¢�� � � A :@B�B B��
:?:)wX�V>q��tY�X; �1<�HI��=@� ��-R0g-R+'(� $W-7S_(50g:�-/$�0�L�O �g(%*,+|$1"\�1Z�LQ*K(5:K�!�����������1� �#nV� ��<�� ��A�ri�'� ¢���� � A :9B��1C��
:?:9C����[��; �1HIHI�1� � �1���!tY�����5d ������	�� �9�?� � � �a�,�
����@���I�1� �N=%d������ �!HI�@HI� �%_HT�g<
��������X�@�@=%=%���9�

���@�Kdg����� ��<�tu�@��� �
uC1B�� @ B�A�tux`� p �[A�r\�i�����
HI�@= ���,=%� �����Kd��@�@�
�� �9AGE?�1�[�

i� ���@<�� p �Y��A
:9B�C1B��

:?:9B��V�
�G;
�@� � ���a� � =%��� �1���?t^��D��@<��1� �[�3�u� ��HI�����)jQ� �_=%���@�
� ��< ��� �1�gd!� �&�
��
����1������� ��<��1� ���
�dgH
mR� �
H �1���������^� �&� �1<�<��@<o�@�1HI�g�
 ��
�������=@�����,�5d������ �1<�tu�@��� �
i���urifWB @){ :�B�v)�Agh p { B)Q�XA
���1�������Nr ��
��������1<oD �1	���� ��
�� �����@=@A��
<�	g�g¡���� �K¡X�g��AQrWEFA :9B�B @��

:�@?)���EF�GtY��;
�@=�
��@���@=��1� �!���gDV�G�
����,m7�@<.�cE?�
�d�� ��=��1mq�,���1 k��� ��
���� � � �����@�
�=�mR� �
=%��<�j �����s< ���g�����
=`�=�
��,HI=@�4}�$1b�"K0�L�Oo$`U
�u(5:,(%L1"%*K6�$`U\+76g(W«WL1+.-/$10GL�O[��b�"%(%L1b�$`UW�g+|L10G8QL1"`81:�A����@�
��a�1�3�
A
BQB�� B)�B)�+B+A1v�A :9B�� @��

:�@�:1� p �G; � ��=%�Kde�3«\b�SI(5"5-/*�L�OV�V$1SiZgb�+|L�+.-/$10F$`UiJK0g+'(5"K0�L�O�L10�8 � �1+'(5"K0�L1O���O�$ ��:������1dg�?� �a<��,�1� ��������=@Agr
�'��¢�� � � A :9B�C1C��
:�@ @X�V�^�G�[��;i�1�g=%�@d���<���� �9� ¨e6g(%$1"K]?$kUi2cL1+."5-.*5(5:W-70?«\b�S_(5"K-/*�L�O��u0�L�O]�:�-R:��3��<�� ��=����@<�<o>��g	e� p ����A

����d��g=%����A p yTA :9B1v?B��
:�@?A��V�i������t^��;
����d��@=@A�t^�GEF�G��� ���@�g�,��A ��� �!���[yT��; ��<�<¡X���a=�
9��D �&�����,{|=%� ��<a�^jQ�@�
�� �����@� ��aHI��< �a� �
u� ��<��@�g<���
����1�g=��a�?=%��< ����HI�@�5d��1���a�,=���� � p � �9 �
{kE�> � B�Cs��
���< �a� �a���_�����

�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�
�=@� �V$1S
ZGb�+'(5"\24(5+76�$981:W-R0?��ZQZ�O -/(�8T24(%*K6�L�0g-/*,:^L10G8
��0XP1-R0[(�(5"K-R0�P1AGv9:�� @�:)�9��@ B�C�A :9B1CQw��

:�@ B�� �s�g; � �1�������u81M�L10G*K(�8��V$1SiZgb�+'(5"\�u"`*K6�-R+'(%*,+.b�"�(��-R+76I uL�"%L�OROa(,OG �"`$�P1"%L1STSN-R0XP1��E?�^§ � ���
; ��<�</Agri�'�z¢�� � � A :9B1B A��

:�@��X� �s�G��	���<a�1�e��> ���) `�@�
��a�1��H �a����H �a����
������!HI�
�dg� ��=#mR� �u�����g=`�HIHI�
�����
<������ ���u=`�=�
��@HI=@�?����1�g�������9A�D ���g� �&�i�u< ���@	 � � �1��� �
�=u�
�g��< �a����
�������=@�
:�@1v�� �s�G��	���<a�1� �1���?;T�g� � ��� � ���u� �1<��=��=��1mq=%�1HI�WjQ�@�
������,¤
� �1����<��&
��a�1�3HI�
�dg� ��=#mR���
=%�1<�j �����

=`�=�
��,HI=��1m�< ���g� �&�
�@¡�����
�������=@�c«ib�S_(5"K-R:5*K6g(W2FL1+76�(5SIL1+.-¬�Ag� �����@=
w?A9��C1B�A :@B�BQ�X�
:�@�wX� �s� p �g��� � ��� �!fT��EF��¢��1�g������§i�@�g� � ��< �a�,� ���@���� `��� ��
������ � �����@�
 �1�,�@�@<�� � ��
����1�3�1m

�g����=`�HIHI�
����� �1	�<a� �
�� � ��
���jQ�YHI�
�d�� ��=@�?©�-R0�(%L1"i�
O PX(@ª,"%L!L10�8I-R+.:
��ZQZ�O -/*�L1+.-.$10g:�A
A?B���:9�1B)� :9B B�A :9B1C)��

:�@1C�� p �����1dg�g=%�1�e��«\b�S_(5"K-/*�L�O[��$�O b�+.-/$�0g:^$`Uu �L1"5+.-.L�O�$\- ,i(5"%(50g+.-/L1O ���,b�L1+.-/$10�:^ª,]I+76g(!��-R0�-R+'(
��Oa(5SI(50g+V2F(5+76�$981� p ��HN	������ ���Whi����jQ� ��=�
kl> ���@=%=@A p ��HN	 ��� � ����A�h �sA :@B�CQwX�

:�@1B���yT��§T�g����d��g=%�1�eA p �g�^�gE ���@�Kdg�@<�< �.A �1����§T�G> �1�g<.��>o��<���g��H ����<e� ���@�@�������
��������a����=�mR���
�@���� `��� ��
���� � � �����@�
u� �1<��@��<���
�������=@� ��J%�u2~}�$1b�"50GL�Oq$10?«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:�A @?)�� A1v+@9��AQw�v�A
:9B�C?A��

�[�a� ��� � �a��� ���Q~

:�A)������ �����@�@H �&�����3�u�����,� (�1d�� �
�������� (�1=%�g���sjQ���!=`�=�
��@HI�@�l<������ ����� � ��<������Kd��g���1�@�e����b�OROa(5+.-R0
-70g+'(5"K0�L1+.-/$�0�L�Oq8Q(^O�� ��*KL�8 �(5SN-|(#Z�$�O�$10GL1-R:,(N8X(5:i��*,-|(50G*5(5:T(5+q©o(5+.+."�(5:�A���� �1�@= A����@��AQ�1w�A :@B AQwX�

:�A9:�� p � ���1H �&
�d ��� ���Y�G� �1HI�@d����������) `�@�
��a�1�3HI�
�dg� �ImR���i=%�1<�j �����s�g�1�g=`�HIHI�
�����i< ���g� �&�
=`�=�
��@HI=��1��HN��<
��a� ���X�@�@=%=%����=@�c uL�"%L�OROa(,O��V$1S
ZGb�+.-R0�P1AgB�� @1B�:5��A9: @XA :9B�C1C��

:�A+@���tY�GEF� ���&���e��tu� ���g����	���< �
k �1HI�1���T�@��HT	���� �&
�� �����1<������1	g<��@HI=@�!xk���V$�SiZ�Oa(�1-R+.]l$kU
�V$�SiZGb�+'(5"_�V$1SiZgb�+|L�+.-/$10g:�A���� �1�@=uCQ�9� :�) B���>�<a�,����H > ���@=%=@AGr
�'�z¢���� � A :@BQw @X�

:�A A��V�i�gx5� ��������=%deA�rT� �s�gE � ��=%�,�eA ��� �?§T�g;^�gtu� � ��� ��������E �&
����¤?HT�g<
����g< ��� ��
������?	�� ��� ���1� ��<a=
����j��@�
�� ���)� �&� �1<�<��@<�� ���X�@�@=%=%� ��=@�c�e�@�5d������ ��<etu�@��� �
�h p hifNAgD ��� ���@���@�
D ��jQ� ��HI� ���Wr ��
��������1<eD ��	e��AGD ��jQ� ��HI� ���1A p �YA :@BQw��X�

:�A?B���fT����� �W� ��=%d����W�3�#dg�������@��HI��<a�
�� p dg�1<a�,= � �e�@���� `��� ��
������ � � �a�,�
uHI�
�d�� �lm7� �
�dg��
�� � �&
���jQ�W=%��<���
����1�3�1mq=`�=�
��@HI=���mq< �a��� ���u�9¡X����
�������=@� }�$1b�"K0�L�O�$`Us�V$1SiZGb�+|L1+.-.$10�L�OG �6X]1:�-/*,:�A
@�v�� B+A9��v���A :9B�w1C��

:�AQ����fT�G��� �W�5X�@=��1���l����fN�g§ �������e�3���@��HI��������=%���?�1m ����H � ��� ���@�@�1HI����=�
������
��,�5d����a¡X�g�@=
m7� �
�@<�< �a�
����^�����
����1< �����[� ���,�
�����<��9¡X� �&
������g= ��� �
�d���� ��� �&� �1<�<��@< ��HI�g<��@HI�@�
 �&
��a�1�e����J%�u2
}�$�b�"K0�L1Oq$10���*,-|(50�+.- ��*TL10�8I�g+|L�+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1AgC � @?�5� =�:@v�v9�X=�@?) @�A :9B1CQwX�

:�A�v���fT�G��� �W�5X�@=@A�¢N�g��� � ��A��1���?fN�g§T��� ���gdg<��&�9� Y1SIL1-70 �R�
L1:,(%8s �L1"%L�O7Oa(,O -R:�S�L10�8T �"`$Qª@Oa(5S
$^(%*K$�SiZ�$1:�-R+.-/$�0�24(5+76�$981:W-R0 �V$1S
ZGb�+|L1+.-/$10GL�O���*,-/(50�*K(TL10G8%�#0�P1-70[(�(5"5-70�P1�c��x`�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1BQ�X� � p ����mR� ���@���@�Y�����X�@�,� �������1=��5�

:�AQw��VD���¢��e� �W�1<a��
���<������ ��� �!�^��¢�����¢�� ���,H �a���?yi� �Tm �1H ��<�?��m
*���1{|<��@jQ�@<������@�,��� � �
��a�1�������1=
��m
�d������g�@�1HI�g<��
��\	�<a�X� � m��1�
�� ����� ��
����1�
'���������$1M9-|(5+#}�$1b�"50GL�Oo$`U
«ib�S_(5"K-/*�L�O[�u0GL�O]1:�-R:WL10�8
2cL1+76g(5SIL�+.-/*�L�O�2F$98X(,O -70�P1A :�� @1B?A)��A @?)�A :9B�C1v��

:�A�C���EF�G�^� � � �1=%����=%�@<�= � � �o�
���</�c�#ZQZg"%$��1-RSsL1+'(^�G$�O b�+.-/$10g:W$`Us�oZ�(5"%L1+|$�" ���,b�L1+.-/$10�:K�
�4��<
�� ��=`{|ri��� ��d��1�qAG§ �������������@��A :9B�w @X�

:�A�B���n^� �W��H ���9A��^�g§ � ��H ��Ag�^�G§i�g��
 ��A ��� �?§T� ������ ����=@�� uL1"`L�OROa(,OV�V$1SiZGb�+.-R0XP1�3���,�1 ��H ���p ��HIH ������=@A�tu� � ���X� � p �
kXA p �^A :9B1B?B��
:.B+)�� p �GD ���g�@�@�1=@�3�u� �
�� � ��
����1�3HI�
�dg� �ImR���
�d��\=%��<���
����1�3�1m
�d��\��� ���@��j �1<��g�W� ����	�<a�,H �1m

< ���g����� �����[� ���@�
����1< �1��� ���
���� � ��<������ � ��
�� ��=@� }�$1b�"50GL�Oo$`Ui��(5:@(%L1"`*K6c$`U\+76g(\«YL1+.-.$10�L�O
��b�"%(%L1bc$`U\�g+|L10G8QL1"`81:�A BX��� @1���9��@1C @�A :9B��?)��

:.B :�� p �GD ���g�@�@�1=@� p d��@	X�=%d��@j_����<���g�1H � ��<�=����
�d��\=%��<��
��a�1���1m�<��&�����,{|=%� ��<a�^< ���g� �&�
=`�=�
��@HI=@�
x'�3 #"%$9*K(�(%81-R0�P1:T$`U\+76g(\�^��2�A�� � �1�@= : @ B)��:�A A�A :@BQ�?@��

:.B�@�� p �GD ���g�@�@�1=@������<���
������?�1m�=`�=�
��@HI=��1mo<������ ���
�9¡X� �&
��a�1�g=�	X_H ������H ���@� � �
�� � �&
������g=@�
}�$�b�"K0�L1Oq$`U
�u(5:,(%L1"`*K6F$`U\+76g(\«WL1+.-/$�0�L�O���b�"�(%L1bc$`U\�g+|L�0�8QL1"`81:�A BQB�� A A)���?A�A :9BQ�?@��

:.B+A��V>o�gDe�9� �1<�<��@���3f\�1H � ��� ���@�@�1HI����=�
�������HI�
�d�� ��= �����@�1HI�g�
 ��
��������1<[HI�@�Kd �1�����@=@�
�V$�SiZGb�+|L1+.-/$�0�L�O�2F(�*K6�L10g-/*,:u�u81M�L10G*K(5:KA :+� @ �5��:�@�:5��@ @)�A :9B1B?B��

:.B B���tY�gDe�@���@����x'� ���@���@� ���@�
#=%�
u��� ��� �������1=um7� �u� �&� �1<�<��@<�H �&
����¤lm �1�
�������� ��
�������=i	X?§ �1��=%=� ���
�,<���H ��� �&
������e�3 uL�"%L�OROa(,OV�V$1SiZgb�+.-70�P1A :�)���:9w�w9� :9B�:�A :9B1C�B��

:.BX���V���[§T�gDe�'� ��=@A��u�g����>o�,
�����A ��� �!�^�g>o�
�dg�,�e�?��m���=�
 ��< ��� ���
�d�H�m7� �����@� � ��� �������s=%������=%�
H �&
�����@�@=�mR���i����� �1<�<��@<�m��1�
�� ����� ��
����1�g=@� ��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O
�V$�SiZGb�+.-R0XP1A�v���:?:�BQv9��:?:)w?A�A :9B�C1B��

:.BQv��V���[§T�gDe�'� ��= �1� �l;T��fN�g� ��HI�������#d�����HI� �1�
��1mqd���� � � �����W=%� �&

�� �%{ � �&
�dg� �
����=%������=%�
§ ���g=%=���1�3�,<���H ��� �&
������e�F��J%�u2~}�$1b�"50GL�Oq$103�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A
B�� A)?B)��A�: :�A :@B�C�C��

��� � �a��� ���Q~ �[�a�
:.BXwX���[�GE ���� �L1"`L�OROa(,Oeª@O�$9*K¬YZG"�(%*�$10G81-R+.-/$10�(%8��Y"K]�O�$�Ms:�bgª,:/Z�LQ*K(^SI(5+76�$981:VU@$�"
 uL1"K+.-/L�O

$W- ,
(5"�(50�+.-/L�O-���,b�L1+.-/$10�:���>Vd�� fN��
�d��@=��=@Agfi�@� �&�
�HI�@�
��1m p �1HI�g��
�� �
�������@���@��A
E �a���g� ������< ��=@A�E?rTA :9B1B A��

:.BQC��V�i���^�gE ���
��,���[�@<.�3�u� ���g�,��HI�g<��
��
m��1�
�� ����� ��
����1�
��,�5d����a¡X�g�im7� �u����=�
���jQ�������G���
��W< ���g� �&�
=`�=�
��,HI=@��2FL�+76g(5SIL1+.-.*,:^$`Us�V$1SiZGb�+|L1+.-.$10g:�A A B�� BXw A)��B�BQwXA :@B�C?)��

:.BQB��V�����Y�GE?� � k� ����� � �1� �l;T�g�^��j �1� ��� �un�����=�
9���u� �
�� � �&
��aj��W=%��<���
������?HI�
�dg� �_mR� �u< ���g� �&�
=`�=�
��,HI=��1m ��d����Kd
�d��W�@�X� � �����@�
uH ��
����¤ ��=��N=`�HIHI�
�����WE!{|H ��
����¤[��2cL1+76g(5SIL�+.-/*,:^$`U
�V$1SiZGb�+|L1+.-.$10g:�A A�:+��:�A�w �5��:�B�C)� :9v+@XA�:@BQw1w��

:9�?)���§T�GD���E ��<�<�� �9A��[��;^�G���,����A����g�#d�����=�
�����A ��� �?�[�g�^��n �9j �1=��=@�3�u��
��1H ��
����\HI�@=%d
� ���
��
���������������xk���Y�g§i�@� ���1��A[���G§ ��<a	�� �
9A �1���?���gD ����Ag� � �
�� ��=@A��1Z�L1"K:@(\2FL1+."K-�
�V$1SiZGb�+|L1+.-.$10g:�����"%L5Z�6 ¨e6g(%$1"K]NJK:K:�bg(5:^L10G8s�
O PQ$1"K-R+76�ST:�A :9B1B A��3x%E���n��1<a��HI�@= ���
E ��
�dg�,H ��
����@=��1���?x
�=��u�g�g< ��� �&
��a�1�g=@�

:9��:1��rT�GE?�g� � =� � ��� �[������<�j �a���s=%� �&��=%�W=`�HIHI�
�����i=%�
�=��1m�< ���g�����u�9¡X� �&
��a�1�g=�	X
�����@�@�1� � �
����1�g� �?�,���1 k��� ��
���� � � �����@�
uHI�
�dg� �[�3�^��2 ¨g"`L10g:5LQ*,+.-.$10g:T$10�2FL1+76�(5SIL1+.-/*�L�O
��$`U5+���L1"%(5A�v�� @)�v9�9@�:@B�A :9B1C)��

:9� @X��rT�gEF�gr �1�Kd
���� �1<.�c� O�9)¬��kL96g(%LQ8!M�L1"K-/L10�+�$`U\+76g(
©�L10�* �9$1:i�
O PQ$�"5-R+76XS�L10�8I-R+.:YL5Z�Z�O -/*�L1+.-/$10
+|$_+76g(_¥#b�L1:�- �.23-R0g-RSsL�Og�u(5:�-/8�bgL1OeS_(5+76�$98iU@$1"i0�$10 �.£Y(5"5ST-R+.-/L10FO -R0�(�L�"\:�]1:�+'(5SN:��c>�de� fN�
�dg�@=��=@A��u�g��<���� �?E ��
�d��@H ��
����@=@A p �1HT	��������1��A :@B�B�:��

:9�?A��V���gy �
���� ���?� � �����@�
 ��HI�g<��@HI�,�
 �&
������_�1m��@� �
 � ��� �
�� � ��
���jQ�\HI�
�d�� ��=@����J%�
2 }�$�b�"K0�L1O�$10
��*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A�B�� C�C+@@��C1B9:�A :@B�C1C��

:9� B��V���[y �
���� ���3y � ��� �������1=�mR� �u�@�1�1 k��� �&
���� � � � ���@�

� ���@�@�1� ���
�������������=@�F��J%�u2~}�$1b�"50GL�Oq$10
��*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A :�@�� �1v��9���1C+@XA :9B�B�:��

:9���X�V���[EF�Gy �
���� ���cJK0�+."%$981b�*,+.-/$10c+|$s �L1"`L�OROa(,OeL10�8��g(�*,+|$�"^�G$�O b�+.-/$10F$`Uu©�-70[(%L1"W�g]�:�+'(5SN:��
>V<��@���gH�> ���@=%=@Agri�'�z¢�� � � A :9B�C1C��

:9�1v��V���[EF�Gy �
���� � �1� �lt^�G§T��n�� ����
9������<���
������?�1mq�����
����1< �����[� ���@�
����1<��9¡X� �&
��a�1�g=����?jQ�@�
�����1� �!� ��� ��<�<a�,<��@�1HI�g��
�� ��=@�F��J%�
2 ��(5M9-|(��A @1w���:�B�B)�9@ B+)�A :@B�C����
:9��wX��yT��yi=�
�� ��	X �1��� � � � <���
��@j�� $W-R"%(�*,+�24(5+76�$981:VU,$1"W��Z�L1"K:,(W2FL1+."K-/*K(5:��������������1� �un�� ��<�����A

ri�'�z¢�� � � A :9B�C?A��
:9�1C�� p � p �g> � � ����� p ��HI�g�
 ��
��������1<�j �&�����1�
�=��1m
�d��WD ���g�@�@�1=
HI�
�dg� �lm7� �
�dg�i��� ���@��������	�<��@H��

}�$1b�"50GL�Oq$`U\+76g(iJK0g:�+.-R+.b�+'(N$`U
2FL1+76�(5SIL1+.-/*,:^L�0�8I-R+.:
��ZQZ�O -/*�L1+.-/$�0g:�A :�)�� AQw A)��A1C9:1A :@BQw?@��
:9�1B�� p � p �g> � � ��� �1����EF�G�^�g�����g� ��� ��=@������<��
��a�1���1m�=%������=%����� ���'�G���
��\=`�=�
��@HI=��1m�< ���g� �&�

�9¡X� ��
����1�g=@�4��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :�@�� v9:9w9�Xv+@ B�A :9BQw1���
:@v)��V�
�Gr^�g> �&��<��

9� ¨e6g(W�g]�SNSI(5+."5-/* ��-�PX(50gM�L�O bg(\ #"%$Qª@Oa(5ST�3> ���@�
����@�W; ��<a<.Ag�V����<��'���X� �p <����[=@A :9B�C?)��
:@v9:1�V�
�Gr^�g> �&��<��

9AGfN��tY�G� �9�<�� �9A��1��� � �����gD ���e�3��<��X� � { �1dg��� ��D �1�g�,�@��= �1< �������
�dgH mR���

�g����=`�HIHI�
�����iH ��
�����@�,=@�c2FL1+76�(5SIL1+.-/*,:^$kUI�V$�SiZGb�+|L1+.-/$�0gA�B?B���:�)��9� : @ B�A :9B�C����
:@v+@X��fN�G>o���1�@�@H ��� ��� �?;^��t �1�Kd�m7� � �[�3�#dg�W����HI� ����� �1<[=%��<��
��a�1�3�1mq�,<a< ����
���� �1���!����� �1	��1< �a������[� ���@�
����1<��9¡X� �&
��a�1�g=@�4}�$1b�"50GL�Oq$`U\��J%�u2�A A�� @�C)��B9:�A :@BQ���X�
:@v A����[�g> ��=%=��1���
�� � X�c��Z�L1"K:,(W2FL1+."K-�F¨[(%*K6�0G$�O�$�P1]����
� � ���@H ���W> ���@=%=@Agri�'�z¢�� � � A :9B�C B��
:@v?B��V���gD >o�X��<�� �1���?����EF��y �
�� � ���3E?�g<
����@��<����\x p�p §�HI�
�d�� ��=#m7� �
jQ�@�
������@��HI����
�� ��=@�

��J%�u2 }�$�b�"K0�L1Oq$10?«ib�SI(5"5-.*KL1O[�u0�L1O]1:�-R:�A�@ B���:�A�B?B)��:.B :9C�A�:@B�C�w��

�[� � ��� � �a��� ���Q~

:@vQ���V�Y�G>o��
�dg�@��Ag;^��fN��� ��HI���eA���� �#�s�g>o�GD �����e��> ���
��
��������a���I=%� �&��=%�WH ��
�����@�@=�� �
�d
� ���1�@��jQ�@�
�����=
��m � � ���gd�=@�4��J%�u2~}�$1b�"50GL�Oq$10?2cL1+."5- �I�u0�L�O]�:�-R:WL�0�8N�#ZQZGO -/*�L1+.-/$10�:KA
:?:�� B+A?))�+BX� @XA :9B�B?)��

:@v�v��V���[�[��> ���@�@H ���@���a�,� � �.��E �&
����¤!=�
���g�
���� �1< �1���1<��=��=
��mq=%�g	�=�
���g�
�� ���@=@�c�uSI¦[JK0g:�+'¦��u(5"%$X¦
�i:�+."%$X¦�}�¦aA :���:�A1C)��:.BXwXA :9B�v?A��

:@vQw��V��� �s��t
� � �[��yi�
�dg�\HI�
�d�� �l��m��@���� `��� ��
������ � �����@�
�=�mR���
�dg�W=%��<��
��a�1���1m�<��&�����Y=%� �&��=%�
=`�=�
��@HI=���m�< �a��� ���u�9¡X����
�������=@��xk�?��� �s��tu������A�� ���
����9A�©�L�"/PX(^�1Z�L1"5:,(^��(5+.:^$`Uu©�-R0�(%L1"
���,b�L1+.-/$10�:�A�� �����@= @?A�:5��@�� B����
� � ���@H ���W> ���@=%=@A :9BQw�:��

:@v�C��V�i�G����t ��j�< �a��� ¨e6�(_��6g(@ª,]�:`6g(5MT u$1O]10G$1SN-/L1O : �XU5"`$1S ��ZQZG"%$��1-RSIL1+.-.$10 ¨e6�(�$�"5]I+|$N�
O PX(@ª,"%L
L�0�8N«\b�SIªK(5"l¨e6g(%$1"K]1�3����� �a<��, �1���������g=@A�ri����¢�� � � A :9B1B)��

:@v�B��V��� �^��t
�1��¤[�_�
�,�@�@<�� � ��
����1�?�1m
�dg�
����
�� ���@���� `��� ��
������ � � �a�,�
#	� ���,� �
�dg� ���1� �1< ��� �&
��a�1��mR���� ����H ����� ���,�@��HI���1=�
����1�3HI�
�dg� �ImR���
=�
�����
���� ��< ��� ��<��=��=u������	�<��@HI=@�?x'�����1�X p d��1���� �?tu��<���� ��§i<���� ���g= � �.A�� � �
�����=@A� #"%$9*K(�(%81-R0XP1:N$kUW+76�(!¨e6�-R"`8NJK0�+'(5"50GL1+.-/$10GL�O���]1S
Z�$1:�-Rb�S
$�0�$Y$1SIL�-R0"$T(%*�$1SiZ�$�:K-7+.-/$10324(5+76�$981:��V£W$1b�:�+|$1032FL1"%*K6?� ���/�Q�3�����X�1�G��xk�\EFA
>�d���<�� ���@<��gd�� ��A[>[�^A :9B1B)��

:9w?)��V�Y�gtu�gd����lxkHI��<a�,HI�@�
 ��
������ �1=%���@�
�=
��mq	 ��� �?D �1���@�@��= �1< �1� ���
�dgHI=�mR���i�,��HI�g�
 ��
������!�1m
� ���1�@��j ��<��g�@=u�1mq<��&�����Y=%� �&��=%�^=`�HIHI�
�����uH ��
�����@�@=@��2FL1+76g(5SsL1+.-/*,:^$`Us�V$1S
ZGb�+|L1+.-/$10�:�A
A?A�� v�C?))�Xv�CQwXA :9BQw�B��

:9w�:���;^�gtu��
���=%d��1�g=%� �9���#d��@� �%!�1m ��� � �����@�
uHI�
�d�� ��=@�lxk�3�u(R��0[(%8IJK+'(5"`L1+.-RM1(W24(5+76�$981:VU@$1"
�V$�SiZGb�+|L1+.-/$�0 $`U\+76g(Y��$�O b�+.-/$10FL10G8_+76�(�#-aPX(50gM�L�O bg(5:^$`U\��(,O U �.��8k&9$1-70g+q�
$1b�0�8QL�"5] ��L�O bg(
 #"%$�ª@Oa(5SN:�AG��� ���,=0@ B���B�B���x'�g=�
��
���
��i�1m��u�g�g< ��� �?E ��
�dg�,H ��
����@=@A � �������KdeA�� � � � d (���g=%� �
nV� ��<�� ��A�� ��=%�@<�{k�
���

�� ���
9A :9BQ��B��

:9w @��q¢T��� � � ��� � �%�<��)j_=%�g	g=%���1�@�iHI�
�dg� ��=#mR� �
=%��<�j �����s<��&�����Y�g��=`�HIHI�
���a�u< ���g� �&�i=`�=�
��@HI=@�
2cL1+76g(5SIL�+.-/*,:^$`UI�V$1SiZGb�+|L1+.-.$10gA�AQw���:�)Q�9� : @�v�A :9B1C9:��

:9w?A��q¢T��� � � ���3�#d��WD ���g�@�,��=u	���� �
�d�� ���1� ��<���� �&
������ �1< �������
�dgH �1���?�
�d�� ����	�<��a¡X�g�W� ���� k�@�
������
HI�
�dg� ��=#m7� �
=%��<�j �����s<������1�Y�g�g=`�HIHI�
�����u=`�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O
�u0GL�O]�:K-7:KA :9B�� BQw?)9��BQC B�A :9B1C+@X�

:9w B��q¢T��� � � ����x
�� � ��
���jQ�i=%��<���
������3��m ��� ���'�G���
��i=`�HIHI�
���a�
=`�=�
��@HI=�	X!HI�
�dg� ��=���=�����
���
�dg� �������1<o���1<������H ���1<�=��)jQ� �
 �#� � �a=R k� ���
 ���
�� ��j �1<�=@�c��J%�u2 }�$�b�"K0�L1Oq$10?«ib�SI(5"5-.*KL1O
�u0GL�O]�:K-7:KA @?)�� w�C?B)��C9:?:�A :9B1C A��

:9w����q¢T��� � � ���3> � �1�
��a���1<���=%�W�1mq���1<������H ���1<������,�@�������
�������������=�mR� �
�d��\�@���� `��� ��
������ � �����@�

HI�
�dg� ���c��J%�u2~}�$1b�"50GL�Oo$�0c�G*,-|(50g+.- ��*NL�0�8I�g+|L1+.-R:�+.-/*�L�O��V$1SiZGb�+.-R0XP1AGv�� C�vQ�@��C1C9:�A :@B�CQ�X�

:9w1v��q¢T��� � � ���3D�� �1=�
u=�¡X� �&���@=�����<���g�1H � ��<�=����
�d��\�@�1HI�g<��,¤l�g<��1�����1���
�dg� � ����=%�\mR���i=%�1<aj �����
=%������=%�Y�g�1�g=`�HIHI�
�����i< ���g�����u=`�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A
@ B���:)�1�9� :9v�B�A :9B�C�w��

:9w�w��q¢T��� � � ����yi�
�dg�\D �1���@�@�1=
HI�
�d�� �_m7� �u=%��<�j �����I=`�HIHI�
�����i< ���g�����u=`�=�
��@HI= � �
�d�=%�@jQ� � ��<��� �1d
%{|d��1� �l=�����@=@��2FL1+76g(5SsL1+.-/*,:^$`UI�V$1SiZgb�+|L�+.-/$10g:�A BQC�� v���:5�Xv�v @�A :9B1CQw��
:9w1C��q¢T��� � � ��� � �%�<��)j_=%�g	g=%���1�@�iHI�
�dg� ��=�����=%����� ���@��HI����
�� ��=@�c��J%�u2~}�$1b�"50GL�Oo$�0

�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�)���: @)))� : @ A+@�A :9B1C�B��
:9w1B��q¢T��� � � ������>[�
ti� �Wx`�i����	 ��=�a�
��X�1< � �
�mR���i=%������=%�WH ��
����¤l�@�1HI�g��
 �&
������g=@�?���@�Kdg����� �1<

tu�@�����
iB?)�{1@?)�AGtu�@=%� �&���5d�x'�g=�
��
���
��
mR� �
� ��j �1�g�,� � p �1HI�g�
�� �
�������@���@��A�r\�i�����
HI�@=
tu�@=%� �&���5d p �@�
�� �9A�E?���[�
i� �a�,< �[A p �YA :@B�B?)��

:@C)��q¢T��� � � ���c«ib�S_(5"K-/*�L�OG24(5+76�$981:VU@$�"
©�L1"/PX(��-aPX(50�M�L�O bg(i #"%$Qª@Oa(5ST:���; ��<�=�
�� � �3> ���@=%=@AGr
�'�
¢�� � � A :9B1B+@��

��� � �a��� ���Q~ �[�t�
:@C9:1�q¢N�G��� � ���?� �G�5¤���	�<a� �a���g� �%{|�1��
�� ��� ���@�@�������
�������� �3§WE?t
��� ��< ��� ���
�d�H��4��J%�u2 }�$1b�"K0�L�O

$10���*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1SiZgb�+.-70�P1A :.B�� BQv�:5�+BQv�B�A :9B1B A��
:@C+@X�q¢N�G��� � ���!; � ��d�<�?����� �1<�<��@<e�����@�@�1� � �
����1�g� ��=�mR��� �1�@�g� � �1<�=%������=%�WH �&
���a�,�@=@��x'�3§T�G§i��<��g	�A

EF��De��= � �a��A��1� �!�^�G§ ���@�@��	 ���gH�A�� � �
�����=@A[��(%*K(50g+���81M�L10�*K(5:Y-R0?JK+'(5"`L1+.-RM1(W24(5+76�$981:���J%2��
�g$1O b�SI(5:\-R0?2FL�+76g(5SIL1+.-.*,:^L10�8NJK+.:
��ZQZ�O -/*�L1+.-/$�0g:�AGjQ�1<��gHI�\v?)�Ag� � �1�@= :9vQ�@��:@B�B��[������������� �
n�� ��<�����AGr
�'��¢�� � � A :@B�B B��

:@C A��q¢N�G��� � ���!x`D�h\�i��� �����1<
�d����@=%d���<�� ���g�,��HI�g<��
��WxkDeh�m��1�
�� ����� ��
����1�e�4«ib�SI(5"5-.*KL1OG©q-R0[(%L1"
�
O PX(@ª,"%L ��-R+76_��ZQZ�O -/*�L1+.-.$10g:�A :1� A�CQw@��B)+@�A :@B�B?B��

:@C?B��q¢N�G��� � ���?�
���1<��=�a=���m �1���1HI�@�
�� � � �%�<��)j_=%�g	�=%� �1�,�
��@�5d����a¡X�g�@=@�c��J%�u2~}�$1b�"50GL�Oo$�0
2FL1+."K-�s�u0GL�O]1:�-R:WL10�8N�#Z�Z�O -/*�L1+.-/$10�:�A :9C�� B+AQ�@��B?BQB�A :@B�BQwX�

:@CQ�X�q¢N�G��� � � ��� �3EF��;T�G���Kd��g<
����?§WE?ti���[��� �1�@�g� � ��< �a�,� ��H ������H �1< ���@=�������1< �1< �������
�d�H mR� �
=%��<�j �a���I�g�1�g=`�HIHI�
�����
< ���g�����
=`�=�
��,HI=@�F��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*TL10�8I�g+|L1+.-7:K+.-.*KL1O
�V$1SiZGb�+.-R0XP1A[wX� C��1v9��C�v1B�A :@B�C�v��

:@C�v��q¢N�G��� � � ��� �3EF��;T�G���Kd��g<
����!> ��� ��<a<��@< �aHI��<��@HI�@�
 ��
�������=��1mq� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
��� � � � ���@�

HI�
�dg� ��=@�!xk�l���g���g� �
���� ��	g	��1�eAg� ���
�� �9A�2FL1+76�(5SIL1+.-/*�L�O�L10�83�V$1S
ZGb�+|L1+.-/$10GL�O
24(5+76�$981:W-R03��(5-R:�SN-/* � �5ZGO�$1"%L1+.-.$10FL10�8N�u(5:,(5"KM�$1-R"W2F$98X(,O -R0XP1����x`�iEFAg>�d���<�� ���@<��gd�� ��A�>[�^A
:9B�C1v��

:@CQwX�q¢N�G��� � � ��� �"�s��� ���?f �W§WE?ti���[��� ��� ���@�
u¡����1=��{|H ������H �1< ���@=�������1< �1< �������
�dgH�	 ��=%� �
��� ���g�,��HI�g<��
��i� �
�dg� ���1� �1< ��� �&
��a�1�e�4«ib�S_(5"K-/*�L�O�©q-R0[(%L1"i�
O PX(@ª,"`L ��-R+76_�#Z�Z�O -/*�L1+.-/$10�:�A
A�� A+@�B)��A B+A�A :@B�B1v��

:@C�C���;T�G��� ��� � �32 �(5+76�$98X(5:^8X(�ZG"%$'&)(%*,+.-/$10lZ�$1b�"YOa(5:\:�]1:�+��(5S_(5:^O -R0 �(@L1-R"%(5:Y(5+#0G$10cO -R0 �(@L1-7"�(5:��
>Vd�� fT��
�d��@=��=@AGhi����jQ� ��=�
k_��mVD ��<�<a��:1A�D �a<�<���AG��� �1���@��A :9B�C�:��

:@C�B��V���[� �1<
���A�t^�gE � ���5d��1�����1���,XA��1� ���s� p ������<��,X�?t
����{
���HI�i� �&� �1<��@<�< ��� ��
������ ��� �
=%�5d�� ����<������s�1mq<��X�1�g=@�FJ � � ��¨g"%L10�:5LQ*,+.-/$10�:N$�0��V$�SiZGb�+'(5"K:KA B+)�� v?) A9��v9:�@�A :9B1B9:1�

:@B)��V���G;^�G� �1<
������
��
��1H ��
�� �_�����1	g<��@H =%�Kdg� ���g< ����� ��� � ��� �����
���������mq=`��g�Kd���������� ��
������ ���@<��@
�,�[�@�
�=@�����@�Kdg����� ��<�tu�@��� �
uC�w){1@ @XAGx p �\����A�; �1HI�
�����A�nq�^A :9B1CQw��

:@B9:1�q���g���Kdg�����1��� �9�!�#dg�\� � �����@�
�=%��<���
������?�1mo<��&�����W< ���g� �&�
=`�=�
��@HI=@A ���@=%��<
��a���Tm ����H
�dg�um���H
mR� � A�{ �!>VfW��
 =@AG�1�?jQ�@�
�� �u�@��HI����
�� ��=@�!xk�?> ���X�,�@� ��������=u�1m
�d���:,{|=�
�xk�
�� ������
��������1<
�@��<�<���¡X�����gH����!jQ�@�
���� �1� �l� �&� �1<�<��@<o�@�1HI�g��
������ �����������@�
�� �g���1���g< ��� ��
����1�g=�{#> �&���a=
E �����Kd5:9B1C A�A :9B�C?A��

:@B+@X�q�������5d (�����1�g� �9�F�G*,-|(50g+.- ��*l�V$1S
ZGb�+.-R0�P!$10 �g(�*,+|$�"!�V$1S
ZGb�+'(5"5:��3r
� �
�d�{';
��<�<��1����A�ri�'�
¢���� � A :@B�CQwX�

:@B A���;T�g�^�g���Kd � �����1� �u(5:5L1STS_(,O +'(W2FL�+76g(5SIL1+.-7:,*K6�(W�YªK6�L10�8�O b�0XPX(50gA�j���<��gHI�0@�A�� � �1�@=
:�A A9��:.B+A��4�����������1� ��n�� ��< ����AG��� ��< ���eAG§i� ��H �1�X"�T;i� � ���@<�	�� ����AG§i� ��H ����"�ND�����������A
h � �T�
��1�aA :9C1B)��3� � ��=�
u���g	g< ��=%dg��� ����n ��� �
��,< ��1d ��=%=%�5d ����m
 ��� �ur �&
����%mR����=%�5d��@� ���@�
§i�@=%�@<�<�=%�5d���m
 ��� � (�������5d�Agj���<��gHI� :9��A :9C�w?)�AG�g�e� @1w @9��@1C1v��

:@B?B��V������d � � ��	e� ��-R0�-R+'(N(,Oa(5SI(50g+�L�0�L�O]�:�-R:Y$`U\+76g(^*K$�SiZG"%(5:K:�-/ª@Oa(�#b�Oa(5"YL10G8s«WL1M9-|(5"W��+|$)¬Q(5:
� �,b�L1+.-/$�0g:���>�de� fN�
�dg�@=��=@AGfi�@� �&�
�HI�@�
#�1mV�u� �������1�
��a�,=@A��
 �1��m7� � �[A p �YA :@B�C�B��

:@BQ�X�V�^�G� �����.�?��¤
� �1���1<���
������3j�=@�������) `�@�
����1�3HI�
�dg� ��=#mR� �u< ���g� �&�i=`�=�
��@HI=���mq�9¡X� �&
������g=@�
}�$1b�"50GL�Oq$`Us�V$1S
ZGb�+|L1+.-/$10GL�OoL10G8s��ZQZ�O -/(�8N2FL1+76�(5SIL1+.-/*,:�A @ @�� w�:5��C1C�A :@B�C�C��

:@B�v���nT�G� ��HI����������� �1���?����§ ��<a<��1�����g<��1=@�c�
� �
�� � �&
���jQ�WHI�
�dg� �_mR���
������=`�HIHI�
���a�
=`�=�
��@HI=
� �
�d?HN�g<
����g<�� ��� �1d
%{|d��1� �l=�����@=@�F��J%�u2 }�$�b�"K0�L1Oo$10���*,-/(50g+.- ��*l�V$1S
ZGb�+.-R0�P1A
:9v � B+�5� B9:)w@��B?A A�Ae����<� :@B�BQ�X�

�[�7� ��� � �a��� ���Q~

:@BQw���n^��� ��HI���g� �a��� �1� �!����§ �1<�<������1�g<���=@� p �1��j�� �����@���@�W�����1��� �
����@=��1m�	�<a�X� � §WE?ti��� ��� �
H �&
����¤!���1<������H ���1<�=@�3©�-R0�(�L�"i�
O PX(@ª,"%L?L�0�8I-R+.:
��ZQZ�O -/*�L1+.-/$�0g:�AG�e� �1����� ���9�

:@B�C��V�u�����G��H �
�de�!�
�!���
��aH ��< ����H ����� ���,�@��HI���1=�
����1�������@�,��� � �
��a�1�g� ��m7� ��
�dg� �g���
��
�,<a�,HI�@�
�=%��<���
������3��mq< ���g� �&�i�@<���=�
��a� �
'?� ����	�<a�,HI=@�4��J%�u2 }�$1b�"K0�L�Oq$�0c�G*,-|(50g+.- ��*NL�0�8
��+|L1+.-R:�+.-/*�L�O��V$�SiZGb�+.-R0XP1A :�A�� A�v?B)��A�w1C�A :@B�B+@X�

:@B�B���fT�g�Y�g��H �
�deAX���������g��� ��A��1���!�Y�G� �����.�!��¤
� �1���1<���
�������HI�
�dg� ��=�mR� ��j��@�
�� ��=%�@¡����@�g�,�@=@�
��J%�
2 "%(5M9-|(��A @1B���:9B�B9�9@ A A�A :@B�CQwX�

@))���fT� p �G��HI�1< �&��= � � ��� �?>o�g���G���@�<�� �9���
�?�1��
���HN��H��
�� � �&
��aj��WHI�
�dg� �_mR� �u=%�1<aj ����� ���X
< ���g�����
=`�=�
��,H � �
�d �N=�¡X� �����iH ��
����¤[���#J1¨oA @�C���:9v?A)��:9w1C�A :@B�C1C��

@)9:��V>o�G���1�g�g�,jQ�@<���� p §W�[A��Tm���=�
\D �1���@�@��=`{
'����i=%��<�jQ� ��mR���i������=`�HIHI�
���a�
< �a��� ���u=`�=�
��@HI=@�
��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*NL10�8I�g+|L1+.-7:K+.-.*KL1O��V$1S
ZGb�+.-R0�P1A :�) ��:��5� A�v)��� @XA :9B�C1B��

@)+@���§T�����g�
��'� ���
9��JK0g+."%$98�bg*,+.-.$104+|$N2FL1+."K-���V$�SiZGb�+|L1+.-/$�0g:����
��� ���,H �a�\> ���@=%=@Agri�'�z¢�� � � A
:@BQw A��

@) A��q���G�����
��'� ���
9��JK0g+."%$98�bg*,+.-.$10F+|$I+76g(i«\b�S_(5"K-/*�L�O���$�O b�+.-/$10F$`U
2FL�"�¬�$1M?��6�L1-R0�:K�
> �����g�@�
����3hi����jQ� ��=�
kl> ���@=%=@A�> �����g�@�
����eAgr\��A :9B1B?B��

@)?B��V����D����
����,mR�@<.�"�W� ���g�@<�����<���g�1H ���1<�= �a�!< �a��� ��� �1< �1�@	�� � ��� �
�d���� � �1�g��< �a����
�������=@� � ¦���¦
«WL1+.-/$�0�L�O���b�"�(%L1bc$`U\�g+|L�0�8QL1"`81:��V��ZQZ�O -|(%8N2FL1+76g(5SsL1+.-/*,:W��(5"5-|(5:�A BQB���:K�9@ B�A :9B��1C��

@)Q���V> �&
����� � De�Y� ��<a<��@�1AG¢ ���g��{';
� ��jV��
fi�Wt
�X�@� � A��1� ��E ������� �sn � � � �1=%�@���
fi��H � ����{"���@�@�1HI����=�
�������HI�
�d�� ��=�m7� �
<��������Y< ���g� �&��<�?�@<�< ����
�����
�d����@� ����HI�@�g=���1� �1<
� ����	�<a�,HI=@� }�$1b�"K0�L�O�$`Us�V$1SiZGb�+|L1+.-.$10�L�OoL10�8T��ZQZ�O -|(%8N2FL1+76g(5SsL1+.-/*,:�A A?B�A :@B�B�:�����<�=%�@j �a� �
�������@�g�,�Y>V��	g< ��=%dg� ��=@AG�
HI=�
�� � ���1H��

@)�v���fT�g� �9�<�� �9���u0GL�O]1:�-R:\$`Ui+76g(WO�$9$)¬��'L)6g(%LQ8s©eL10�* �9$1:YL1O PQ$1"5-7+76�SN�!>�de� fN�
�dg�@=��=@A�f\�@�����
�HI�@�

��m p ��HI����
�� �
�������@�g�@�1AG��� � � �@<��,XA p �^A :9B�C?A��

@)Qw��VD��gr^�G� ���,mR�
�d��@�e���
�������9¤ �aH �&
������
�dg�@���% ��� �?����HI� ����� �1<[< ���g� �&� ��< ���@	 � �������,�5d������ �1<
tu�@�����

r
�gHI� ����� ��<��
� ��<��=��=�tu�@��� �
uC1C�{kw�A�E �1=%=��1�Kd��g=%=%�

�=uxk��=�
��
���
��W�1mq���@�Kdg�g�1<�� �1XAp ��HN	 ��� � ����AGE��^A :9B1C�C��

@)�C���;^�G�Y��j ��� ��� �
nV� ��=�
9�?�#dg�W��� �%mR� ��H ���g�@�W��m��oyitV�#t
�
r ��HI�g<��@HI�@�
 ��
����1�g=#mR���
� ���@�@�1� ���
�������� �?�@�1�1 k��� �&
���� � � � ���@�

HI�
�dg� ��=��1�?jQ�,�
�� �u�@�1HI�g��
�� ��=@�3 �L1"%L1OROa(,O
�V$�SiZGb�+.-R0XP1A A�� B�B)����C�A :@B�C�v��

@)�B���;^�G�Y��j ��� ��� �
nV� ��=�
9�?D �&������
��������� �1�����1< ��� �l	g<��X� �
��������� �1�����1<o< ���g� �&�u=`�=�
��,HI=����
j��@�
�� � ��� �!����� ��<a<��@<��@��HI����
�� ��=@�? �L1"%L�O7Oa(,O��V$1S
ZGb�+.-R0�P1AG��� A)?A)��A9: :1A :9B�C�w��

@�:�)���;^�G�Y��j ��� ��� �
nV� ��=�
9�?� ��{ p §W���o�
�
���zm���=�
 ��� �!=%HI�X��
�dg<�l�@����jQ� ��� �����sj ���������
u��m
� ��{ p §�mR���
�d��\=%��<���
����1���1m�������{|=`�HIHI�
�����u<������ ���
=`�=�
��@HI=@�F��J%�
2~}�$1b�"K0�L�O�$10
�G*,-|(50g+.- ��*sL10G8_��+|L1+.-R:�+.-/*�L�OV�V$1SiZGb�+.-R0XP1A :�@�� v A�:5��v B B�A :@B�B @��

@�: :���;^�G�Y��j ��� ��� �
nV� ��=�
���� � p ��nV��� � ��§WE?t
����tY� �Tm �1H ��<�l�1m��g�,=�
�� ��§WE?t
���lHI�
�dg� ��=@�
«ib�S_(5"K-/*�L�O�©q-R0[(%L1"i�
O PX(@ª,"`L ��-R+76_��ZQZ�O -/*�L1+.-/$�0g:�A :1� A1v�B9��A�C1v�A :9B1B?B��

@�: @���tY�G�[��n �&��� ���3� ���
�� ����� �&
��a�1�g= �1� �l�g����H �1< ���@� � �
�� � �&
��aj��WHI�
�dg� ��=@�?x'���
$1b�0G8QL1"K]
 #"%$�ª@Oa(5SN:W-R0"$\- ,i(5"%(50g+.-/L1O-���,bgL�+.-/$10g:�Ag� � �1�@= : @�:K��:.B�@��Ghi����jQ� ��=�
'l�1mo� ��=%�@�1�g=����> ���@=%=@A
E � ����=%����AG��xKA :@B�v?)��

@�:�A���tY�G�[��n �&��� ���c2FL1+."K-�IJK+'(5"`L1+.-RM1(W�u0GL�O]�:K-7:K��> ���,�
����@�W; �1<�<.AG�����1<��'�#�X� � p < ���[=@AGr\��A :@B�v+@X�
@�:�B���n^�gnV�@� � �&
 � � ����=%dg� ���e�!> ���@�@�������
�������� � p ���� `��� ��
��T§ � � �����@�
uHI�
�dg� ��=#mR� �
�d��

�,��HI�����,=%=�a	�<��Wr �9j �a� �\�
�� � �,=��9¡X� ��
����1�g=@�c�uJ%�u��}�$1b�"50GL�O A @�B���:�)1B+@@��: :�))�A�:@B�B9:1�

��� � �a��� ���Q~ �[���
@�:)�X��nT��n��@� � �&
 � � ����=%dg���1�e�!> �&� �1<�<��@< ��HI�g< �����
uHI�
�dg� ��=#mR��� ��� ��� ������1H �����1���g< ��� ��
�������=
�1�

�g�g=�
�����
�������� � ������=@��xk�!fN����� �W�,X�@=@A�¢T��� � � �[A ��� �lfN��§T�g� ����dg<����9A�� ���
�����=@A
$^$1SsL1-R0 �R�
L1:,(%8s �L1"`L�OROa(,O -R:�S�L10G8N #"%$Qª@Oa(5S $^(�*�$1S
Z�$1:�-R+.-/$10324(5+76�$98�:W-R0 �V$1SiZgb�+|L�+.-/$10�L1O
��*,-|(50G*5(TL10�8 ��0XP1-R0[(�(5"K-R0�P1Ag� �����@=
��w@��w B�����x`�\EFA�>�d���<�� ���@<��gd�����A�>[�^A :9B1BQ���

@�:9v���nT��n��@� � �&
 � � ����=%dg���1� �1� �lfN�g����E �9j �����g< ��=@�3xkHI��< �a� �
�=%�1<�jQ� ��=�mR���i���g=�
���g�
������ �_HI�@=%dg�,=@�
}�$1b�"50GL�Oq$`Us�V$1S
ZGb�+|L1+.-/$10GL�O� �6�]�:K-.*,:KA :�)���� C A9��B9:1A :9B�B?A��

@�:)wX��nT��n��@� � �&
 � � ����=%dg���1�eA�;^�gfT�G� ��HI���eA���� ���i�g���g� ���
�d��3��E?x`E?f xkHI��<a�,HI�@�
 ��
������l�1m �
> ��� �1<�<��@<q���g<�� �i����<�jQ� ��mR���uhi�g=�
�����
��������?§ ������=@� ¨e6g(^}�$�b�"K0�L1Oq$`U\�gb)Z�(5"%*�$1S
ZGb�+.-R0�P1A
v���: :9w9��:�AQwXA :@B�B @��

@�:9C��V>q� �s�����gn ���g=%��HI�1��yitV�#;\yWE?xkrTA���� �
�� � ��
���jQ�YHI�
�d�� �_m7� �u=%��<�j �����I=%������=%�W=%�
�=u�1m
=�aHT�g<
 �1���@����=#< ���g� �&���9¡X� ��
����1�g=@�_xk�? #"%$9*K(�(�8�-R0�P1:Y$kUi+76g(��e$1b�"5+76?�g]�SiZ�$1:�-Rb�S�$10l�u(5:,(5M�$1-R"
�g-RSTb�O�L�+.-/$10gA�� �����@= :.BQB)� :)��B��e���X� �a�
k!�1m�>o�
���1<��@�gH������ �����@� ��=��1mV�ux%E���A :@BQw�v��

@�:9B���nT��nT��n��X�,jQ� �����e�?�#dg�W� ����	�<a�,H �1m �N������{'=%�,<�m � �) `� ���
 ���@��� � �1< ��� ��
����1�c��m
�dg�\�,���1 k��� ��
��� � � � ���@�

HI�
�dg� �!d��1=�	��@�@�!�@<���=%� �[� � �g��� �V$1SiZgb�+|L�+.-/$10�L1O�2FL1+76g(5SsL1+.-/*,:^L10G8
2FL1+76g(5SsL1+.-/*�L�O[�6�]�:K-.*,:KA @?A���:.B+A9��:�B?B�A :9B1C A��

@?@?)��V���gDV��� ���5d�=%�����@=%=@��JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10F$`U ��ORO - ZG+.-.*Y��]1:�+'(5SN:^L�0�8N�#ZQZGO -/*�L1+.-/$10�:\+|$_+76�(
«^(5b�+."%$�0����,b�L1+.-/$10�:^$`U
�u(%LQ*,+|$1"\ �6�]1:�-/*,:���> ���@�
����@�W; �1<�<.A�������<��'���X� � p < ���[=@AGr\��A :9B1v�v��

@?@�:1��;T�g����� �1< � � �9�!xkHI��<a�,HI�@�
 ��
������l�1m
�d��^§WE?ti���lHI�
�dg� �!��=�����s;
���g=%�,dg��<���� �
� �1�g=`m7� ��H �&
��a�1�g=@� ��J%�
2~}�$1b�"K0�L�O�$10���*,-|(50�+.- ��*_�V$1SiZgb�+.-70�P1A�B���:)� @@��:@v A�A :@B�C1C��
@?@ @X���T��� �1����A �s�g§ �1<�< �aj �1��A ��� �?tY��� � �1HI<��,X� p x%E3§W���G�u� ���g�@�1HI�g<��
��W���
�dg� �1�����1<

m��1�
�� ����� ��
����1�c� ���@�@�1� ���
�������� �9�3�e�@�5d������ ��<�tu�@��� �
 A1B?B�Agxk�������1���Nhi���aj�� ��=�
k ��

��<��X��H ������
����eAG��<��X��H ������
�����AGxkr^A :9B�B?A��

@?@?A��V���g����� ��

�=�x%x%x5�?���@�1�1 k��� �&
���� � � � ���@�
�
�����g� �&
�� � � � ���@�
uHI�
�dg� �ImR���
�d�� �
�� � ��
���jQ�
=%��<���
������3��m
�dg� ���,=%� ��jQ� � �u=��HN��< �&
�������� ���@=%=%�����W�9¡X����
��������F�G$9*,-|(5+.]!$`Uu
(5+."`$�Oa(5b�S
��0XP1-R0[(�(5"K:Y}�$1b�"50GL�O A @�:�� A?BQ�9��A��?A�A :@B�C�:��

@?@ B���t^��� ����=%=@���
�dg�,� ���
���� ��<��)jQ� ��j ���'���1m � �%�<��)j_=%�g	g=%���1�@�WHI�
�dg� ��=@�!xk�l���G���Kd (�����1��� ��1� �!t^��� � �a=%=@Ag� ���
�����=@Ae�1Z�(�*,-.L�O[JK:�:�bg(T$10�JK+'(5"%L�+.-RM1(W24(5+76�$98�:VU@$1"
©�-70[(%L1"W�g]�:�+'(5SN:�AG��� �1�@=
A A)���1v��[�
���g< ��� �!r
�gHI� ����� ��<�E?�
�dg� ��=@A :9B1BQ���

@?@��X��yT��� ����<a��� �[����D �1���@�@�1=uHI�
�dg� �lm7� � �N�@<���=%=
��m��g����{|=`�HIHI�
���a�u=`�=�
��@HI=��1m�< ���g�����
�9¡X� ��
����1�g=@�4��J%�
2~}�$1b�"K0�L�O�$10�«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :9��� C)�:5�XC9: @XA :9BQw�C��

@?@1v��VDV�g�
��� ����
��������
���g< ��� ��
������?�1mVE�� p ��¢WE�� ��� �!=%������=%�YH ��
����¤
��@�Kdg����<�� ��
��
HN�g<
���{|�@<��@HI�@�
 ��� �%m7� ��<o� ��<��@�g<���
����1�g=@�3x'�3 #"%$9*K(�(�8�-R0�P1:T$`U\+76g(i�
J%�u� �|� �I*�$109U9(5"%(50�*K(��
£Y$10G$�O b�O b	�q£WL ��L1- �V}Qb�0[(^�
�k�Q���#����� �)Ag� �����@= B B?B���BQ��wX�[�
xk�i�^A�r
�'�z¢���� � A :@B�CQwX��> �1��� �
����HN	�� ���
x`�
�u{'CQw9{ : :�B+@){ p >o�

@?@�wX�V���G;^��� �a< � ���g=%�1�e� ¨e6�(\�
O PX(@ª,"%L�-/*!�#-aPX(50gM�L1O bG(i �"`$Qª@Oa(5SN� p < �&���@� �����3> ���@=%=@A�y
¤�m7� � �[A
:9B�v����

@?@1C���yT��� ����� �1���?��������;i� �������3���,��HI�g�
 ��
������!HI� ���@<[��mq� �&� �1<�<��@<o=%��<��
��a�1���1m�< ���g�����
�9¡X� ��
����1�g=@�cJ � � � ¨g"%L�0g:5LQ*,+.-/$10�:T$10 �V$1SiZGb�+'(5"K:�A p {1@1B�� v?A+@@��v A1C�A :9B1C)��

@?@1B�� p �G;T���4�e�?��HN��<
��a�,��<�� �i�gyitzHI�
�d�� �lm7� �
�dg�!�g���
��,{|�@<��@HI�@�
�HI�
�d�� ���c}�$1b�"K0�L�Oq$kU
�V$1SiZGb�+|L1+.-.$10�L�OoL10�8N�#Z�Z�O -|(%8T2FL1+76g(5SsL1+.-/*,:�A A)�� @1C A9�9@�B?B�A :@B�B)��

@ A)��V��� �
�e�lx
�� � �&
���jQ�WHI�
�dg� ��=�	X_=%� �1�,� ���@�@�1HI����=�
������ ��� �!=%��	g=%���1�@�W�@������@�
��������4��J%�
2
�u(5M9-|(��A�A?B�� ��C9:5�Xv9:�A�A[f\�@�,�@HN	�� � :@B�B @��

�[��� ��� � �a��� ���Q~

@ A9:�� �T��¢�������	���� � � ��������{/m ���,�Wj �&��� �&
���������m
�dg�WD �1�g�,�@��= �1< �������
�dgH��c2cL1+76g(5SIL�+.-/*,:^$`U
�V$�SiZGb�+|L1+.-/$�0g:�A[v+@X��:)w1B9�9@)Qw�A :@B�B?B��

@ A+@���fT��EF��¢��1�g�����3JK+'(5"%L1+.-RM1(Y��$�O b�+.-/$10F$`Uu©�L�"/PX(\©q-R0[(%L1"W��]1:�+'(5SN:����u� � ���@H ���W> ���@=%=@AGr
�'�
¢�� � � A :9B�w�:��

@ A A���fT�g>o��¢��1�g����A�tY�G§T�GE?�@<�j ���eAg���g�i�g���1dg�g=%�1�eAg���g���g���g=%=%�1<��

��.A�DV���
��� � �
��1�eA��1���?�������
� �1H ���
9�?�
���g< ��� ��
����1���1mq=%������=%�YH ��
����¤_=%�1<aj�� ��= ��=��,�[�@�
���jQ�W� ���@�@�������
�������� ��=@�4��J%�
2
}�$�b�"K0�L1Oq$10���*,-|(50�+.- ��*TL10�8I�g+|L�+.-R:�+.-/*�L�O��V$1S
ZGb�+.-R0�P1A :�)���:?:9C1v)��:?:9B1B�A :9B�C1B��

@ A?B��VD�� � dg�1� �1���!;^�g����� ��< � � �9�?tu�@=�������1<�=%HI�X�
�d��a���
��@�Kdg���¡X���@=�mR��� �
�� � �&
���jQ�WHI�
�dg� ��=@�
��J%�
2~}�$1b�"K0�L�Oo$103��*,-|(50�+.- ��*l�V$1SiZGb�+.-R0XP1A :9��� @1B�w9��A9: @XA :9B�B B��

@ AQ��� � � � <���
��,j[�?hi=%�W��m �
�� � ��
���jQ� ���'�g�g�@HI�,�
 �a�
�dg�\=%�1<a�
������3�1mo=%� ����=%�W< ���g�����
=`�=�
��,HI=@�
��J%�
2~}�$1b�"K0�L�Oo$10?«\b�SI(5"5-/*�L�O��u0�L�O]�:�-R:�A :@B�� A�C�:5��A1B�B�A :9B�C @��

�y� �����

A
additive projection procedure, 136
ADI, 116

Peaceman-Rachford algorithm, 117
adjacency graph, 71

of PDE matrices, 71
adjoint of a matrix, 7
algebraic multiplicity, 15
Alternating Direction Implicit, see ADI
angle between a vector and a subspace, 130
anisotropic medium, 47
approximate inverse preconditioners, 297

column-oriented, 300
global iteration, 298
for improving a preconditioner, 308

approximate inverse techniques, 375
Arnoldi’s method, 146–157

basic algorithm, 146
breakdown of, 148
with Householder orthogonalization,

149
for linear systems, 151
lucky breakdown, 148
with Modified Gram-Schmidt, 148
practical implementation, 148

Arrow-Hurwicz’s Algorithm, 241
assembled matrix, 60
assembly process, 59

B
banded matrices, 5
bandwidth

of a bus, 327
of a matrix, 5

basis of a subspace, 10
BCG, 209–213

algorithm, 210
transpose-free variants, 213–226

BICGSTAB, 216
Biconjugate Gradient, see BCG

bidiagonal matrices, 5
bilinear form, 56
biorthogonal bases, 35
biorthogonal vectors, 35, 205
biorthogonalization, 204
bipartite graph, 82, 112
block Arnoldi

algorithm, 196
Ruhe’s variant, 197

block diagonal matrices, 5
block FOM, 199
block Gaussian elimination, 385–388

algorithm, 388
block GMRES, 199–200

multiple right-hand sides, 199
block Gram-Schmidt, 197
block Jacobi, 102

as a preconditioner, 353
block Krylov subspace methods, 144, 196–

200
block preconditioners, 309
block relaxation, 98
block tridiagonal matrices, 5, 309

preconditioning, 309
boundary conditions, 45, 46

Dirichlet, 46
mixed, 46
Neumann, 46

C
cache memory, 327
canonical form, 15

Jordan, 16
Schur, 17

Cauchy-Schwartz inequality, 6, 8
Cayley-Hamilton theorem, 144
cell-centered scheme, 64
cell-vertex scheme, 64
centered difference approximation, 48
centered difference formula, 48

439

��� � { ��� ���

centerpoint, 415
CG algorithm, see Conjugate Gradient algo-

rithm
CG for normal equations, 236, 237
CGNE, 237

algorithm, 238
optimality, 238

CGNR, 236
algorithm, 236
optimality, 236

CGS, 214–216
algorithm, 216

characteristic polynomial, 3
Chebyshev

acceleration, 358
Chebyshev polynomials, 186–192, 194, 356–

364
complex, 188, 203
and ellipses, 188
optimality, 189–191
for preconditioning, 356
real, 187

Cimmino’s method, 233
circuit switching, 328
coarse-grain, 353
coefficient matrix, 95
coloring vertices, 81
column reordering, 74
Compressed Sparse Column storage, see

CSC
Compressed Sparse Row storage, see CSR
Concus, Golub, and Widlund algorithm, 260
condition number, 40

for normal equation systems, 230
condition numbers and CG, 180
Conjugate Gradient algorithm, 174–181

algorithm, 178
alternative formulations, 178
convergence, 191, 192
derivation, 174, 177
eigenvalue estimates, 180
for the normal equations, 236
preconditioned, 244

Conjugate Gradient Squared, see CGS
Conjugate Residual algorithm, 181
consistent matrix norms, 8
consistent orderings, 112–116
control volume, 63
convection-diffusion equation, 47
convergence

factor, 105

general, 105
specific, 105

of GMRES, 193
of the Minimal Residual method, 135
rate, 105
of relaxation methods, 104
of Schwarz procedures, 402

COO storage scheme, 84
coordinate storage format, see COO
Courant characterization, 26
Craig’s method, 238
CRAY T3D, 329
CSC storage format, 85

matvecs in, 335
CSR storage format, 85, 272

matvecs in, 335
cut-edges, 416
Cuthill-McKee ordering, 77

D
data coherence, 327
data-parallel, 326
defective eigenvalue, 15
derogatory, 15
determinant, 3
DIA storage format, 85, 338

matvecs in, 338
diagonal

compensation, 285
dominance, 108, 109
form of matrices, 16
matrices, 5

diagonal storage format, see DIA
diagonalizable matrix, 16
diagonally dominant matrix, 109
diagonally structured matrices, 85
diameter of a graph, 417
diameter of a triangle, 58
DIOM, 154–157, 175

algorithm, 156
direct IOM, see DIOM
direct sum of subspaces, 10, 33
directed graph, 71
Dirichlet boundary conditions, 45, 46
distributed

computing, 325
ILU, 372
memory, 328
sparse matrices, 341, 373

divergence of a vector, 46
divergence operator, 46

{ ��� ��� ��� �
domain decomposition

convergence, 402
and direct solution, 387
full matrix methods, 411
induced preconditioners, 407
Schur complement approaches, 406
Schwarz alternating procedure, 394

domain sweep, 396
double orthogonalization, 148
double-striping, 418
DQGMRES, 168–172, 258

algorithm, 169

E
EBE preconditioner, 376
EBE regularization, 377
edge in a graph, 71
eigenspace, 10
eigenvalues, 3

definition, 3
from CG iteration, 180
index, 16, 17
of an orthogonal projector, 37

eigenvector, 3
left, 4
right, 4

Eisenstat’s implementation, 248, 263
Eisenstat’s trick, see Eisenstat’s implementa-

tion
Element-By-Element preconditioner, see

EBE preconditioner
ELL storage format, 86

matvecs in, 339
Ell storage format, 339
elliptic operators, 44
Ellpack-Itpack storage format, see ELL stor-

age format
energy norm, 32, 236, 238
error projection methods, 129
Euclidean inner product, 6
Euclidean norm, 7

F
Faber-Manteuffel theorem, 184
factored approximate inverse, 306
fast solvers, 47, 383
FGMRES, 255–258

algorithm, 256
fictitious domain methods, 387
Fiedler vector, 416
field of values, 23

fill-in elements, 275
fine-grain algorithms, 353
finite difference scheme, 47

for 1-D problems, 50
for 2-D problems, 54
for the Laplacean, 49
upwind schemes, 51

finite element method, 44, 55
finite volume method, 63
flexible GMRES, see FGMRES
flexible iteration, 255
flux vector, 63
FOM, 151

algorithm, 152
with restarting, 153

Frobenius norm, 8
frontal methods, 60, 376
full matrix methods, 411–413
Full Orthogonalization Method, see FOM

G
Galerkin conditions, 124
Gastinel’s method, 139
gather operation, 336
Gauss-Seidel iteration, 95

backward, 97
for normal equations, 231

in parallel, 378
symmetric, 97

Gaussian elimination, 60, 176, 269–273, 278,
282, 283, 285–287, 368, 369, 383

block, 385
frontal methods, 376
IKJ variant, 271
in IOM and DIOM, 156
in Lanczos process, 176
parallel, 409
parallelism in, 71
reordering in, 75
in skyline format, 295
sparse, 70

GCR, 182–184
Generalized Conjugate Residual, see GCR
geometric multiplicity, 15
Gershgorin discs, 110
Gershgorin’s theorem, 109
global iteration, 298–300, 305
global reduction operations, 332
GMRES, 157–172, 184, 193–196

algorithm, 158
block algorithm, 199

���[� { ��� ���

breakdown, 163, 164
convergence, 193
flexible variant, 250, 255–258
Householder version, 158
lucky breakdown, 164
parallel implementation, 331
with polynomial preconditioning, 363
practical implementation, 160
relation with FOM, 164, 166
with restarting, 167
stagnation, 167
truncated, 168

grade of a vector, 144
Gram-Schmidt algorithm, 11–12, 314

block, 197
cancellations in, 148
modified, 11
standard, 11

graph, 71
bipartite, 82
coloring, 81, 403
directed, 71
edges, 71
Laplacean of a, 416
partitioning, 382, 413

geometric, 414
graph theory techniques, 417
spectral techniques, 416
type, 384

undirected, 71
vertices, 71

H
Hankel matrix, 208
harmonic functions, 46
Harwell-Boeing collection, 89, 90
Hausdorff’s convex hull theorem, 23
heap-sort, in ILUT, 291
Hermitian inner product, 6
Hermitian matrices, 4, 24
Hermitian Positive Definite, 31
Hessenberg matrices, 5
Hölder norms, 7
Householder algorithm, 12
Householder orthogonalization

in Arnoldi’s method, 149
Householder reflectors, 12
HPD, see Hermitian Positive Definite
hypercube, 329

I

idempotent, 10, 33
if and only if, 3
iff, see if and only if
ILQ

factorization, 315
preconditioning, 314

ILU, 268–297
distributed, 372
factorization, 268

instability in, 293, 297
general algorithm, 270
IKJ version, 272
ILUS, 294–297

algorithm, 296
modified, 285–286
preconditioner, 268

for Schur complement, 409
static pattern, 273
with threshold, see ILUT and ILUTP
with multi-elimination, see ILUM
zero pattern, 270

ILU(0), 265, 268, 274–276
algorithm, 275
distributed factorization, 374
for distributed sparse matrices, 373
for red-black ordering, 366

ILU(1), 278
ILUM, 370
ILUT, 286–293

algorithm, 287
analysis, 288
implementation, 290
with pivoting, see ILUTP

ILUTP, 293
for normal equations, 312

incomplete
orthogonalization

algorithm, 154
incomplete factorization, 265, 268

Gram-Schmidt, 315
ILQ, 314, 315
QR, 315

incomplete Gram-Schmidt, 316
Incomplete LQ, see ILQ
Incomplete LU, see ILU
Incomplete Orthogonalization Method, see

IOM
indefinite inner product, 207
independent set orderings, 79
independent sets, 79, 368

maximal, 80

{ ��� ��� ���[�
index of an eigenvalue, 16, 17
indirect addressing, 69
induced norm, 8
induced preconditioners, 407
inhomogeneous medium, 47
inner products, 5

indefinite, 207
invariant subspace, 10, 130
inverse LU factors, 306
IOM, 154

algorithm, 154
direct version, 154

irreducibility, 83
irreducible, 27
isometry, 7
iteration matrix, 102, 104

J
j-diagonal, 340
Jacobi iteration, 95

for the normal equations, 233
JAD storage format, 340

definition, 340
in level scheduling, 348
matvecs in, 341

jagged diagonal format, see JAD storage for-
mat

jagged diagonals, 340
Jordan block, 17
Jordan box, 17
Jordan canonical form, 16
Jordan submatrix, 17
Joukowski mapping, 188

K
kernel, 9, 10
Krylov subspace, 144

dimension of a, 144
invariant, 145
methods, 143

Krylov subspace methods, 204

L
Lanczos algorithm, 172, 173

algorithm, 173, 205
biorthogonalization, 204
breakdown, 206

incurable, 207
lucky, 207
serious, 207

for linear systems, 208

look-ahead version, 207
loss of orthogonality, 173
modified Gram-Schmidt version, 173
nonsymmetric, 204
and orthogonal polynomials, 173
partial reorthogonalization, 173
practical implementations, 207
selective reorthogonalization, 173
symmetric case, 172

Laplacean, see Laplacean operator
Laplacean operator, 46, 55

of a graph, 416
least-squares polynomials, 359
least-squares problem, 229
left eigenvector, 4
left versus right preconditioning, 255
level of fill-in, 278
level scheduling, 345–348

for 5-point matrices, 345
for general matrices, 346

level set orderings, 76, 417
line relaxation, 99
linear mappings, 2
linear span, 9
linear system, 38, 95

existence of a solution, 38
right-hand side of a, 38
singular, 38
unknown of a, 38

linked lists, 88
local Schur complement, 393
Look-ahead Lanczos algorithm, 207
lower triangular matrices, 5
LQ factorization, 314

algorithm, 315
lucky breakdowns, 148

M
mask, 320
matrix, 1

addition, 2
adjoint of a, 7
banded, 5
bidiagonal, 5
canonical forms, 15
characteristic polynomial, 3
diagonal, 5
diagonal dominant, 108
diagonal form, 16
diagonalizable, 16
Hermitian, 4, 21, 24

����� { ��� ���

Hessenberg, 5
irreducible, 83
Jordan canonical form, 16
multiplication, 2
nonnegative, 4, 26
nonsingular, 3
norm of a, 8
normal, 4, 21
orthogonal, 5
outer product, 5
positive definite, 30–32
powers of a, 19
reduction, 15
Schur form, 17
self-adjoint, 7, 403
singular, 3
skew-Hermitian, 4
skew-symmetric, 4
spectral radius, 4
spectrum, 3
square, 3
symmetric, 4
Symmetric Positive Definite, 31, 112
trace, 4
transpose, 2
transpose conjugate, 2
triangular, 5
tridiagonal, 5
unitary, 4

matrix-by-vector product, 334
dense matrices, 334
for distributed matrices, 344
in DIA format, 338
in Ellpack format, 339
in triad form, 339

mesh generation, 61
mesh size, 58
message passing, 328
MILU, 285–286
minimal degree ordering, 88
Minimal Residual iteration, 133

algorithm, 134
convergence, 135

min-max theorem, 24
mixed boundary conditions, 45, 46
� -matrix, 26, 269, 310
modified Gram-Schmidt, 148
Modified ILU, see MILU
Modified Sparse Row storage, see MSR
molecule, 48
moment matrix, 208

in Lanczos procedure, 208
MR iteration, see Minimal Residual iteration
MSR storage format, 85
multi-elimination, 368, 369
multicolor orderings, 81
multicoloring, 364–368

for general sparse matrices, 367
multifrontal methods, 381
multinode expansion algorithm, 420
multiple eigenvalue, 15
multiple vector pipelines, 325
multiplicative projection process, 138
multiplicative Schwarz preconditioning, 399
multiprocessing, 325

N
natural ordering, 54
near singularity, 40
nested-dissection ordering, 88
Neumann boundary conditions, 45, 46
Neumann polynomials, 355
nonnegative matrix, 4, 26
nonsingular matrix, 3
norm

Euclidean, 7
Hölder, 7
induced, 8
of matrices, 8
$ -norm, 8
of vectors, 5

normal derivative, 56
normal equations, 229
normal matrix, 4, 21
null space, 9, 10

of a projector, 33

O
Object Oriented Programming, 334
oblique projection methods, 204
oblique projector, 35
operator

elliptic, 44
Laplacean, 46

optimality of projection methods, 126
order relation for matrices, 26
ORTHODIR, 182–184
orthogonal

complement, 10
matrix, 5
projector, 10, 35
vectors, 10

{ ��� ��� ���a�
orthogonality, 10

between vectors, 10
of a vector to a subspace, 10

ORTHOMIN, 182–184
orthonormal, 10
outer product matrices, 5
overdetermined systems, 229
overlapping domains, 385
over-relaxation, 97

P
p-norm, 8
packet switching, 328
parallel architectures, 326
parallel sparse techniques, 72
parallelism, 324

forms of, 324
partial differential equations, 44
partial Schur decomposition, 18
partition, 100
partition vector, 416
partitioning, 384
PDE, see partial differential equations
PE, see Processing Element
Peaceman-Rachford algorithm, 117
peripheral node, 417
permutation matrices, 5, 73
permutations, 72
Perron-Frobenius theorem, 27
perturbation analysis, 39
Petrov-Galerkin conditions, 122–124
physical mesh versus graph, 72
pipelining, 324
polynomial approximation, 144
polynomial preconditioning, 352, 354–364
positive definite matrix, 6, 25, 30–32
positive matrix, 26
positive real matrix, see positive definite ma-

trix
positive semidefinite, 25
preconditioned

CG, 244
efficient implementations, 248
left, 246
for the normal equations, 259
parallel implementation, 330
split, 247
symmetry in, 245

fixed-point iteration, 103
GMRES, 250

comparison, 253

flexible variant, 255, 256
left preconditioning, 250
right preconditioning, 252
split preconditioning, 253

preconditioner, 103
preconditioning, 102, 244

EBE, 376
incomplete LU, 268
induced, 407
Jacobi, 265
normalequationsfor normal equations,

311
polynomial, 354–364

with Chebyshev polynomials, 356
with least-squares polynomials, 359
with Neumann polynomials, 355

and relaxation scheme, 103
SOR, 265
SSOR, 265

probing, 409
Processing Element (PE), 325
profile, 79
projection

operator, see projector
orthogonal to, 33
parallel to, 33

projection methods, 122
additive, 136
approximate problem, 123
definitions, 122
error bounds, 129
general, 123
matrix representation, 124
multiplicative, 138
oblique, 122, 204
one-dimensional, 131
optimality, 126
orthogonal, 122, 124
prototype, 124
residual, 127
theory, 126

projector, 10, 32–38, 101
existence, 34
matrix representation, 35
oblique, 35
orthogonal, 35

eigenvalues, 37
properties, 37

prolongation operator, 101, 398
property A, 112
pseudo-peripheral node, 417

����� { ��� ���

Q
QMR, 209–213

algorithm, 212
approximation, 212

QR decomposition, 11
Quasi-GMRES, 168

algorithm, 168
Quasi-Minimal Residual, see QMR
quasi-Schur form, 18
quick-split, in ILUT, 291
quotient graph, 72

R
range, 2, 9, 10

of a projector, 33
rank, 10

full, 10
Rayleigh quotient, 23, 24
real Schur form, 18
recursive graph bisection, 418
red-black ordering, 364
reduced system, 318, 387
reducible, 27
reduction of matrices, 15
reduction operations, 332
reflectors, 12
regular splitting, 107
regularization, 241
relaxation methods

block, 98
convergence, 104

reordering, 74
reordering rows, columns, 72
reorthogonalization, 11
residual norm steepest descent, 135
residual projection methods, 127
restarted FOM, 153
restriction operator, 101, 397
reverse communication, 333
right versus left preconditioning, 255
right-hand side, 38, 95

multiple, 199
row projection methods, 231, 378

parallel, 378
row reordering, 74
row sum, 285

S
saddle-point problems, 238
SAXPY, 131, 301, 332

parallel, 332

sparse, 301
scatter and gather operations, 336–337
Schur complement, 387

approaches, 406
and direct solution, 387
for finite-element partitionings, 392
local, 391
methods, 407
properties, 388
for vertex partitionings, 389

Schur form, 17
example, 18
nonuniqueness, 19
partial, 18
quasi, 18
real, 18

Schwarz alternating procedure, 385, 394
additive, 401
algorithm, 395
multiplicative, 394

search subspace, 122
section of an operator, 145
self preconditioning, 301

convergence behavior, 303
self-adjoint, 7, 403
semisimple, 15
separators, 414
set decomposition, 100
shared memory computers, 326
similarity transformation, 15
simple eigenvalue, 15
singular matrix, 3
singular values, 9
sites (in graph partitioning), 420
skew-Hermitian

matrices, 4, 21, 186
part, 31

skew-symmetric matrices, 4
skyline solvers, 79
SOR, 97

convergence, 112
iteration, 95
multicolor sweep, 368
for SPD matrices, 112

span of � vectors, 9
sparse, 59
sparse Gaussian elimination, 70, 88
sparse matrices

adjacency graph, 70, 71
basic operations, 86
direct methods, 88

{ ��� ��� �����
graph representation, 70
matrix-by-vector operation, 87
permutation and reordering, 72
storage, 83–86

sparse matrix-by-vector product, 87
sparse skyline storage format, see SSK
sparse triangular system solution, 87
sparse-sparse mode computations, 300
sparse-sparse mode computations, 300
sparsity, 68
SPARSKIT, 89–91
SPD, see Symmetric Positive Definite
spectral bisection, 416
spectral radius, 4
spectrum of a matrix, 3
splitting, 97
square matrices, 3
SSK storage format, 295
SSOR, 97
steepest descent, 131
stencil, 48
stereographic projection, 415
Stieljes algorithm, 174
stiffness matrix, 59, 61
Stokes problem, 240
storage format

COO, 84
CSC, 85
CSR, 85, 272
ELL, 86
MSR, 85
SSK, 295

storage of sparse matrices, 83–86
structured sparse matrix, 69
subdomain, 373
subspace, 9

direct sum, 10
of approximants, 122
of constraints, 122
orthogonal, 10
sum, 10

Successive Over-Relaxation, see SOR
symbolic factorization, 88
symmetric Gauss Seidel, 97
symmetric matrices, 4
Symmetric Positive Definite, 31, 112
Symmetric SOR, see SSOR
symmetric squaring, 315
symmetry in preconditioned CG, 245

T

test problems, 88
TFQMR, 219

algorithm, 224
topological sorting, 346
trace, 4
Transpose-Free QMR, see TFQMR
triad operation, 339
triangular systems, 344

distributed, 375
level scheduling, 346
sparse, 344

tridiagonal matrices, 5

U
unassembled matrix, 60
under-determined, 230
undirected graph, 71
unitary matrices, 4
unstructured sparse matrix, 69
upper triangular matrices, 5
upwind schemes, 51
Uzawa’s algorithm, 239

V
variable preconditioner, 255
vector

computers, 325
operations, 331
orthogonality, 10
processors, 325
of unknowns, 95
updates, 131, 332

parallel, 332
vertex (in a graph), 71

W
wavefronts, 346
weak formulation, 56
weakly diagonally dominant matrix, 109
Winget regularization, 377

Z
Zarantonello’s lemma, 189

