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Given a symmetric positive semidefinite matrix A € R™*" let
R(X)=XXT -4, (1)
where X € R™** for k < n. Consider the nonlinear least squares problem

min7(X) = ROV @

which should give the best rank-k approximation to A.
We know that the gradient of f has the form

VI(X) = JIXT(R(X) € B, Q

where J(X)7 is the adjoint of the linear operator J(X) : R"** — R"*" i.e., the Jacobian of R(X).
Since

RX+8)=(X+SX+8T-A=RX)+SXT + x5T + 557,

J(X) is clearly defined by
JX)(S)=5XxT + x8T =5xT + (sxT)T, (4)
Let P,, be the permutation in R™ so that
vec(MT) = P,vec(M)

for all M € R™ ™. It is known that

Pn=PL =P, .



In view of the identity
vec((SXT)T) = P,vec(SXT),

it is easy to derive from (4) that
vec(J(X)(S)) = vec(SXT) + vec((SXT)T) = (I +P,)(X @ I)vec S.
Hence the matrix representation of J(X) is
J(X)=I+P)(X®I) € Rk (5)
For any symmetric matrix R € R™*™, we calculate

J(X)'vec(R) = (XT®@I)(I+P,)vec(R)

= (XT @ I)(vec(R) + vec(R"))

= 2(XT ®Ivec(R)
= 2vec(RX),
that is, for symmetric R,
J(X)T(R) = 2RX. (6)
Hence,
VF(X)= %J(X)T(R(X)) = R(X)X = X(XTX) - AX. (7)

If we do Gauss-Newton method, we should examine

JX)TIX) = XeoDTI+P)A(XeI)
= 2XT @I +P)(X®I)

= 2XTXx oD +2XT @ NP (X ).
Unfortunetely, this matrix is not easily invertible, even though the first term is,
XI'XeoD't'=XTX)"'el
By substituting J(X)S in (4) into (6) for R, we obtain
JX)TI(X)(S) =2(SXTX + x5TX). (8)

This expression can be used to solve the normal equations by an iterative method.



