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Given a symmetric positive semidefinite matrix A ∈ Rn×n, let

R(X) = XXT −A, (1)

where X ∈ Rn×k for k < n. Consider the nonlinear least squares problem

min
X∈Rn×k

f(X) :=
1

4
‖R(X)‖2F , (2)

which should give the best rank-k approximation to A.

We know that the gradient of f has the form

∇f(X) =
1

2
J(X)T (R(X)) ∈ Rn×k, (3)

where J(X)T is the adjoint of the linear operator J(X) : Rn×k → Rn×n, i.e., the Jacobian of R(X).

Since

R(X + S) = (X + S)(X + S)T −A = R(X) + SXT + XST + SST ,

J(X) is clearly defined by

J(X)(S) = SXT + XST = SXT + (SXT )T . (4)

Let Pn be the permutation in Rn2
so that

vec(MT ) = Pnvec(M)

for all M ∈ Rn×n. It is known that

Pn = PT
n = P−1n .
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In view of the identity

vec((SXT )T ) = Pnvec(SXT ),

it is easy to derive from (4) that

vec(J(X)(S)) = vec(SXT ) + vec((SXT )T ) = (I + Pn)(X ⊗ I)vecS.

Hence the matrix representation of J(X) is

J(X) = (I + Pn)(X ⊗ I) ∈ Rn2×nk (5)

For any symmetric matrix R ∈ Rn×n, we calculate

J(X)Tvec(R) = (XT ⊗ I)(I + Pn)vec(R)

= (XT ⊗ I)(vec(R) + vec(RT ))

= 2(XT ⊗ I)vec(R)

= 2vec(RX),

that is, for symmetric R,

J(X)T (R) = 2RX. (6)

Hence,

∇f(X) =
1

2
J(X)T (R(X)) = R(X)X = X(XTX)−AX. (7)

If we do Gauss-Newton method, we should examine

J(X)TJ(X) = (X ⊗ I)T (I + Pn)2(X ⊗ I)

= 2(XT ⊗ I)(I + Pn)(X ⊗ I)

= 2(XTX ⊗ I) + 2(XT ⊗ I)Pn(X ⊗ I).

Unfortunetely, this matrix is not easily invertible, even though the first term is,

(XTX ⊗ I)−1 = (XTX)−1 ⊗ I.

By substituting J(X)S in (4) into (6) for R, we obtain

J(X)TJ(X)(S) = 2(SXTX + XSTX). (8)

This expression can be used to solve the normal equations by an iterative method.
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