Numerical Analysis Part II (CAAM 554) Qualifying Exam Preparation List (2011)

Study Material (posted on CAAM 554 Website except the textbooks):

- TN-book (textbook: Numerical Linear Algebra by Trefethen and Bau
- NW-book (textbook: Numerical Optimization by Nocedal and Wright)
- BV-book (Convex Optimization, Chapters 1-2, by Boyd and Vandenberghand)
- CTK-book (Iterative Methods for Optimization, Chapters 1-4, by Kelley)
- Iter-note (Stationary Iterative Methods Notes, by YZ)
- LP-note (A quick intro to LP Note by YZ)
- KS-note (Afternotes on Krylov-Subspace Methods by YZ)
- Diff-note (A Note on Differentiation, an appendix of Tapia's book)
 - 1. Iterative Methods for Linear systems
 - Stationary iterative methods (Iter-note)
 - Spectral radius $\rho(A)$: Definition and relationship to norms
 - When does a stationary iterative method converge?
 - What happens if $\rho(A) = 1$?
 - Diagonal dominance, convergence of Jacobi and Gauss-Seidal
 - Arnoldi and Lanzos iterations, GMRES (TB-book, KS-note)
 - Krylov spaces and connection to matrix polynomials
 - What happen upon a breakdown?
 - Worst case scenarios
 - Efficient implementations
 - Steepest decent and conjugate gradient methods (TB-book, NW-book)
 - Algorithms: similarity and differences
 - Convergence rates
 - A-conjugacy in CG
 - Other properties of iterates, residuals, search directions, ...
 - Derivations of parameter (α and β) formulas
 - 2. Unconstrained Optimization and Nonlinear Equations
 - Optimality conditions (NW-book, CTK-book)
 - First- and 2nd-order necessary, or sufficient conditions
 - Able to check for simple examples such as a quadratic

- Convexity (BV-book, NW-book)
 - Definition of convex sets and functions
 - Basic properties of convex sets and functions
 - Optimality conditions for minimizing a convex function
 - Able to check for simple examples
- Rate of convergence (NW-book)
 - -q-linear, superlinear, quadratic, cubic
 - Definitions, able to check for simple examples
- Line search methods (NW-book, CTK-book)
 - Descent directions
 - Armijo and Wolfe conditions, backtracking
 - Zoutendijk Theorem and ramifications
- Newton's method for optimization and nonlinear systems (NW-book, CTK-book)
 - Standard assumptions
 - Proof of local and Q-quadratic convergence
 - Inexact Newton: basic ideas and convergence rates
- Quasi-Newton methods for optimization (NW-book, CTK-book)
 - Quasi-Newton equation and other basics
 - BFGS and DFP: direct and inverse formulas
 - Positive definiteness and rate of convergence
 - Broyden's method for nonlinear equations
- Nonlinear least squares (NW-book, CTK-book)
 - Gradient and Hessian formulas
 - Gauss-Newton and Levenberg-Marquardt methods
 - Convergence rate, Gauss-Newton under zero-residual
- Linear programming (NW-book, LP-note)
 - Basics of polyhedra, vertices of convex sets
 - Standard form LP and its dual
 - Weak and strong duality (able to prove the former)
 - Optimality conditions (how they differs from unconstrained)
 - Primal-dual interior-point method basics