Compressive Sensing Theory and L1-Related Optimization Algorithms

Yin Zhang

Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA

CAAM Colloquium January 26, 2009

Outline:

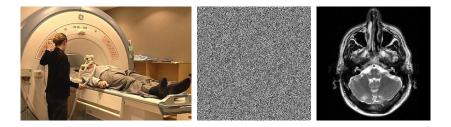
- What's Compressive Sensing (CS)?
- CS Theory: RIP and Non-RIP
- Optimization Algorithms
- Concluding Remarks

Acknowledgments

- Collaborators: Wotao Yin, Elaine Hale
- Students: Junfeng Yang, Yilun Wang
- Funding Agencies: NSF, ONR

MRI: Magnetic Resonance Imaging

MRI Scan \implies Fourier coefficients \implies Images



Is it possible to cut the scan time into half?

CS

CS

Conclusion

2/38

Numerical Simulation

- FFT2(image) ⇒ Fourier coefficients
- Pick 25% coefficients at random (with bias)
- Reconstruct image from the 25% coefficients



Algorithms

Conclusion

Simulation Result

Original vs. Reconstructed

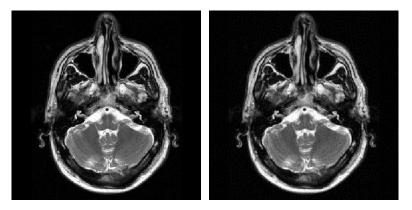


Image size: 350 \times 350. Reconstruction time: \leq 1s

A D > A B > A B > A B >

CS

Image Reconstruction Model

$$\min_{u} \alpha TV(u) + \beta \|u\|_1 + \frac{1}{2} \|F_{\rho}u - f_{\rho}\|_2^2$$

- *u* is the unknown image
- *F_p* partial Fourier matrix
- fp partial Fourier coefficients
- $TV(u) = \sum_{i} ||(Du)_{i}|| = ||\text{grad magnitude}||_{1}$

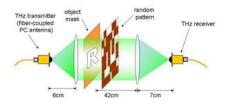
Compressing Sensing may cut scan time 1/2 or more

- Lustig, Donoho and Pauly, MR Medicine (2008)
- Research on "real-time" algorithms still needed

CS Application: Single-pixel Camera

Single-pixel Camera Has Multiple Futures

ScienceDaily (Oct. 20, 2008) A terahertz version of the single-pixel camera developed by Rice University researchers could lead to breakthrough technologies in security, telecom, signal processing and medicine.



Kelly Lab and Baranuik group, ECE at Rice http://www.dsp.ece.rice.edu/cscamera/

・ ロ ト ・ 雪 ト ・ ヨ ト ・

What's Compressive Sensing (CS)?

Standard Paradigm in Signal Processing:

- Sample "full data" $x^* \in \mathbb{R}^n$ (subject to Nyquist limit).
- Then compress (transform + truncation)
- Decoding is simple (inverse transform)

Acquisition can become a bottleneck (time, power, speed, ...) Paradigm Shift: Compressive Sensing

- Acquire less data $b_i = a_i^T x^*, i = 1, \cdots, m \ll n$.
- Decoding is more costly: getting x^* from Ax = b.

Advantage: Reducing acquisition size from n to m

CS – Emerging Methodology

Signal $x^* \in \mathbb{R}^n$. Encoding $b = Ax^* \in \mathbb{R}^m$

Fewer measurements taken (m < n), but no free lunch

- prior information on signal x* required
- "good" measurement matrix A needed

Prior info is sparsity:

CS

 Ψx^* has many elements = 0 (or $\|\Psi x^*\|_0$ is small)

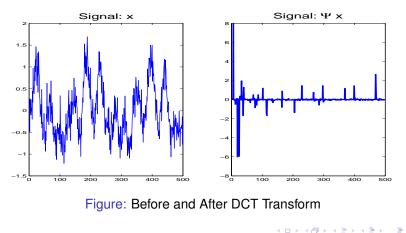
When does it work?

- Sparsfying basis Ψ is known
- $A \in \mathbb{R}^{m \times n}$ is "random-like"
- *m* > ||Ψ*x*^{*}||₀ sufficiently

Sparsity is Common under Transforms

Many have sparse representations under known bases:

• Fourier, Wavelets, curvelets, DCT,



Decoding in CS

Given (A, b, Ψ) , find the sparsest point:

 $x^* = \arg\min\{\|\Psi x\|_0 : Ax = b\}$

From combinatorial to convex optimization:

 $x^* = \arg\min\{\|\Psi x\|_1 : Ax = b\}$

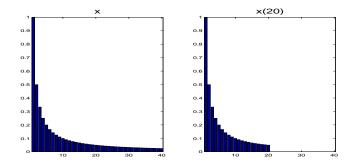
1-norm is sparsity promoting (e.g., Santosa-Symes 85)

- Basis pursuit (Donoho et al 98)
- Many variants; e.g., $\|Ax b\|_2 \le \sigma$ for noisy b
- Greedy algorithms (e.g., Tropp-Gilbert 05, ...)
- Big question: when is $\|\cdot\|_0 = \|\cdot\|_1$?

CS

Notation x(k): *k*-term Approximation

Keeping the *k* largest elements of *x* and setting the rest to 0 produce a *k*-term approximation of *x*, denoted by x(k).



CS Theory – RIP Based

Assume $\Psi = I$. Let

$$x^* = \arg\min\{\|x\|_1 : Ax = A\bar{x}\}$$

A Celebrated Result:

Theorem: (Candes-Tao 2005, C-Romberg-T 2005)

If $A \in \mathbb{R}^{m \times n}$ is iid standard normal, with high probability (WHP)

 $\|x^* - \bar{x}\|_1 \le C(\mathsf{RIP}_{2k}(A))\|\bar{x} - \bar{x}(k)\|_1$

for $k \le O(m/[1 + \log(n/m)])$ (k < m < n).

- Donoho (2005) obtained similar RIP-like results.
- Most subsequent analyses use RIP.

What Is RIP?

Restricted Isometry Property:

 $\operatorname{RIP}_k(A) \in (0,1) \triangleq \min\{\sigma\}$ so that for some r > 0

$$(1-\sigma)r \leq \left(\frac{\|Ax\|}{\|x\|}\right)^2 \leq (1+\sigma)r, \ \forall \|x\|_0 = k.$$

- **RIP**_{*k*}(*A*) measures conditioning of {[*k* columns of *A*]}
- Candes-Tao theory requires RIP_{2k}(A) < 0.414
- $\operatorname{RIP}_k(GA)$ can be arbitrarily bad for nonsingular G

Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:

 $x^* = \arg\min\{\|\Psi x\|_1 : GAx = Gb\}$

E.g., orthogonalize rows of A so GA = Q and $QQ^T = I$.

Is GA always as good an encoding matrix as A is?

CS

Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:

 $x^* = \arg\min\{\|\Psi x\|_1 : GAx = Gb\}$

E.g., orthogonalize rows of A so GA = Q and $QQ^T = I$.

Is *GA* always as good an encoding matrix as *A* is? "Of course".

Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:

 $x^* = \arg\min\{\|\Psi x\|_1 : GAx = Gb\}$

E.g., orthogonalize rows of A so GA = Q and $QQ^T = I$.

Is *GA* always as good an encoding matrix as *A* is? "Of course". But Candes-Tao theory doesn't say so.

Moreover,

- RIP conditions are known to be overly stringent
- RIP analysis is not simple nor intuitive (in my view)

A Non-RIP Analysis (Z, 2008)

Lemma: For any $x, y \in \mathbb{R}^n$ and p = 0, 1,

$$\sqrt{\|y\|_0} < \frac{1}{2} \frac{\|x-y\|_1}{\|x-y\|_2} \implies \|y\|_p < \|x\|_p.$$

Define

$$\mathcal{F} \triangleq \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}\boldsymbol{x}^* \} = \boldsymbol{x}^* + \mathrm{Null}(\boldsymbol{A}).$$

Corollary: If above holds for $y = x^* \in \mathcal{F}$ and all $x \in \mathcal{F} \setminus \{x^*\}$,

$$x^* = \arg\min\{||x||_p : Ax = Ax^*\}, \quad p = 0, 1.$$

- The larger the "1 vs 2" norm ratio in Null(A), the better.
- What really matters is Null(*A*), not representation *A*.

"1 vs 2" Ratio is Mostly Large

In the entire space \mathbb{R}^n ,

$$1 \leq \|\boldsymbol{v}\|_1 / \|\boldsymbol{v}\|_2 \leq \sqrt{n},$$

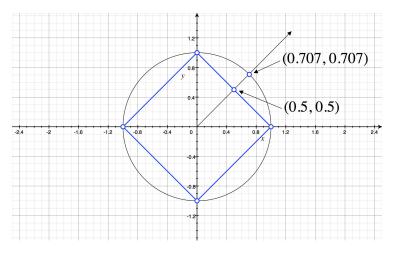
but the ratio \gg 1 in "most" subspaces (or WHP).

A result from Kashin-Garnaev-Gluskin (1978,84) In "most" (n - m)-D subspaces $S \subset \mathbb{R}^n$ (or WHP),

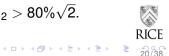
$$\frac{\|\boldsymbol{v}\|_1}{\|\boldsymbol{v}\|_2} > c_1 \sqrt{\frac{m}{\log(n/m)}}, \quad \forall \boldsymbol{v} \in \mathcal{S}.$$

- In fact, $Prob(\{good \ S\}) \rightarrow 1$ as $n m \rightarrow \infty$.
- A random space will give the best chance.
- Random-like matrices should do OK too.

"1 vs 2" Ratio in \mathbb{R}^2



E.g., in most subspaces, $\|v\|_1 / \|v\|_2 > 80\%\sqrt{2}$.



An RIP-free Result

Let
$$x^* = \arg\min\{||x||_1 : GAx = GA\bar{x}\}$$

Theorem (Z, 2008): For all $k < k^*$ and $\bar{x} - \bar{x}(k)$ "small",

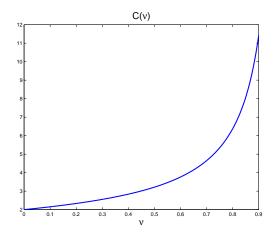
- P_r = orthogonal projection onto Range(A^T)
- $k^* \ge c_1 m / [1 + \log(n/m)]$ WHP if $A_{ij} \sim \mathcal{N}(0, 1)$
- (compare C-T: $||x^* \bar{x}||_1 \le C(\mathsf{RIP}_{2k}(A)) ||\bar{x} \bar{x}(k)||_1)$

Key Difference:

- RIP: the smaller RIP, the more stable
- RIP-free: the sparser, the more stable

RIP-free Constant $C(k/k^*)$

$$C(
u) = 1 + rac{1 +
u \sqrt{2 -
u^2}}{1 -
u^2} \geq 2, \;
u \in [0, 1)$$



Models with More Prior Information

Theoretical guarantees previously existed only for

 $\min\{\|\Psi x\|_{1} : Ax = b\}$ $\min\{\|\Psi x\|_{1} : Ax = b, x \ge 0\}$

Non-RIP analysis (Z, 2008) extends to

 $\min\{\|\Psi x\|_1 : Ax = b, x \in S\}$

e.g.,
$$\min\{\|\Psi x\|_1 : Ax = b, \|x - \hat{x}\| \le \delta\}$$

$$e.g., \quad \min\{\|\Psi x\|_1 + \mu \mathsf{TV}(\mathsf{x}) : A\mathbf{x} = b\}$$

Algorithms

Conclusion

Uniform Recoverability

What types of random matrices are good?

- Standard normal (Candes-Tao 05, Donoho 05)
- Bernoulli and a couple more
 (Baraniuk-Davenport-DeVore-Wakin, 07)
- Some partial orthonormal matrices (Rudelson-Vershynin, 06)

Uniform Recoverability (Z, 2008)

"All iid random matrices are asymptotically equally good"

- as long as the 4 + δ moment remains bounded
- used a random determinant result by Girko (1998)

CS

Algorithms for CS

Algorithmic Challenges in CS

- Large dense matrices, (near) real-time processing
- Standard (simplex, interior-point) methods not suitable

Optimization seems more robust than greedy methods In many cases, it is faster than other approaches.

- Efficient algorithms can be built on Av and A^Tv .
- Solution sparsity helps.
- Fast transforms help.
- Structured random matrices help.

Fixed-point Shrinkage

 $\min_{x} \|x\|_1 + \mu f(x)$

Algorithm:

$$x^{k+1} = Shrink(x^k - \tau \nabla f(x^k), \tau/\mu)$$

where

$$Shrink(y, t) = y - Proj_{[-t,t]}(y)$$

- A first-order method follows from classic operator splitting
- Discovered in signal processing by many since 2000's
- Convergence properties analyzed extensively

New Convergence Results

(Hale, Yin & Z, 2007) How can solution sparsity help a 1st-order method?

• Finite Convergence: for all but a finite # of iterations,

$$egin{aligned} &x_j^k = 0, \qquad ext{if } x_j^* = 0\ & ext{sign}(x_j^k) = ext{sign}(x_j^*), \qquad ext{if } x_j^*
eq 0 \end{aligned}$$

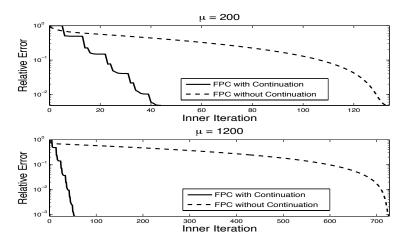
• q-linear rate depending on "reduced" Hessian:

$$\limsup_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} \le \frac{\kappa(H_{EE}^*) - 1}{\kappa(H_{EE}^*) + 1}$$

where H_{EE}^* is a sub-Hessian of *f* at x^* ($\kappa(H_{EE}^*) \le \kappa(H^*)$), and $E = \sup(x^*)$ (under a regularity condition). The sparser x^* is, the faster the convergence.

Theory

FPC: Fixed-Point Continuation (say, $\mu^k = 2\mu^{k-1}$)



(Numerical comparison results in Hale, Yin & Z 2007)

・ロット (雪) (日) (日)

FPC-AS: FPC + Active Set

1st-order CS methods slow down or fail when sparsity approaches the threshold of the L0-L1 equivalence.

Can the number of measurements be pushed to limit?

Active Set: Combining 1st and 2nd orders

$$\min_{x} \|x\|_{1} + \frac{\mu}{2} \|Ax - b\|_{2}^{2}$$

- Use shrinkage to estimate support and signs (1st order)
- Fix support and signs, solve the reduced QP (2nd order)
- Repeat until convergence
- Solved some hard problems on which other solvers failed
- Z. Wen, W. Yin, D. Goldfarb and Z, \geq 2008

Results on a Difficult Problem

 $\min \|x\|_1$, s.t. Ax = b

where $A \in \mathbb{R}^{m \times n}$ is a partial DCT matrix (dense).

Table: Comparison of 6 Solvers

Problem	Solver	Rel-Err	CPU
Ameth6Xmeth2K151	FPC	4.8e-01	60.8
<i>n</i> = 1024	spg-bp	4.3e-01	50.7
<i>m</i> = 512	Cplex-primal	1.0e-12	19.8
<i>k</i> = 150	Cplex-dual	9.7e-13	11.1
$x_i = \pm 1$	Cplex-barrier	2.7e-12	22.1
	FPC-AS	7.3e-10	0.36

TV Regularization

Discrete total variation (TV) for an image:

$$TV(u) = \sum \|D_i u\|$$
 (sum over all pixels)

(1-norm of gradient magnitude)

- Advantage: able to capture sharp edges
- Rudin-Osher-Fatemi 1992, Rudin-Osher 1994
- Also useful in CS applications (e.g., MRI)

Fast TV algorithms were in dire need for many years

FTVd: Fast TV deconvolution

(TVL2)
$$\min_{u} \sum \|D_{i}u\| + \frac{\mu}{2} \|Ku - f\|^{2}$$

Introducing $w_i \in \mathbb{R}^2$ (grayscale) and quadratic penalty:

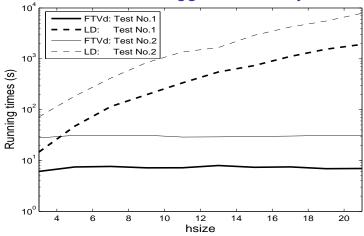
$$\min_{u,w} \sum \left(\|w_i\| + \frac{\beta}{2} \|w_i - D_i u\|^2 \right) + \frac{\mu}{2} \|\mathcal{K}u - f\|^2$$

In theory, $u(\beta) \rightarrow u^*$ as $\beta \rightarrow \infty$. In practice, $\beta = 200$ suffices. Alternating Minimization:

- For fixed u, $\{w_i\}$ solved by 2D-shrinkage at O(N)
- For fixed $\{w_i\}$, *u* solved by 2 FFTs at $O(N \log N)$

- Extended to color (2 \rightarrow 6), TVL1, and CS (Yang-Wang-Yin-Z, 07-08)

FTVd vs. Lagged Diffusivity



(Test 1: Lena 512 by 512; Test 2: Man 1024 by 1024)

Algorithms

Conclusion

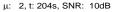
Color Deblurring with Impulsive Noise

Bn. RV 50%

Bn. RV 60%

μ: 8, t: 161s, SNR: 16dB

μ: 4, t: 181s, SNR: 14dB



Extension to CS

RecPF: Reconstruction from Partial Fourier Data

$$\min_{u} TV(u) + \lambda \|\Psi u\|_1 + \mu \|\mathcal{F}_{\rho}(u) - f_{\rho}\|^2$$

Based on same splitting and alternating idea (Yang-Z-Yin, 08) **Matlab Code:**

http://www.caam.rice.edu/~optimization/L1/RecPF

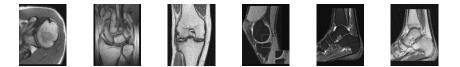


Figure: 250x250 images, 17% coefficients, CPU $\approx 0.2s$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Concluding Remarks

What I have learned so far:

- CS can reduce data acquisition costs: less data, (almost) same content
- CS poses many algorithmic challenges: optimization algorithms for various models
- Case-by-case studies are often required: finding and exploiting structures
- Still a long way to go from theory to practice: but potentials and promises are real

Will CS be revolutionary?

Compressive Sensing Resources:

http://www.dsp.ece.rice.edu/cs/

Papers and Software (FPC, FTVd and RecPF) available at:

http://www.caam.rice.edu/~optimization/L1

Thank You!

Happy Lunar New Year!

æ