
Interior-Point Methods
and Semidefinite Programming

Yin Zhang
Rice University

SIAM Annual Meeting
Puerto Rico, July 14, 2000

07/14/2000 SIAM00 2

Outline
n The problem
n What are interior-point methods?
n Complexity theory for convex optimization
n Narrowing the gap between theory and practice
n How practical are interior-point methods?

This presentation
n is focused on a brief overview and a few selected topics
n will inevitably omit many important topics and works

Part 1. The problem

n Constrained optimization
n Conic programming
n They are “equivalent”

07/14/2000 SIAM00 4

Constrained Optimization (CO)

}:)(min{ nRQxxf ⊆∈

qnpn RRgRRh

 xgxhxQ

→→

≤==

:,:

}0)(,0)(:{

The set Q can be defined by equalities
and inequalities. Inequalities create
most difficulties.

07/14/2000 SIAM00 5

Conic Programming (CP)

n CP has a linear objective function
n Constraint set Q = {affine space} {cone}
n Difficulties hidden in the cone

)0,: cone(
},:,min{
≥∀∈⇒∈

∈=><
tKtxKx

KxbAxxc

I

07/14/2000 SIAM00 6

“Natural” Conic Programs

n LP --- nonnegative orthant:

n SDP --- semidefinite matrix cone:

n SOCP --- second order (ice cream) cone:

n Direct sums of the above

},:,min{ KxbAxxc ∈=><

}0:{ fTnn XXRXK =∈= ×

}0:{ ≥∈= xRxK n

}:),{(1 txRtxK n ≤∈= +

07/14/2000 SIAM00 7

Linear Objective Function

},)(:min{

}R:)(min{

Qxtxft

Qxxf n

∈≤

⊆∈
c

}:,min{ nRQxxc ⊆∈><

W.L.O.G, we can assume f(x)=<c,x>, i.e.,, i.e.,

07/14/2000 SIAM00 8

Q è Affine Space Cone

},0:),{(
:cone theis where

}1:),{(
}1,:)1,({

}:)1,{(1

QxtttxK
K

ttxK
tQxxt

RQxxQ n

∈≥≡

=⇔
=∈⇔

⊂∈⇔ +

I

I

07/14/2000 SIAM00 9

Q è Affine Space ConeI

Hence, CO = CP (theoretically convenient)

07/14/2000 SIAM00 10

Convex or Nonconvex

n Complexity theory exists for convex programs
§ f and Q are convex, or K is convex

§ Local minima will all be global

},:,min{ :CP
 }:)(min{ :CO

KxbAxxc
Qxxf

∈=><
∈

Part 2: What are
Interior-Point Methods? (IPMs)?

n Main ideas
n Classifications:

n Primal and primal-dual methods
n Feasible and infeasible methods

Main Ideas: Interior + Newton

CP: min{<c,x> : Ax = b, x in K }
n Keep iterates in the interior of K
n Apply Newton’s method (How?)

07/14/2000 SIAM00 13

Newton’s Method
n Square Nonlinear systems:

n F(x) = 0 (#equations = #variables)

n Unconstrained optimization:
n

n Sufficient when f is convex

n Equality constrained optimization:
n 1st order necessary (KKT) conditions form a

square system F(x,y) = 0

n Inequality constrained optimization:
n KKT è system with inequalities
n How do we apply Newton’s method?

0)()(min =∇⇒ xfxf

07/14/2000 SIAM00 14

Primal IPMs (Barrier Methods)

Consider CP: min{<c,x> : Ax=b, x in K }
n Solutions are necessarily on the boundary

n Barrier function:

n Subproblems for t > 0 (equalities only):
n min {<c,x> +t F(x): Ax = b } è x(t)
n Under suitable conditions, the so-called central

path x(t) exists, and as t à 0, x(t) à x*

n Newton’s method becomes applicable

KxxF ∂→+∞→ as)(
RKxF →)int(:)(

07/14/2000 SIAM00 15

Log-Barriers have a long history
n Early works on Log-barrier methods:

n Frisch 1955
n Fiacco & McCormick, 1968
n Murray, Wright, 70s
n Convergence results exist (e.g. x(t) à x*)
n No computational complexity results

n Modern complexity theory for IPMs:
n Karmarkar on LP, 1984
n Many authors on LP, QP, LCP, SDP
n General theory: Nesterov and Nemirovskii, 1993

}0{ on log)(>−= xxxF

07/14/2000 SIAM00 16

Primal and Dual Conic Programs

n Primal and Dual CPs:
(P): min { <c,x>: Ax = b, x in K }
(D): max { <b,y>: A*y + s = c, s in K* }

where A* is the adjoint of A ,
n < Ax, y > = < x, A*y >

and K* is the dual cone of K ,
n

n Weak Duality holds:

},0,:{* KxxyyK ∈∀≥=
ybxc ,, ≥

07/14/2000 SIAM00 17

Primal-Dual IPMs

n They solve the primal and dual together
n Most efficient in practice
n First proposed for LP
(Kojima/Mizuno/Yoshise 1990)

n They require strong duality:
n < c, x* > = < b, y* >
n Strong duality holds under reasonable conditions

for the usual cones (LP, SDP, ……)

07/14/2000 SIAM00 18

Semidefinite Programming (SDP)

n Optimization over matrix variables
n Applications:

n Systems and Control theory, statistics
n Structural (truss) optimization
n Combinatorial optimization
n …………

},) :,max{:(D)
}, :,min{: (P)

* KSCS(yAyb
KXbA(X)XC
∈=+

∈=

}0:{* fTnn XXRXKK =∈== ×

07/14/2000 SIAM00 19

SDP (continued):

n Optimality conditions: X, S in K
n Primal feasibility: A(X) – b = 0
n Dual feasibility: A*(y) + S – C = 0
n Complementarity: XS = 0

n Primal-dual methods for SDP:
n Keep X, S in K (positive definite)
n Perturb and apply Newton to equalities

n Keep an eye on the P-D central path
(X(t),y(t),S(t))

tI+

07/14/2000 SIAM00 20

An SDP Complication

n The system is non-square
A(X) – b = 0, A*(y) + S – C = 0, XS – tI = 0

n Many remedies:
n Helmberger/Rendl/Vanderbei/Wolkowisz,

Kojima/Shida/Hara, Monteiro, Nesterov/Todd,
Alizahde/Haeberly/Overton,……

n Polynomial complexity bounds established

n A unification scheme: (Monteiro, YZ, 1996)

02)(11 =−+ −− tIPXSPPXSP T

07/14/2000 SIAM00 21

IPMs: Feasible vs. Infeasible

CP: min{<c,x> : Ax = b, x in K }
We already require iterates to stay in K.
How about the affine space?
n Feasible IPMs:

n Require iterates to stay in the affine space
n Easier to analyze, stronger results

n Infeasible IPMs:
n Not require iterates to stay in the affine space
n Easier to implement, more practical

07/14/2000 SIAM00 22

Feasible and Infeasible IPMs
CP: min{<c,x> : Ax = b, x in K }

e.g., 3x+y+2z = 1, K = {(x,y,z) >= 0}

Part 3: Complexity theory for
convex programming

n Two wings make IPMs fly:
n In theory, they work great
n In practice, they work even better

07/14/2000 SIAM00 24

Theory for Primal IPMs
n For t à 0, apply Newton’s method to:

min { <c,x> + t F(x) : Ax = b }
n F and K hold the keys

n Q1: What barriers are good for Newton?
n Q2: What cones permit good barriers?

General theory by Nesterov & Nemirovskii:
n A1: Self-concordant barrier functions
n A2: Essentially all convex cones

(that contain a non-empty interior but no lines)

07/14/2000 SIAM00 25

Self-concordant Barrier Function
n Strictly convex function in interior of K :

n The Hessian F’’ varies slowly (good for Newton)

n The gradient F’ is bounded in a special norm
(implying F’ varies slowly near the central path)

n They guarantee good behavior of Newton on
the function <c,x> + t F(x) for varying t

∞<= −

∈
)(')](''[),('sup 1

)int(
xFxFxF

Kx
θ

32]))[(''(4]))[('''(hhxFhhhxF ≤

07/14/2000 SIAM00 26

Examples

n Nonnegative Orthant:

n Symmetric, positive semidefinite cone:

n Log-barriers are optimal (achieving smallest
theta value possible)

nxxF
RxxK

n

i i

n

=⇒−=
∈≥=

∑ =
θ)log()(

}0:{

1

nXxF
XXRXK Tnn

=⇒−=
=∈= ×

θ))log(det()(
}0:{ f

07/14/2000 SIAM00 27

Complexity Results for Primal IPMs
(N&N 1993, simplified)

n Assume
n Worst-case iteration number for :

 short-step methods long-step methods

n Different strategies exist to force t à 0
n A gap exists between theory and practice

1 tt ε<

)log(or)log(11 −− εθεθ OO

)(11 txx ≈

07/14/2000 SIAM00 28

Elegant theory has limitations

n Self-concordant barriers are not computable
for general cone

n Polynomial bounds on iteration number do
not necessarily mean polynomial algorithms

n A few nice cones (LP, SDP, SOCP, …) are
exceptions

07/14/2000 SIAM00 29

General Theory for Primal-Dual IPMs
(Nesterov & Todd 98)

n Theory applies to symmetric cones:
n Convex, self-dual (K = K*) , homogeneous
n Only 5 such basic symmetric cones exist
n LP, SDP, SOCP, …, are covered

n Requires strong duality: <c, x*> = <b, y*>
n Same polynomial bounds on #iterations hold
n Polynomial bounds exist for #operations
n A gap still exists between theory & practice

Part 4: Narrowing the Gap
Between Theory and Practice

n Infeasible algorithms
n Asymptotic complexity

(terminology used by Ye)

07/14/2000 SIAM00 31

Complexity of Infeasible
Primal-Dual algorithms:

n All early complexity results require feasible
starting points (hard to get)

n Practical algorithms only require starting
points in the cone (easy)

n Can polynomial complexity be proven for
infeasible algorithms?

n Affirmative answers would narrow the gap
between theory and practice

07/14/2000 SIAM00 32

The answers are indeed affirmative

n For LP: YZ 1992, also for SDP: YZ 1996
n Numerous works since 1992
n Polynomial bounds are weaker than feasible case

n There are many infeasible paths in the cone, e.g.,

tI+
111

*
11

/))((
/))((

tCSyAt
tbXAt

−++
−+

0
0)(
0)(

*

=
=−+
=−

XS
CSyA
bXA

ItSXtSyX 1111111 if),,,(by Satisfied =

07/14/2000 SIAM00 33

Asymptotic Complexity

n Why primal-dual algorithms are more efficient
than primal ones in practice?

n Why long-step algorithms are more efficient
than short-step ones in practice?

n Traditional complexity theory does not
provide answers

n An answer lies in asymptotic behavior (i.e.,
local convergence rates)

07/14/2000 SIAM00 34

IPMs Are Not Really Newtonian
n Nonlinear system is parameterized
n Full steps cannot be taken
n Jacobian is often singular at solutions
n Can the asymptotic convergence rate be

higher than linear? Quadratic? Higher?
n Affirmative answers would explain why far

less iterations taken by good algorithms than
predicted by worst-case bounds

n A fast local rate accelerates convergence

07/14/2000 SIAM00 35

Answers are all affirmative
n LP: Quadratic and higher rates attainable

n YZ/Tapia/Dennis 92, YZ/Tapia 93, YZ/Tapia/Potra 93,
Ye/Guler/Tapia/YZ 93, Mehrotra 93, YZ/D.Zhang/96,
Wright/YZ 96, ……

n Extended to SDP and beyond
n IPMs can be made asymptotically close to Newton

method or composite Newton methods

n Idea: fully utilizing factorizations

)ˆ()('
)(ˆ)('

xxFxxF
xFxxF

∆+−=∆
−=∆

07/14/2000 SIAM00 36

Part 5: Practical Performance of IPMs
n Remarkably successful on “natural” CPs
n IPMs in Linear programming:

n Now in every major commercial code
n Brought an end to the Simplex era

n SDP: enabling technology
n Are there efficient interior-point algorithms

for general convex programs in practice?
n How about for nonconvex programs?

07/14/2000 SIAM00 37

Nonlinear Programming

KKT conditions form a nonlinear system with
non-negativity constraints

Interior-point framework:
n Perturb and Apply Newton
n Keep iterates in the cone

convex) (possibly :, where
},...,1,0)(:)(min{

RRhf
mixhxf

n
i

i

→
=≤

07/14/2000 SIAM00 38

KKT system and Perturbation
Optimality (KKT) conditions:

0,
0
0)(
0)()(

≥
=
=+
=∇+∇

zy
zy
zxh
yxhxf

o

n Perturb KKT, then apply Newton
n Hopefully, (x(t),y(t),z(t)) à (x*,y*,z*)
(There is a close connection to log-barrier)

te+

07/14/2000 SIAM00 39

Does it work?
n General convex programming:

n Yes, provided that derivatives are available and
affordable

n Global convergence can be established under
reasonable conditions (but not poly. complexity)

 (e.g. El-Bakry/Tsuchiya/Tapia/YZ, 1992, …….)

n Nonconvex programming:
n Yes, locally speaking
 (local optima, local convergence)
n Continuing research (Session MS68 today)

07/14/2000 SIAM00 40

Recent Books on IPMs
n Nesterov and Nemirovskii, “Interior Point Methods in

Convex Programming”, SIAM 1993
n Wright, “Primal-Dual Interior Point Methods”, SIAM, 1997
n Ye, “Interior Point Algorithms: Theory and Analysis”, John

Wiley, 1997
n Roos/Terlaky/Vial, ” Theory and Algorithms for Linear

Optimization: An Interior Point Approach” , John Wiley,
1999

n Renegar, “Mathematical View of Interior Point Methods in
Convex Programming”, SIAM, 2000

n Also in many new linear programming books

07/14/2000 SIAM00 41

 A 15-line MATLAB code for LP
 min {<c,x >: Ax = b, x >= 0 }
t0=cputime; [m,n]=size(A); x=sqrt(n)*ones(n,1); y=zeros(m,1);
z = x; p = symmmd(A*A'); bc = 1 + max(norm(b),norm(c));
for iter = 1:100
 Rd=A'*y+z-c; Rp=A*x-b; Rc=x.*z; residual=norm([Rd;Rp;Rc])/bc;
 fprintf('iter %2i: residual = %9.2e',iter,residual);
 fprintf('\tobj=%14.6e\n',c'*x); if residual<5.e-8 break;end;
 gap=mean(Rc); Rc=Rc-min(.1,100*gap)*gap; d=min(5.e+15,x./z);
 B = A*sparse(1:n,1:n,d)*A'; R = cholinc(B(p,p),'inf');
 t1 = x.*Rd - Rc; t2 = -(Rp + A*(t1./z)); dy = zeros(m,1);
 dy(p)=R\(R'\t2(p)); dx=(x.*(A'*dy)+t1)./z; dz=-(z.*dx+Rc)./x;
 tau = max(.9995, 1-gap); ap = -1/min(min(dx./x),-1);
 ad = -1/min(min(dz./z),-1); ap = tau*ap; ad = tau*ad;
 x = x + ap*dx; z = z + ad*dz; y = y + ad*dy;
End
fprintf('Done!\t[m n] = [%g %g]\tCPU = %g\n',m,n,cputime-t0);

