Interior-Point Methods and Semidefinite Programming

Yin Zhang

Rice University
SIAM Annual Meeting
Puerto Rico, July 14, 2000

Outline

- The problem
- What are interior-point methods?
- Complexity theory for convex optimization
- Narrowing the gap between theory and practice
- How practical are interior-point methods?

This presentation

- is focused on a brief overview and a few selected topics
- will inevitably omit many important topics and works

Part 1. The problem

- Constrained optimization
- Conic programming
- They are "equivalent"

Constrained Optimization (CO)

$$
\min \left\{f(x): x \in Q \subseteq R^{n}\right\}
$$

The set Q can be defined by equalities and inequalities. Inequalities create most difficulties.

$$
\begin{array}{r}
Q=\{x: h(x)=0, g(x) \leq 0\} \\
h: R^{n} \rightarrow R^{p}, g: R^{n} \rightarrow R^{q}
\end{array}
$$

Conic Programming (CP)

$\min \{<c, x>: A x=b, x \in K\}$
(cone $: x \in K \Rightarrow t x \in K, \forall t \geq 0$)

- CP has a linear objective function
- Constraint set $\mathrm{Q}=\{$ affine space $\} \bigcap$ \{cone $\}$
- Difficulties hidden in the cone

"Natural" Conic Programs

$$
\min \{<c, x\rangle: A x=b, x \in K\}
$$

- LP --- nonnegative orthant:

$$
K=\left\{x \in R^{n}: x \geq 0\right\}
$$

- SDP --- semidefinite matrix cone:

$$
K=\left\{X \in R^{n \times n}: X=X^{T} \succ 0\right\}
$$

- SOCP --- second order (ice cream) cone:

$$
K=\left\{(x, t) \in R^{n+1}:\|x\| \leq t\right\}
$$

- Direct sums of the above

Linear Objective Function

$$
\begin{aligned}
& \min \left\{f(x): x \in Q \subseteq \mathrm{R}^{n}\right\} \\
& \min \{t: f(x) \leq t, x \in Q\}
\end{aligned}
$$

W.L.O.G, we can assume $f(x)=\langle c, x>$, i.e.,

$$
\min \left\{<c, x>: x \in Q \subseteq R^{n}\right\}
$$

$Q \rightarrow$ Affine Space \cap Cone

$$
\begin{aligned}
& Q \Leftrightarrow\{(x, 1): x \in Q\} \subset R^{n+1} \\
& \Leftrightarrow\{t(x, 1): x \in Q, t=1\} \\
& \Leftrightarrow K \bigcap\{(x, t): t=1\} \\
& \text { where } K \text { is the cone }: \\
& K \equiv\{(t x, t): t \geq 0, x \in Q\}
\end{aligned}
$$

$Q \rightarrow$ Affine Space \cap Cone

Hence, $\mathrm{CO}=\mathrm{CP}$ (theoretically convenient)

Convex or Nonconvex

$$
\begin{aligned}
& \text { CO: } \quad \min \{f(x): x \in Q\} \\
& \text { CP: } \min \{\langle c, x>: A x=b, x \in K\}
\end{aligned}
$$

- Complexity theory exists for convex programs
- f and Q are convex, or K is convex
- Local minima will all be global

Part 2: What are Interior-Point Methods? (IPMs)?

- Main ideas
- Classifications:
- Primal and primal-dual methods
- Feasible and infeasible methods

Main Ideas: Interior + Newton

CP: $\min \{<c, x>: A x=b, x$ in $K\}$

- Keep iterates in the interior of K
- Apply Newton's method (How?)

Newton's Method

- Square Nonlinear systems:
- $F(x)=0$ (\#equations = \#variables)
- Unconstrained optimization:
- $\min f(x) \Rightarrow \nabla f(x)=0$
- Sufficient when f is convex
- Equality constrained optimization:
- $1^{\text {st }}$ order necessary (KKT) conditions form a square system $F(x, y)=0$
- Inequality constrained optimization:
- KKT \rightarrow system with inequalities
- How do we apply Newton's method?

Primal IPMs (Barrier Methods)

Consider CP: $\min \{\langle c, x>: A x=b, x$ in $K\}$

- Solutions are necessarily on the boundary
- Barrier function: $F(x): \operatorname{int}(K) \rightarrow R$

$$
F(x) \rightarrow+\infty \text { as } x \rightarrow \partial K
$$

- Subproblems for $\mathrm{t}>0$ (equalities only):
- $\min \{\langle\mathrm{c}, \mathrm{x}\rangle+\mathrm{tF}(\mathrm{x}): \mathrm{Ax}=\mathrm{b}\} \rightarrow \mathrm{x}(\mathrm{t})$
- Under suitable conditions, the so-called central path $x(t)$ exists, and as $t \rightarrow 0, x(t) \rightarrow x^{*}$
- Newton's method becomes applicable

Log-Barriers have a long history

- Early works on Log-barrier methods:
- Frisch $1955 F(x)=-\log x$ on $\{x>0\}$
- Fiacco \& McCormick, 1968
- Murray, Wright, 70s
- Convergence results exist (e.g. $x(t) \rightarrow x^{*}$)
- No computational complexity results
- Modern complexity theory for IPMs:
- Karmarkar on LP, 1984
- Many authors on LP, QP, LCP, SDP
- General theory: Nesterov and Nemirovskii, 1993

Primal and Dual Conic Programs

- Primal and Dual CPs:
(P): $\min \{\langle c, x\rangle: A x=b, x$ in $K\}$
(D): $\max \left\{\langle b, y\rangle: A^{*} y+s=c, s\right.$ in $\left.K^{*}\right\}$
where A^{*} is the adjoint of A,
- $\left\langle A x, y>=<x, A^{*} y\right\rangle$
and K^{*} is the dual cone of K,
- $K^{*}=\{y:\langle y, x\rangle \geq 0, \forall x \in K\}$
- Weak Duality holds: $\langle c, x\rangle \geq\langle b, y\rangle$

Primal-Dual IPMs

- They solve the primal and dual together
- Most efficient in practice
- First proposed for LP
(Kojima/Mizuno/Yoshise 1990)
- They require strong duality:
- $\left\langle\mathrm{c}, \mathrm{x}^{*}\right\rangle=\left\langle\mathrm{b}, \mathrm{y}^{*}\right\rangle$
- Strong duality holds under reasonable conditions for the usual cones (LP, SDP,)

Semidefinite Programming (SDP)

(P) $: \min \{\langle C, X\rangle: A(X)=b, X \in K\}$
(D) $: \max \left\{\langle b, y\rangle: A^{*}(y)+S=C, S \in K\right\}$

$$
K=K^{*}=\left\{X \in R^{n \times n}: X=X^{T} \succ 0\right\}
$$

- Optimization over matrix variables
- Applications:
- Systems and Control theory, statistics
- Structural (truss) optimization
- Combinatorial optimization
-

SDP (continued):

- Optimality conditions: X, S in K
- Primal feasibility: $\quad A(X)-b=0$
- Dual feasibility: $A^{*}(y)+S-C=0$
- Complementarity: $\quad X S=0+t I$
- Primal-dual methods for SDP:
- Keep X, S in K (positive definite)
- Perturb and apply Newton to equalities
- Keep an eye on the P-D central path $(X(t), y(t), S(t))$

An SDP Complication

- The system is non-square

$$
A(X)-b=0, A^{*}(y)+S-C=0, X S-t I=0
$$

- Many remedies:
- Helmberger/Rendl/Vanderbei/Wolkowisz, Kojima/Shida/Hara, Monteiro, Nesterov/Todd, Alizahde/Haeberly/Overton,......
- Polynomial complexity bounds established
- A unification scheme: (Monteiro, YZ, 1996)

$$
P X S P^{-1}+\left(P X S P^{-1}\right)^{T}-2 t I=0
$$

IPMs: Feasible vs. Infeasible

CP: $\min \{\langle c, x\rangle: A x=b, x$ in $K\}$ We already require iterates to stay in K. How about the affine space?

- Feasible IPMs:
- Require iterates to stay in the affine space
- Easier to analyze, stronger results
- Infeasible IPMs:
- Not require iterates to stay in the affine space
- Easier to implement, more practical

Feasible and Infeasible IPMs

CP: $\min \{<c, x>: A x=b, x$ in K \}

$$
\text { e.g., } 3 x+y+2 z=1, K=\{(x, y, z)>=0\}
$$

Part 3: Complexity theory for convex programming

- Two wings make IPMs fly:
- In theory, they work great
- In practice, they work even better

Theory for Primal IPMs

- For $t \rightarrow 0$, apply Newton's method to:
$\min \{\langle\mathrm{c}, \mathrm{x}\rangle+\mathrm{tF}(\mathrm{x}): \mathrm{Ax}=\mathrm{b}\}$
- F and K hold the keys
- Q1: What barriers are good for Newton?
- Q2: What cones permit good barriers?

General theory by Nesterov \& Nemirovskii:

- A1: Self-concordant barrier functions
- A2: Essentially all convex cones
(that contain a non-empty interior but no lines)

Self-concordant Barrier Function

- Strictly convex function in interior of K :
- The Hessian F" varies slowly (good for Newton)

$$
\left(F^{\prime \prime \prime}(x)[h h h]\right)^{2} \leq 4\left(F^{\prime \prime}(x)[h h]\right)^{3}
$$

- The gradient F^{\prime} is bounded in a special norm (implying F^{\prime} varies slowly near the central path)

$$
\theta=\sup _{x \in \operatorname{int}(K)}\left\langle F^{\prime}(x),\left[F^{\prime}(x)\right]^{-1} F^{\prime}(x)\right\rangle<\infty
$$

- They guarantee good behavior of Newton on the function $\langle\mathrm{c}, \mathrm{x}\rangle+\mathrm{tF}(\mathrm{x})$ for varying t

Examples

- Nonnegative Orthant:

$$
\begin{gathered}
K=\{x: x \geq 0\} \in R^{n} \\
F(x)=-\sum_{i=1}^{n} \log \left(x_{i}\right) \Rightarrow \theta=n
\end{gathered}
$$

- Symmetric, positive semidefinite cone:

$$
\begin{aligned}
& K=\left\{X \in R^{n \times n}: X^{T}=X \succ 0\right\} \\
& F(x)=-\log (\operatorname{det}(X)) \Rightarrow \theta=n
\end{aligned}
$$

- Log-barriers are optimal (achieving smallest theta value possible)

Complexity Results for Primal IPMs (N\&N 1993, simplified)

- Assume $x_{1} \approx x\left(t_{1}\right)$
- Worst-case iteration number for $t<\varepsilon t_{1}$:
$O\left(\sqrt{\theta} \log \varepsilon^{-1}\right)$ or $O\left(\theta \log \varepsilon^{-1}\right)$
short-step methods long-step methods
- Different strategies exist to force $t \rightarrow 0$
- A gap exists between theory and practice

Elegant theory has limitations

- Self-concordant barriers are not computable for general cone
- Polynomial bounds on iteration number do not necessarily mean polynomial algorithms
- A few nice cones (LP, SDP, SOCP, ...) are exceptions

General Theory for Primal-Dual IPMs (Nesterov \& Todd 98)

- Theory applies to symmetric cones:
- Convex, self-dual ($\mathrm{K}=\mathrm{K}^{*}$) , homogeneous
- Only 5 such basic symmetric cones exist
- LP, SDP, SOCP, ..., are covered
- Requires strong duality: <c, $\left.x^{*}\right\rangle=\left\langle b, y^{*}\right\rangle$
- Same polynomial bounds on \#iterations hold
- Polynomial bounds exist for \#operations
- A gap still exists between theory \& practice

Part 4: Narrowing the Gap Between Theory and Practice

- Infeasible algorithms
- Asymptotic complexity
(terminology used by Ye)

Complexity of Infeasible Primal-Dual algorithms:

- All early complexity results require feasible starting points (hard to get)
- Practical algorithms only require starting points in the cone (easy)
- Can polynomial complexity be proven for infeasible algorithms?
- Affirmative answers would narrow the gap between theory and practice

The answers are indeed affirmative

- For LP: YZ 1992, also for SDP: YZ 1996
- Numerous works since 1992
- Polynomial bounds are weaker than feasible case
- There are many infeasible paths in the cone, e.g.,

$$
\begin{aligned}
A(X)-b & =0+t\left(A\left(X_{1}\right)-b\right) / t_{1} \\
A^{*}(y)+S-C & =0+t\left(A^{*}\left(y_{1}\right)+S_{1}-C\right) / t_{1} \\
X S & =0+t I
\end{aligned}
$$

Satisfied by $\left(X_{1}, y_{1}, S_{1}, t_{1}\right)$ if $X_{1} S_{1}=t_{1} I$

Asymptotic Complexity

- Why primal-dual algorithms are more efficient than primal ones in practice?
- Why long-step algorithms are more efficient than short-step ones in practice?
- Traditional complexity theory does not provide answers
- An answer lies in asymptotic behavior (i.e., local convergence rates)

IPMs Are Not Really Newtonian

- Nonlinear system is parameterized
- Full steps cannot be taken
- Jacobian is often singular at solutions
- Can the asymptotic convergence rate be higher than linear? Quadratic? Higher?
- Affirmative answers would explain why far less iterations taken by good algorithms than predicted by worst-case bounds
- A fast local rate accelerates convergence

Answers are all affirmative

- LP: Quadratic and higher rates attainable
- YZ/Tapia/Dennis 92, YZ/Tapia 93, YZ/Tapia/Potra 93, Ye/Guler/Tapia/YZ 93, Mehrotra 93, YZ/D.Zhang/96, Wright/YZ 96,
- Extended to SDP and beyond
- IPMs can be made asymptotically close to Newton method or composite Newton methods

$$
\begin{aligned}
& F^{\prime}(x) \Delta \hat{x}=-F(x) \\
& F^{\prime}(x) \Delta x=-F(x+\Delta \hat{x})
\end{aligned}
$$

- Idea: fully utilizing factorizations

Part 5: Practical Performance of IPMs

- Remarkably successful on "natural" CPs
- IPMs in Linear programming:
- Now in every major commercial code
- Brought an end to the Simplex era
- SDP: enabling technology
- Are there efficient interior-point algorithms for general convex programs in practice?
- How about for nonconvex programs?

Nonlinear Programming

$$
\min \left\{f(x): h_{i}(x) \leq 0, i=1, \ldots, m\right\}
$$

where $f, h_{i}: R^{n} \rightarrow R$ (possibly convex)
KKT conditions form a nonlinear system with non-negativity constraints
Interior-point framework:

- Perturb and Apply Newton
- Keep iterates in the cone

KKT system and Perturbation

Optimality (KKT) conditions:

$$
\begin{aligned}
\nabla f(x)+\nabla h(x) y & =0 \\
h(x)+z & =0 \\
y \circ z & =0+t e \\
y, z & \geq 0
\end{aligned}
$$

- Perturb KKT, then apply Newton
- Hopefully, ($x(\mathrm{t}), \mathrm{y}(\mathrm{t}), \mathrm{z}(\mathrm{t})) \rightarrow\left(\mathrm{x}^{*}, \mathrm{y}^{*}, \mathrm{z}^{*}\right)$
(There is a close connection to log-barrier)

Does it work?

- General convex programming:
- Yes, provided that derivatives are available and affordable
- Global convergence can be established under reasonable conditions (but not poly. complexity) (e.g. El-Bakry/Tsuchiya/Tapia/YZ, 1992,)
- Nonconvex programming:
- Yes, locally speaking
(local optima, local convergence)
- Continuing research (Session MS68 today)

Recent Books on IPMs

- Nesterov and Nemirovskii, "Interior Point Methods in Convex Programming", SIAM 1993
- Wright, "Primal-Dual Interior Point Methods", SIAM, 1997
- Ye, "Interior Point Algorithms: Theory and Analysis", John Wiley, 1997
- Roos/Terlaky/Vial, " Theory and Algorithms for Linear Optimization: An Interior Point Approach" , John Wiley, 1999
- Renegar, "Mathematical View of Interior Point Methods in Convex Programming", SIAM, 2000
- Also in many new linear programming books

A 15-line MATLAB code for LP $\min \{\langle c, x\rangle: A x=b, x\rangle=0\}$

```
t0=cputime; [m,n]=size(A); x=sqrt(n)*ones(n,1); y=zeros(m,1);
z = x; p = symmmd(A*A'); bc = 1 + max(norm(b),norm(c));
for iter = 1:100
    Rd=A'*y+z-c; Rp=A*x-b; Rc=x.*z; residual=norm([Rd;Rp;Rc])/bc;
    fprintf('iter %2i: residual = %9.2e',iter,residual);
    fprintf('\tobj=%14.6e\n',c'*x); if residual<5.e-8 break;end;
    gap=mean(Rc); Rc=Rc-min(.1,100*gap)*gap; d=min(5.e+15,x./z);
    B = A*sparse(1:n,1:n,d)*A'; R = cholinc(B(p,p),'inf');
    t1 = x.*Rd - Rc; t2 = -(Rp + A*(t1./z)); dy = zeros(m,1);
    dy(p)=R\(R'\t2(p)); dx=(x.*(A'*dy)+t1)./z; dz=-(z.*dx+Rc)./x;
    tau = max(.9995, 1-gap); ap = -1/min(min(dx./x),-1);
    ad = -1/min(min(dz./z),-1); ap = tau*ap; ad = tau*ad;
    x = x + ap*dx; z = z + ad*dz; y = y + ad*dy;
End
fprintf('Done!\t[m n] = [%g %g]\tCPU = %g\n',m,n,cputime-t0);
```

