
SMV – An Object-Oriented

Sparse Matrix-Vector Computation Library

Programming Manual

Zhijun Wu and Yin Zhang

June, 2000

Department of Computational and Applied Mathematics

Rice University

Contents

Preface iii

1 Overview 1
1.1 Object-Oriented Principles . 2
1.2 Organization of Matrix-Vector Objects 3
1.3 Matrix-Vector Operations . 4
1.4 Object-Oriented Matrix Computation 4
1.5 Programming in SMV . 5

2 SMV Objects 7
2.1 Vectors . 8
2.2 Dense-Row-Vectors . 9
2.3 Dense-Column-Vectors . 13
2.4 Sparse-Row-Vectors . 16
2.5 Sparse-Column-Vectors . 19
2.6 Matrices . 22
2.7 Dense-Row-Matrices . 23
2.8 Dense-Column-Matrices . 26
2.9 Sparse-Row-Matrices . 29
2.10 Sparse-Column-Matrices . 32

3 Example Programs 35
3.1 Vector Inner Product . 36
3.2 Saxpy . 38
3.3 Matrix Multiplication . 41
3.4 Gaxpy . 43

i

4 Future Development 46
4.1 Performance Issues . 47
4.2 Parallelization . 47
4.3 Object-Oriented Optimization 48

ii

Preface

Vectors and matrices are primary elements of modern scientific computa-
tion. Libraries for matrix-vector computation have been key components of
many scientific computing applications including optimization, control, and
simulation. In order to support such applications, the libraries are required
to be efficient, portable, and easy to use. In large-scale applications, it is
desirable to run them on parallel platforms as well.

The SMV library is an object-oriented matrix-vector class library and is
developed to support dense and sparse matrix-vector computation in opti-
mization applications. The library is written in C++. The current version
runs only on single processor platforms. A parallel version will be developed
in future efforts.

There are many similar libraries developed in the past, for dense, sparse,
parallel (shared or distributed), and object-oriented matrix-vector compu-
tation. Most of them focus on one or two of the features. The purpose of
the SMV library is to unify all the features and organize them in a single
object-oriented system. However, since the library is targeted for special
applications in optimization, it is restricted to a small set of matrix-vector
classes and operations and to only a few simple storage formats.

One of the advantages of SMV is that users can write a program with
SMV in a familiar mathematical language such as C = A ∗ B without im-
plementing the real code and distinguishing A, B, and C to be vectors or
matrices, sparse or dense, and serial or parallel (in future version). This al-
lows the users to concentrate on their algorithms rather than matrix-vector
level computational details.

Another advantage of SMV over other similar libraries is that the matrix
and vector objects and their relationships are defined and understood more
in terms of their mathematical meanings. The users can therefore use or
manipulate the objects more easily based on their known conventions. They

iii

do not have to follow many implementation-specific rules. For example, in
SMV, a vector can be a row or column vector as often defined in linear
algebra. Then a row vector times a column vector is the inner product of
the two vectors, while the other way around is the outer product of them.
Also, in SMV, a row matrix is defined as a set of row vectors, and a column
matrix as a set of column vectors. If A is a row matrix, then A[i] is the ith
row vector of A, and A[i][j] is naturally the jth nonzero element of the ith
vector of A.

The design principle for the SMV library is object-oriented. This is not
only for practicing the object-oriented programming methodology in design
of scientific computing libraries, but also for supporting higher-level object-
oriented software development such as software for engineering and scientific
optimization. The library is organized around matrix and vector objects,
and for each of the objects, certain operations are defined. The internal data
structure is encapsulated, and so are the complicated matrix-vector level
calculations such as parallel and sparse calculations. There are certainly over-
heads for building-in these calculations, but the average users are expected
to benefit from the library for easier programming and better performance.

The development of the SMV library is part of the joint effort in large-
scale scientific computation by Rice CRPC and Los Almos Advanced Com-
puting Laboratory. The support from the DOE/LANL contract 03891-99-23
and the access to the computing facility at Rice CAAM Department are
hereby acknowledged.

Zhijun Wu and Yin Zhang
Houston, Texas, June, 2000

iv

Chapter 1

Overview

1

1.1 Object-Oriented Principles

The object-oriented programming technique is used for organizing and de-
veloping large-scale software systems. In traditional programming methods,
a software package typically contains a set of programs each having a set
of data objects. The objects in different programs usually are “segregated”.
The relationships among them are unclear. In object-oriented approaches,
the programs are organized around the data objects: The data objects in a
given problem domain are first identified. The properties of the objects are
defined along with their relationships such as shared properties, functions,
etc. The actions upon the objects are then programmed. They are associated
with and defined for the objects.

For example, in traditional matrix-vector libraries, the system consists
of a set of subroutines each corresponding to some specific matrix-vector
operations such as vector inner-product, saxpy, gaxpy, etc. Each of them
may be applied to certain types of vectors or matrices. Changes in vector or
matrix types may affect the design of the operations. However, an object-
oriented matrix-vector library will have only vector and matrix objects. The
operations are defined around the objects and associated with their specific
types. The objects can be modified without affecting the operations at all.

An object is a data abstraction. It refers to a group of physical or con-
ceptual identities in the problem domain. An object has private and public
data. It has parent and children objects to inherit and pass on properties.
Operations that may be applied to the object are defined in the object. They
can only be invoked through the object.

Since complex systems usually consist of numerous different data objects
while there are only a few routine operations, it is more natural to organize a
software system around objects instead of operations, and the system will be
easier to update and maintain. More importantly, object-oriented program-
ming supports data abstraction, inheritance, and encapsulation. By using
objects, data can be organized in different abstract levels, shared through
family relationships, and hidden from the users. These features offer a great
deal of advantages for modern computer programming and software devel-
opment.

2

1.2 Organization of Matrix-Vector Objects

For matrix-vector computation, matrices and vectors are basic objects. How-
ever, in order to include sparse as well as regular dense computation, more
specific object types are required, for example, dense and sparse matrices
and vectors. For the storage reason, we also distinguish in between row and
column matrices and vectors. A vector can be defined as a row or column
vector. A matrix can be defined as a row or column matrix. A row matrix
consists of a set of row vectors. A column matrix consists of a set of column
vectors.

So, at the top level, we have the vector and matrix objects. The vector
object has four children objects, dense row vector, sparse row vector, dense
column vector, and sparse column vector. Similarly, the matrix object has
four children objects, dense row matrix, sparse row matrix, dense column
matrix, and sparse column matrix.

Matrices are defined in terms of vectors. Therefore, a dense row matrix
consists of a set of dense row vectors. A sparse row matrix consists a set of
sparse row vectors. A dense column matrix consists of a set of dense column
vectors. A sparse column matrix consists of a set of sparse column vectors.

A vector has a set of data entries, including an integer for the vector’s
dimension, an integer for the number of nonzero elements in the vector, an
index set for the nonzero elements, and an array of the nonzero elements. A
dense vector has default values for the number of nonzero elements and the
index set. The values for a sparse vector are set to agree with the sparse
structure of the vector.

The data entries for a matrix include two integers for the numbers of
rows and columns in the matrix, respectively, and an array of vectors. If the
matrix is dense, the vectors are dense. Otherwise, they are sparse.

Each of the vector and matrix objects have associated operations such
as addition, subtraction, multiplication, inner-product, etc. There are also
operations for data access, transfer, and reorganization, such as getting the
index or value of an element, transposing vectors or matrices, and changing
the storage format from row matrix to column matrix, or vice versa.

3

1.3 Matrix-Vector Operations

The definitions of row and column vectors are consistent with those in linear
algebra. A row vector can only be added to or subtracted from a row vector,
and a column vector can only be added to or subtracted from a column
vector. A row vector times a column vector is an inner-product of the two
vectors. A column vector times a row vector is an outer-product of the two
vectors.

Similarly, a row matrix can only be added to or subtracted from a row
matrix, and a column matrix can only be added to or subtracted from a
column matrix. A row matrix times a column matrix is the same as a column
matrix times a row matrix, but computationally, the former is done through
inner-products while the latter through outer-products.

For matrix-vector operations, a row matrix can only time a column vector
and the product is a column vector, and a row vector can only time a column
matrix and the product is a row vector.

Naturally, the transpose of a row vector is a column vector. The transpose
of a column vector is a row vector. The transpose of a row matrix is a column
matrix, and the transpose of a column matrix is a row matrix.

If v is a vector, either row or column, then v[i] is the value of ith nonzero
element of v, and v(i) is the index of the element. Let A be a row matrix.
Since it is defined as a set of row vectors, A[i] is referred to as the ith row
vector of A, and A[i][j] and A[i](j) are the value and index of the jth nonzero
element in A[i], respectively. If A is a column matrix, A[i] is the ith column
vector, and A[i][j] and A[i](j) are the value and index of the jth nonzero
element in A[i].

1.4 Object-Oriented Matrix Computation

Traditionally, matrix-vector computation is done with detailed calculations,
loops, and procedures. For sparse or parallel computation, the programs
are even more complicated. Instead, with well-defined matrix-vector objects,
the high-level matrix-vector computation can be coded easily in an object-
oriented fashion. The operations upon the objects can be expressed in simple
and familiar mathematical forms. The logical structure of the program is
clear and independent of low level implementation.

4

For example, a traditional C code for sparse matrix-vector multiplication
looks more or less like the following, where A is a sparse matrix, and u and v
are dense vectors. Suppose that A is n× n, and u and v are n-dimensional.
Also, suppose that A has m nonzero elements and they are stored in A as an
array, and their row and column indices are collected in two integer arrays I
and J .

for (int i = 0; i < n; i ++) u [i] = 0;

for (int i = 0, j = 0, l = 0; l < m; l++) {

i = I [l];

j = J [l];

u [i] = u [i] + A [l] * v [j];

}

The above code can be improved if a better storage scheme is used, but
it will look even more complicated. However, if we use the objects we have
discussed in previous section, the code will be much simpler. Let A be defined
as a row matrix, and u and v as column vectors. Then we only need a single
statement for the above calculation:

u = A * v;

The code is not only simple, but also in a familiar mathematical expres-
sion which anyone can read and write without worrying about its low level
programming details whatever they are.

1.5 Programming in SMV

SMV is written in C++. All objects are implemented in C++ classes. There
are ten general objects with eight of them accessible to the users. They are
classified into two classes of objects, vector and matrix objects. Vector ob-
jects include general vector, dense row vector, dense column vector, sparse
row vector, and sparse column vector. Matrix objects include general ma-
trix, dense row matrix, dense column matrix, sparse row matrix, and sparse
column matrix. These objects are implemented as the following C++ classes
in SMV.

5

Vector Matrix
DenseRowVector DenseRowMatrix
DenseColVector DenseColMatrix

SparseRowVector SparseRowMatrix
SparseColVector SparseColMatrix

Vector and Matrix are two general classes. The specific vector and
matrix objects are implemented as subclasses of Vector or Matrix. More
detailed descriptions of the objects and their C++ implementation are given
in the following chapter.

In order to use SMV library, a header file smv.h must be included in
the beginning of the program. The SMV objects can then be defined, and
the operations on the objects can be done directly by using corresponding
member operators or functions. Some example SMV programs are given in
Chapter 3.

6

Chapter 2

SMV Objects

7

2.1 Vectors

General Description:

Vector is a general object with some data shared by specific vector types,
sparse or dense, row or column. A vector has two integer data, dimension,
the dimension of the vector, and numNonZeros, the number of the nonzeros
in the vector. The two integers are protected and can only be accessed
through the member functions of the vector.

There are two member functions open to public. One is getDimension
() and the other getNumNonZeros (). They can be called to obtain the
dimension and the number of the nonzeros of the vector.

A Vector can be of int, float, or double types. We define Vector as a
template with its type as a parameter.

C++ Definition:

template <class Type>

class Vector {

public:

// Member Functions:

int getDimension ();

int getNumNonZeros ();

protected:

// Internal Data:

int dimension;

int numNonZeros;

};

8

2.2 Dense-Row-Vectors

General Description:

DenseRowVector is a vector subclass. Every vector subclass has two sets
of data, index and array. The nonzero elements are stored in array. Their
positions in the vector are recorded in index. For dense vectors, index is
not really so useful although it still is set to default values.

Every vector subclass has a basic set of member functions that can be used
to read or write vector elements and compute vector norms. The functions
include overloaded operators [], (), and function norm(). Suppose that v is
defined as a vector. Then, in general, v[i] returns the ith nonzero element of
v, while v(i) the index of v[i]. The function norm() returns the l2 norm of v.

Every vector subclass has a large number of member functions used for all
arithmetic operations upon the vector objects. They include vector addition,
subtraction, and multiplication, vector inner and outer products, etc. We
implement the operations by using the conventional operators +, −, and ∗.
They are also overloaded for all different vector subclasses.

There are also some other types of member functions, basically used for
changing the storage format of the vector, for example, changing a row vector
to a column vector, or a sparse vector to a dense vector, or vice versa.

A vector subclass can also be of int, float, or double types. We define a
vector subclass as a template with its type as a parameter.

A DenseRowVector is a dense vector, and therefore, the number of
nonzero elements is equal to the dimension or the length of the vector. It is
also a row vector and certain rules apply, for example, it cannot be added to
or subtracted from a column vector.

C++ Definition:

template <class Type>

class DenseRowVector : public Vector<Type> {

protected:

// Internal Data:

9

int *index; Type *array;

public:

//Member Functions:

// Initialization / Termination:

DenseRowVector (const int = 1);

DenseRowVector (const int, const Type*);

DenseRowVector (const DenseRowVector&);

~DenseRowVector () { delete [] index, array; }

// Basic Operations:

double norm ();

int& operator () (const int);

Type& operator [] (const int);

DenseRowVector& operator = (const DenseRowVector&);

// Vector Addition / Subtraction:

friend DenseRowVector operator + (const DenseRowVector&);

friend DenseRowVector operator - (const DenseRowVector&);

friend DenseRowVector operator +

(const DenseRowVector&, const DenseRowVector&);

friend DenseRowVector operator -

(const DenseRowVector&, const DenseRowVector&);

friend DenseRowVector operator +

(const DenseRowVector&, const SparseRowVector<Type>&);

friend DenseRowVector operator -

(const DenseRowVector&, const SparseRowVector<Type>&);

10

friend DenseRowVector operator +

(const SparseRowVector<Type>&, const DenseRowVector&);

friend DenseRowVector operator -

(const SparseRowVector<Type>&, const DenseRowVector&);

// Vector-Scaler Multiplication:

friend DenseRowVector operator *

(const Type, const DenseRowVector&);

friend DenseRowVector operator *

(const DenseRowVector&, const Type);

// Vector-Vector Multiplication:

friend Type operator *

(const DenseRowVector&, const DenseColVector<Type>&);

friend Type operator * (

const DenseRowVector&, const SparseColVector<Type>&);

// Matrix-Vector Multiplication:

friend DenseRowVector operator *

(const DenseRowVector&, const DenseColMatrix<Type>&);

friend DenseRowVector operator *

(const DenseRowVector&, const SparseColMatrix<Type>&);

friend DenseColMatrix<Type> operator *

(const DenseColVector<Type>&, const DenseRowVector&);

friend SparseColMatrix<Type> operator *

(const SparseColVector<Type>&, const DenseRowVector&);

// Row-Column Exchange:

friend DenseRowVector trans (const DenseColVector<Type>&);

friend DenseColVector<Type> trans (const DenseRowVector&);

11

// Dense-Sparse Transform:

friend DenseRowVector

sparse2dense (const SparseRowVector<Type>&);

friend SparseRowVector<Type>

dense2sparse (const DenseRowVector&);

};

12

2.3 Dense-Column-Vectors

General Description:

DenseColVetor is very similar to DenseRowVector except that it can
only be used as a column vector. The properties of a vector subclass as
described in previous section can all apply to DenseColVector.

C++ Definition:

template <class Type>

class DenseColVector : public Vector<Type> {

protected:

// Internal Data:

int *index; Type *array;

public:

// Member Functions:

// Initialization / Termination:

DenseColVector (const int = 1);

DenseColVector (const int, const Type*);

DenseColVector (const DenseColVector&);

~DenseColVector () { delete [] index, array; }

// Basic Operations:

double norm ();

int& operator () (const int);

Type& operator [] (const int);

13

DenseColVector& operator = (const DenseColVector&);

// Vector Addition / Subtraction:

friend DenseColVector operator + (const DenseColVector&);

friend DenseColVector operator - (const DenseColVector&);

friend DenseColVector operator +

(const DenseColVector&, const DenseColVector&);

friend DenseColVector operator -

(const DenseColVector&, const DenseColVector&);

friend DenseColVector operator +

(const DenseColVector&, const SparseColVector<Type>&);

friend DenseColVector operator -

(const DenseColVector&, const SparseColVector<Type>&);

friend DenseColVector operator +

(const SparseColVector<Type>&, const DenseColVector&);

friend DenseColVector operator -

(const SparseColVector<Type>&, const DenseColVector&);

// Vector-Scaler Multiplication:

friend DenseColVector operator *

(const Type, const DenseColVector&);

friend DenseColVector operator *

(const DenseColVector&, const Type);

// Vector-Vector Multiplication:

friend Type operator *

(const DenseRowVector<Type>&, const DenseColVector&);

friend Type operator *

(const SparseRowVector<Type>&, const DenseColVector&);

14

// Matrix-Vector Multiplication:

friend DenseColVector operator *

(const DenseRowMatrix<Type>&, const DenseColVector&);

friend DenseColVector operator *

(const SparseRowMatrix<Type>&, const DenseColVector&);

friend DenseColMatrix<Type> operator *

(const DenseColVector&, const DenseRowVector<Type>&);

friend SparseRowMatrix<Type> operator *

(const DenseColVector&, const SparseRowVector<Type>&);

// Row-Column Exchange:

friend DenseRowVector<Type> trans (const DenseColVector&);

friend DenseColVector trans (const DenseRowVector<Type>&);

// Dense-Sparse Transform:

friend DenseColVector

sparse2dense (const SparseColVector<Type>&);

friend SparseColVector<Type>

dense2sparse (const DenseColVector&);

};

15

2.4 Sparse-Row-Vectors

General Description:

SparseRowVector is a vector subclass similar to DenseRowVector ex-
cept that it is sparse, that is, it has only a few nonzero elements, and the
number of nonzero elements is less than the dimension or the length of the
vector. For sparse vectors, calculations usually are complicated since only
those among nonzero elements are required and they need to be found out
by examining the indices of the nonzero elements. However, at the object
level, the structure of a sparse vector is not so different from a dense vector
because the sparse calculations are hid in the lower computational levels.

C++ Definition:

template <class Type>

class SparseRowVector : public Vector<Type>

{

protected:

// Internal Data:

int *index; Type *array;

public:

// Member Functions:

// Initialization / Termination:

SparseRowVector (const int = 1, const int = 1);

SparseRowVector (const SparseRowVector&);

SparseRowVector

(const int, const int, const int*, const Type*);

16

~SparseRowVector () { delete [] index, array; }

// Basic Operations:

double norm ();

int& operator () (const int);

Type& operator [] (const int);

SparseRowVector& operator = (const SparseRowVector&);

// Vector Addition / Subtraction:

friend SparseRowVector operator + (const SparseRowVector&);

friend SparseRowVector operator - (const SparseRowVector&);

friend SparseRowVector operator +

(const SparseRowVector&, const SparseRowVector&);

friend SparseRowVector operator -

(const SparseRowVector&, const SparseRowVector&);

friend DenseRowVector<Type> operator +

(const SparseRowVector&, const DenseRowVector<Type>&);

friend DenseRowVector<Type> operator -

(const SparseRowVector&, const DenseRowVector<Type>&);

friend DenseRowVector<Type> operator +

(const DenseRowVector<Type>&, const SparseRowVector&);

friend DenseRowVector<Type> operator -

(const DenseRowVector<Type>&, const SparseRowVector&);

// Vector-Scaler Multiplication:

friend SparseRowVector

operator * (const Type, const SparseRowVector&);

friend SparseRowVector

operator * (const SparseRowVector&, const Type);

17

// Vector-Vector Multiplication:

friend Type operator *

(const SparseRowVector&, const SparseColVector<Type>&);

friend Type operator *

(const SparseRowVector&, const DenseColVector<Type>&);

// Matrix-Vector Multiplication:

friend SparseRowVector operator *

(const SparseRowVector&, const SparseColMatrix<Type>&);

friend DenseRowVector<Type> operator *

(const SparseRowVector&, const DenseColMatrix<Type>&);

friend SparseRowMatrix<Type> operator *

(const SparseColVector<Type>&, const SparseRowVector&);

friend SparseRowMatrix<Type> operator *

(const DenseColVector<Type>&, const SparseRowVector&);

// Row-Column Exchange:

friend SparseRowVector trans (const SparseColVector<Type>&);

friend SparseColVector<Type> trans (const SparseRowVector&);

// Dense-Sparse Transform:

friend SparseRowVector

dense2sparse (const DenseRowVector<Type>&);

friend DenseRowVector<Type>

sparse2dense (const SparseRowVector&);

};

18

2.5 Sparse-Column-Vectors

General Description:

SparseColVector is very similar to SparseRowVector except that it can
only be used as a column vector. It has the same set of member functions
as SparseRowVector with possibly different types of objects as their argu-
ments.

C++ Definition:

template <class Type>

class SparseColVector : public Vector<Type>

{

protected:

// Internal Data:

int *index; Type *array;

public:

// Member Functions:

// Initialization / Termination:

SparseColVector (const int = 1, const int = 1);

SparseColVector (const SparseColVector&);

SparseColVector

(const int, const int, const int*, const Type*);

~SparseColVector () { delete [] index, array; }

// Basic Operations:

19

double norm ();

int& operator () (const int);

Type& operator [] (const int);

SparseColVector& operator = (const SparseColVector&);

// Vector Addition / Subtraction:

friend SparseColVector operator + (const SparseColVector&);

friend SparseColVector operator - (const SparseColVector&);

friend SparseColVector operator +

(const SparseColVector&, const SparseColVector&);

friend SparseColVector operator -

(const SparseColVector&, const SparseColVector&);

friend DenseColVector<Type> operator +

(const SparseColVector&, const DenseColVector<Type>&);

friend DenseColVector<Type> operator -

(const SparseColVector&, const DenseColVector<Type>&);

friend DenseColVector<Type> operator +

(const DenseColVector<Type>&, const SparseColVector&);

friend DenseColVector<Type> operator -

(const DenseColVector<Type>&, const SparseColVector&);

// Vector-Scaler Multiplication:

friend SparseColVector

operator * (const Type, const SparseColVector&);

friend SparseColVector

operator * (const SparseColVector&, const Type);

// Vector-Vector Multiplication:

friend Type operator *

20

(const SparseRowVector<Type>&, const SparseColVector&);

friend Type operator *

(const DenseRowVector<Type>&, const SparseColVector&);

// Matrix-Vector Multiplication:

friend SparseColVector operator *

(const SparseRowMatrix<Type>&, const SparseColVector&);

friend DenseColVector<Type> operator *

(const DenseRowMatrix<Type>&, const SparseColVector&);

friend SparseRowMatrix<Type> operator *

(const SparseColVector&, const SparseRowVector<Type>&);

friend SparseColMatrix<Type> operator *

(const SparseColVector&, const DenseRowVector<Type>&);

// Row-Column Exchange:

friend SparseRowVector<Type> trans (const SparseColVector&);

friend SparseColVector trans (const SparseRowVector<Type>&);

// Dense-Sparse Transform:

friend SparseColVector

dense2sparse (const DenseColVector<Type>&);

friend DenseColVector<Type>

sparse2dense (const SparseColVector&);

};

21

2.6 Matrices

General Description:

Matrix is a general matrix object with data shared by specific matrix types,
sparse or dense, row or column. A matrix has two integer data, numRows,
the number of rows, and numCols, the number of columns. The two integers
are protected and can only be accessed through the member functions of the
matrix.

There are two member functions open to public. One is getNumRows
() and the other getNumCols (). They can be called to obtain the numbers
of rows and columns of the matrix.

A Matrix can be of int, float, or double types. We define Matrix as a
template with its type as a parameter.

C++ Definition:

template <class Type>

class Matrix {

public:

// Member Functions:

int getNumRows ();

int getNumCols ();

protected:

// Internal Data:

int numRows;

int numCols;

};

22

2.7 Dense-Row-Matrices

General Description:

DenseRowMatrix is a matrix subclass. Every matrix subclass has an array
of vectors. They are the row vectors of the matrix if the matrix is a row
matrix, or the column vectors if the matrix is a column matrix. If the matrix
is sparse, the vectors must also be sparse. DenseRowMatrix is a row
matrix with an array of dense row vectors.

The vectors of a matrix, row or column, can be accessed to by using
operator []. Let A be a matrix. Then, A[i] returns the ith row or column of
A. Since A[i] is a vector. The element within the vector can be accessed to
as a general vector element. Therefore, A[i][j] is the jth nonzero element of
the ith row or column vector of A, and A[i](j) is the index of A[i][j] in A[i].

Every matrix subclass has a number of member functions used for basic
arithmetic operations upon the matrix objects. They include matrix addi-
tion, subtraction, and multiplication, matrix-vector multiplication, etc. We
implement the operations by using the conventional operators +, −, and ∗.
They are overloaded for different matrix subclasses.

There are also some other types of member functions, basically used for
changing the storage format of the matrix, for example, changing a row
matrix to a column matrix, or a sparse matrix to a dense matrix, or vice
versa.

A matrix subclass can also be of int, float, or double types. We define a
matrix subclass as a template with its type as a parameter.

C++ Definition:

template <class Type>

class DenseRowMatrix : public Matrix<Type> {

public:

// matrix operations:

// default constructuors:

23

DenseRowMatrix (const int = 1, const int = 1);

DenseRowMatrix (const DenseRowMatrix&);

DenseRowMatrix

(const int, const int, const DenseRowVector<Type>*);

~DenseRowMatrix () { delete [] array; }

// other operations:

DenseRowMatrix& operator = (const DenseRowMatrix&);

DenseRowVector<Type>& operator [] (const int);

friend DenseRowMatrix operator + (const DenseRowMatrix&);

friend DenseRowMatrix operator - (const DenseRowMatrix&);

friend DenseRowMatrix operator +

(const DenseRowMatrix&, const DenseRowMatrix&);

friend DenseRowMatrix operator -

(const DenseRowMatrix&, const DenseRowMatrix&);

friend DenseRowMatrix operator +

(const DenseRowMatrix&, const SparseRowMatrix<Type>&);

friend DenseRowMatrix operator - (

const DenseRowMatrix&, const SparseRowMatrix<Type>&);

friend DenseRowMatrix operator +

(const SparseRowMatrix<Type>&, const DenseRowMatrix&);

friend DenseRowMatrix operator -

(const SparseRowMatrix<Type>&, const DenseRowMatrix&);

friend DenseRowMatrix operator *

(const Type, const DenseRowMatrix&);

friend DenseRowMatrix operator *

(const DenseRowMatrix&, const Type);

24

// matrix functions:

friend DenseColVector<Type> operator *

(const DenseRowMatrix&, const DenseColVector<Type>&);

friend DenseColVector<Type> operator *

(const DenseRowMatrix&, const SparseColVector<Type>&);

friend DenseRowMatrix operator *

(const DenseRowMatrix&, const DenseColMatrix<Type>&);

friend DenseColMatrix<Type> operator *

(const DenseColMatrix<Type>&, const DenseRowMatrix&);

friend DenseRowMatrix operator *

(const DenseRowMatrix&, const SparseColMatrix<Type>&);

friend DenseColMatrix<Type> operator *

(const SparseColMatrix<Type>&, const DenseRowMatrix&);

friend DenseRowMatrix trans (const DenseColMatrix<Type>&);

friend DenseColMatrix<Type> trans (const DenseRowMatrix&);

friend DenseRowMatrix

col2row (const DenseColMatrix<Type>&);

friend DenseColMatrix<Type>

row2col (const DenseRowMatrix&);

friend DenseRowMatrix

sparse2dense (const SparseRowMatrix<Type>&);

friend SparseRowMatrix<Type>

dense2sparse (const DenseRowMatrix&);

protected:

DenseRowVector<Type> *array;

};

25

2.8 Dense-Column-Matrices

General Description:

DenseColMatrix has a similar structure as DenseRowMatrix except that
it is considered as a matrix with a set of column vectors. In SMV, the
two classes of matrices are different types of objects. Row matrices cannot
add or subtract column matrices. A row matrix times a column matrix
is implemented through vector inner-product, while the other way around
through vector outer-product.

C++ Definition:

template <class Type>

class DenseColMatrix : public Matrix<Type> {

public:

// matrix operations:

// default constructuors:

DenseColMatrix (const int = 1, const int = 1);

DenseColMatrix (const DenseColMatrix&);

DenseColMatrix

(const int, const int, const DenseColVector<Type>*);

~DenseColMatrix () { delete [] array; }

// other operations:

DenseColMatrix& operator = (const DenseColMatrix&);

DenseColVector<Type>& operator [] (const int);

friend DenseColMatrix operator + (const DenseColMatrix&);

26

friend DenseColMatrix operator - (const DenseColMatrix&);

friend DenseColMatrix operator +

(const DenseColMatrix&, const DenseColMatrix&);

friend DenseColMatrix operator -

(const DenseColMatrix&, const DenseColMatrix&);

friend DenseColMatrix operator +

(const DenseColMatrix&, const SparseColMatrix<Type>&);

friend DenseColMatrix operator -

(const DenseColMatrix&, const SparseColMatrix<Type>&);

friend DenseColMatrix operator +

(const SparseColMatrix<Type>&, const DenseColMatrix&);

friend DenseColMatrix operator -

(const SparseColMatrix<Type>&, const DenseColMatrix&);

friend DenseColMatrix operator *

(const Type, const DenseColMatrix&);

friend DenseColMatrix operator *

(const DenseColMatrix&, const Type);

// matrix functions:

friend DenseRowVector<Type> operator *

(const DenseRowVector<Type>&, const DenseColMatrix&);

friend DenseRowVector<Type> operator *

(const SparseRowVector<Type>&, const DenseColMatrix&);

friend DenseColMatrix operator *

(const DenseColMatrix&, const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type> operator *

(const DenseRowMatrix<Type>&, const DenseColMatrix&);

friend DenseRowMatrix<Type> operator *

(const DenseColMatrix&, const SparseRowMatrix<Type>&);

friend DenseRowMatrix<Type> operator *

(const SparseRowMatrix<Type>&, const DenseColMatrix&);

27

friend DenseColMatrix operator *

(const DenseColVector<Type>&, const DenseRowVector<Type>&);

friend DenseColMatrix trans (const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type> trans (const DenseColMatrix&);

friend DenseColMatrix

row2col (const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type>

col2row (const DenseColMatrix&);

friend DenseColMatrix

sparse2dense (const SparseColMatrix<Type>&);

friend SparseColMatrix<Type>

dense2sparse (const DenseColMatrix&);

protected:

DenseColVector<Type> *array;

};

28

2.9 Sparse-Row-Matrices

General Description:

SparseRowMatrix is similar to DenseRowMatrix except that the row
vectors are sparse. In other words, it is defined in terms of SparseRowVec-
tor.

C++ Definition:

template <class Type>

class SparseRowMatrix : public Matrix<Type>

{

public:

// matrix operations:

// default constructuors:

SparseRowMatrix (const int = 1, const int = 1);

SparseRowMatrix (const SparseRowMatrix&);

SparseRowMatrix

(const int, const int, const SparseRowVector<Type>*);

~SparseRowMatrix () { delete [] array; }

// other operations:

SparseRowMatrix& operator = (const SparseRowMatrix&);

SparseRowVector<Type>& operator [] (const int);

friend SparseRowMatrix operator + (const SparseRowMatrix&);

friend SparseRowMatrix operator - (const SparseRowMatrix&);

29

friend SparseRowMatrix operator +

(const SparseRowMatrix&, const SparseRowMatrix&);

friend SparseRowMatrix operator -

(const SparseRowMatrix&, const SparseRowMatrix&);

friend DenseRowMatrix<Type> operator +

(const SparseRowMatrix&, const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type> operator -

(const SparseRowMatrix&, const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type> operator +

(const DenseRowMatrix<Type>&, const SparseRowMatrix&);

friend DenseRowMatrix<Type> operator -

(const DenseRowMatrix<Type>&, const SparseRowMatrix&);

friend SparseRowMatrix operator *

(const Type, const SparseRowMatrix&);

friend SparseRowMatrix operator *

(const SparseRowMatrix&, const Type);

// matrix functions:

friend DenseColVector<Type> operator *

(const SparseRowMatrix&, const DenseColVector<Type>&);

friend SparseColVector<Type> operator *

(const SparseRowMatrix&, const SparseColVector<Type>&);

friend DenseRowMatrix<Type> operator *

(const SparseRowMatrix&, const DenseColMatrix<Type>&);

friend DenseRowMatrix<Type> operator *

(const DenseColMatrix<Type>&, const SparseRowMatrix&);

friend SparseRowMatrix operator *

(const SparseRowMatrix&, const SparseColMatrix<Type>&);

friend SparseRowMatrix operator *

(const SparseColMatrix<Type>&, const SparseRowMatrix&);

friend SparseRowMatrix operator *

30

(const SparseColVector<Type>&, const SparseRowVector<Type>&);

friend SparseRowMatrix operator *

(const DenseColVector<Type>&, const SparseRowVector<Type>&);

friend SparseRowMatrix trans (const SparseColMatrix<Type>&);

friend SparseColMatrix<Type> trans (const SparseRowMatrix&);

friend SparseRowMatrix

col2row (const SparseColMatrix<Type>&);

friend SparseColMatrix<Type>

row2col (const SparseRowMatrix&);

friend DenseRowMatrix<Type>

sparse2dense (const SparseRowMatrix&);

friend SparseRowMatrix

dense2sparse (const DenseRowMatrix<Type>&);

protected:

SparseRowVector<Type> *array;

};

31

2.10 Sparse-Column-Matrices

General Description:

SparseColMatrix is similar to DenseColMatrix except that it is a sparse
matrix. It is defined in terms of SparseColVector, and is a column matrix
with sparse column vectors.

C++ Definition:

template <class Type>

class SparseColMatrix : public Matrix<Type>

{

public:

// matrix operations:

// default constructuors:

SparseColMatrix (const int = 1, const int = 1);

SparseColMatrix (const SparseColMatrix&);

SparseColMatrix

(const int, const int, const SparseColVector<Type>*);

~SparseColMatrix () { delete [] array; }

// other operations:

SparseColMatrix& operator = (const SparseColMatrix&);

SparseColVector<Type>& operator [] (const int);

friend SparseColMatrix operator + (const SparseColMatrix&);

friend SparseColMatrix operator - (const SparseColMatrix&);

friend SparseColMatrix operator +

32

(const SparseColMatrix&, const SparseColMatrix&);

friend SparseColMatrix operator -

(const SparseColMatrix&, const SparseColMatrix&);

friend DenseColMatrix<Type> operator +

(const SparseColMatrix&, const DenseColMatrix<Type>&);

friend DenseColMatrix<Type> operator -

(const SparseColMatrix&, const DenseColMatrix<Type>&);

friend DenseColMatrix<Type> operator +

(const DenseColMatrix<Type>&, const SparseColMatrix&);

friend DenseColMatrix<Type> operator -

(const DenseColMatrix<Type>&, const SparseColMatrix&);

friend SparseColMatrix operator *

(const Type, const SparseColMatrix&);

friend SparseColMatrix operator *

(const SparseColMatrix&, const Type);

// matrix functions:

friend DenseRowVector<Type> operator *

(const DenseRowVector<Type>&, const SparseColMatrix&);

friend SparseRowVector<Type> operator *

(const SparseRowVector<Type>&, const SparseColMatrix&);

friend DenseColMatrix<Type> operator *

(const SparseColMatrix&, const DenseRowMatrix<Type>&);

friend DenseRowMatrix<Type> operator *

(const DenseRowMatrix<Type>&, const SparseColMatrix&);

friend SparseRowMatrix<Type> operator *

(const SparseColMatrix&, const SparseRowMatrix<Type>&);

friend SparseRowMatrix<Type> operator *

(const SparseRowMatrix<Type>&, const SparseColMatrix&);

friend SparseColMatrix operator *

(const SparseColVector<Type>&, const DenseRowVector<Type>&);

33

friend SparseColMatrix trans (const SparseRowMatrix<Type>&);

friend SparseRowMatrix<Type> trans (const SparseColMatrix&);

friend SparseRowMatrix<Type>

col2row (const SparseColMatrix&);

friend SparseColMatrix

row2col (const SparseRowMatrix<Type>&);

friend DenseColMatrix<Type>

sparse2dense (const SparseColMatrix&);

friend SparseColMatrix

dense2sparse (const DenseColMatrix<Type>&);

protected:

SparseColVector<Type> *array;

};

34

Chapter 3

Example Programs

35

3.1 Vector Inner Product

// A driver program for computing the inner product of two

// randomly generated vectors.

#include "smv.h"

main ()

{

int n = 100000; // vector dimension

int nsU = 10000, nsV = 10000; // nonzero elements

// temporary variables:

float drdcUV, drscUV, srdcUV, srscUV;

// vector classes:

DenseRowVector<float> drU (n);

DenseColVector<float> dcV (n);

SparseRowVector<float> srU (n,nsU);

SparseColVector<float> scV (n,nsV);

// generate vectors:

srand (100);

for (int i = 0; i < n; i++)

drU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

dcV [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

srU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV [i] = (float) 100 * rand () / (32 * 1024);

36

for (int i = 0; i < nsU; i++)

srU (i) = 10 * i + 10 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV (i) = 10 * i + 10 * rand () / (32 * 1024);

// the inner-product of a dense row vector and a dense

// column vector:

drdcUV = drU * dcV;

// the inner-product of a dense row vector and a sparse

// column vector:

drscUV = drU * scV;

// the inner-product of a sparse row vector and a dense

// column vector:

srdcUV = srU * dcV;

// the inner-product of a sparse row vector and a sparse

// column vector:

srscUV = srU * scV;

}

37

3.2 Saxpy

// A driver program for saxpy operation, u + alpha * v,

// where u and v are vectors and alpha a scaler.

#include "smv.h"

main ()

{

int n = 1000; // vector dimension

int nsU = 40, nsV = 50, nsUV = 100; // nonzero elements

float alpha; // a scaler

// vector classes:

DenseRowVector<float> drU (n), drV (n), drUV (n);

DenseColVector<float> dcU (n), dcV (n), dcUV (n);

SparseRowVector<float>

srU (n, nsU), srV (n, nsV), srUV (n, nsUV);

SparseColVector<float>

scU (n, nsU), scV (n, nsV), scUV (n, nsUV);

// generate vectors:

srand (100);

alpha = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

drU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

drV [i] = (float) 100 * rand () / (32 * 1024);

38

for (int i = 0; i < n; i++)

dcU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

dcV [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

srU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

srV [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

srU (i) = 25 * i + 25 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

srV (i) = 20 * i + 20 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

scU [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV [i] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

scU (i) = 25 * i + 25 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV (i) = 20 * i + 20 * rand () / (32 * 1024);

// saxpy of two dense row vectors:

drUV = drU + alpha * drV;

// saxpy of two dense column vectors:

dcUV = dcU + alpha * dcV;

// saxpy of two sparse row vectors:

srUV = srU + alpha * srV;

// saxpy of two sparse column vectors:

scUV = scU + alpha * scV;

39

// saxpy of a dense row vector and a sparse row vector:

drUV = drU + alpha * srV;

// saxpy of a dense column vector and a sparse

// column vector:

dcUV = dcU + alpha * scV;

// saxpy of a sparse row vector and a dense row vector:

drUV = srU + alpha * drV;

// saxpy of a sparse column vector and a dense

// column vector:

dcUV = scU + alpha * dcV;

}

40

3.3 Matrix Multiplication

// A driver program for matrix-matrix multiplication.

#include "smv.h"

main ()

{

int n = 100; // matrix dimension

// matrix classes:

DenseRowMatrix<float> drA (n, n), drAB (n, n);

DenseColMatrix<float> dcB (n, n);

SparseRowMatrix<float> srA (n, n), srAB (n, n);

SparseColMatrix<float> scB (n, n);

// allocate memory:

for (int i = 0; i < n; i++)

drA [i] = * new DenseRowVector<float> (n);

for (int i = 0; i < n; i++)

dcB [i] = * new DenseColVector<float> (n);

for (int i = 0; i < n; i++)

srA [i] = * new SparseRowVector<float> (n, n/5);

for (int i = 0; i < n; i++)

scv [i] = * new SparseColVector<float> (n, n/5);

// generate matrices:

srand (100);

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

41

drA [i][j] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

dcB [i][j] = (float) 100 * rand () / (32 * 1024);

for (int i = 0; i < n; i++) {

for (int j = 0; j < n/5; j++)

srA [i][j] = (float) 100 * rand () / (32 * 1024);

for (int j = 0; j < n/5; j++)

srA [i](j) = 5 * j + 5 * rand () / (32 * 1024);

}

for (int i = 0; i < n; i++) {

for (int j = 0; j < n/5; j++)

scB [i][j] = (float) 100 * rand () / (32 * 1024);

for (int j = 0; j < n/5; j++)

scB [i](j) = 5 * j + 5 * rand () / (32 * 1024);

}

// a dense row matrix times a dense column matrix:

drAB = drA * dcB;

// a dense row matrix times a sparse column matrix:

drAB = drA * scB;

// a sparse row matrix times a dense column matrix:

drAB = srA * dcB;

// a sparse row matrix times a sparse column matrix:

srAB = srA * scB;

}

42

3.4 Gaxpy

// a driver program for gaxpy operation, u + A * v,

// where u and v are two vectors and A a matrix.

#include "smv.h"

main ()

{

int n = 100; // vector and matrix dimension

int nsU = 20, nsV = 20, nsUV = 100; // nonzero elements

// vector and matrix classes:

DenseRowVector<float> drU (n), drV (n), drUV (n);

DenseColVector<float> dcU (n), dcV (n), dcUV (n);

SparseRowVector<float> srU (n, nsU), srV (n, nsV), srUV (n, nsUV);

SparseColVector<float> scU (n, nsU), scV (n, nsV), scUV (n, nsUV);

DenseRowMatrix<float> drA (n, n);

DenseColMatrix<float> dcA (n, n);

// allocate memory:

for (int i = 0; i < n; i++)

drA [i] = * new DenseRowVector<float> (n);

for (int i = 0; i < n; i++)

dcA [i] = * new DenseColVector<float> (n);

for (int i = 0; i < n; i++)

srA [i] = * new SparseRowVector<float> (n, n/5);

for (int i = 0; i < n; i++)

scA [i] = * new SparseColVector<float> (n, n/5);

// generate vectors and matrices:

43

srand (100);

for (int i = 0; i < n; i++)

drU [i] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

dcV [i] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

srU [i] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV [i] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < nsU; i++)

srU (i) = 5 * i + 5 * rand () / (32 * 1024);

for (int i = 0; i < nsV; i++)

scV (i) = 5 * i + 5 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j ++)

drA [i][j] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j ++)

dcA [i][j] = (float) 10 * rand () / (32 * 1024);

for (int i = 0; i < n; i++) {

for (int j = 0; j < n/5; j++)

srA [i][j] = (float) 10 * rand () / (32 * 1024);

for (int j = 0; j < n/5; j++)

srA [i](j) = 5 * j + 5 * rand () / (32 * 1024);

}

for (int i = 0; i < n; i++) {

for (int j = 0; j < n/5; j++)

scA [i][j] = (float) 10 * rand () / (32 * 1024);

for (int j = 0; j < n/5; j++)

44

scA [i](j) = 5 * j + 5 * rand () / (32 * 1024);

}

// a dense row vector plus a dense row vector times

// a dense column matrix:

drUV = drU + drV * dcA;

// a dense column vector plus a dense row matrix times

// a dense column vector:

dcUV = dcU + drA * dcV;

// a sparse row vector plus a sparse row vector times

// a sparse column matrix:

srUV = srU + srV * scA;

// a sparse column vector plus a sparse row matrix times

// a sparse column vector:

scUV = scU + srA * scV;

// a dense row vector plus a sparse row vector times

// a dense column matrix:

drUV = drU + srV * dcA;

// a dense column vector plus a dense row matrix times

// a sparse column vector:

dcUV = dcU + drA * scV;

// a sparse row vector plus a dense row vector times

// a sparse column matrix:

drUV = srU + drV * scA;

// a sparse column vector plus a sparse row matrix times

// a dense column vector:

dcUV = scU + srA * dcV;

}

45

Chapter 4

Future Development

46

4.1 Performance Issues

In the initial version of SMV, we have implemented all vector as well as matrix
level computation with our own routines. Some of them, especially those
for dense computation, may actually be called directly from some existing
libraries such as LAPACK. Since the routines in these libraries have been well
tuned, they usually perform more efficiently. We made SMV independent of
other software packages first. In future, we may consider either improving the
performance of SMV routines, or replacing them with some existing libraries.

For sparse computation, sometimes, it is better to transform sparse vec-
tors to dense vectors and then perform regular dense computation on them.
Better performance can be achieved this way since we do not need to do the
extra work associated with sparse computation while being able to take ad-
vantage of dense vector computation in cache access and vector processing.
However, in current implementation of SMV, we have not implemented any
sparse-to-dense or dense-to-sparse transformation for our sparse calculations.
We will address the issue in our future work.

Another performance issue related to current implementation of SMV is
that we have overloaded a number of arithmetic operators such as +, −, and
∗. Some of these operators require a temporary storage to keep the returning
object. When the object is a vector or matrix, not only is a big storage space
required but also extra work to move the data. If the operators are called
multiple times, the overhead can be large. From our experiments, we have
not seen that current C++ compiler can help optimize the the code and
reduce the cost.

4.2 Parallelization

Besides sparse computation, another issue that SMV is intended to address is
automatic parallelization. By automatic parallelization we mean that users
do not need to know how or where to parallelize certain part of the code,
but just focus on the required vector or matrix computation. This can be
done in SMV straightforwardly since calculations in SMV, sparse as well as
parallel, can all be implemented inside of the vector or matrix objects, and
users call member operators or functions without worrying about whether or
not they require sparse or parallel computation and how they can do it.

47

Inside of the vector or matrix objects, related calculations can be paral-
lelized as necessary. They can be done either manually or by using a parallel
compiler. In the current version of SMV, we have not implemented any
parallel code, but in future, we will consider parallelizing the dense as well
as sparse calculations involved in SMV. Since sparse calculation is hard to
parallelize, we will most likely rely on using a parallel compiler.

4.3 Object-Oriented Optimization

The goal of SMV is to provide matrix-vector level support for objected-
oriented optimization. Therefore, the objects and related calculations in
SMV are limited to this purpose. Still, some calculations are to be included
such as matrix-vector functions sum, max, min, and norm, point-wise
vector or matrix multiplication, matrix decomposition, etc.

As our first effort towards object-oriented optimization, we will consider
using SMV to implement an object-oriented code for solving simple linear
programming and linearly constrained least-squares problems using an inte-
rior point method. This, in particular, will require a sparse Cholesky factor-
ization routine to be developed for matrix objects.

48

