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Abstract

It is well-known by now that `1 minimization can help recover sparse solutions to

under-determined linear equations or sparsely corrupted solutions to over-determined

equations, and the two problems are equivalent under appropriate conditions. So far

almost all theoretic results have been obtained through studying the “under-determined

side” of the problem. In this note, we take a different approach from the “over-

determined side” and show that a recoverability result (with the best available order)

follows almost immediately from an inequality of Garnaev and Gluskin. We also connect

dots with recoverability conditions obtained from different spaces.

1 Introduction

Let us consider the `1-norm approximation of an over-determined linear system:

(O1) : min
x∈<p

‖AT x − b ‖1 (1)

where A ∈ <p×n with p < n and b ∈ <n, and the minimum `1-norm solution to an under-

determined linear system:

(U1) : min
y∈<n

{‖y‖1 : By = c} (2)

where B ∈ <q×n with q < n and c ∈ <q. To avoid trivial cases, we always assume that b

and c are nonzero vectors. Let h be a sparse vector, and

b = AT x̂ + h, c = Bh. (3)
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The solution recovery problems associated with (O1), also callederror-correction, is to re-

cover x̂ for all sufficiently sparse vectors h. On the other hand, the problem associated

with (U1), also called sparse basis selection among many names, is to recover the vector

h whenever it is sufficiently sparse. These two problems are equivalent under appropriate

conditions [4] (see also [14]). We present here a formal statement as given in [16].

Proposition 1 (Equivalence). Let both A ∈ <p×n and B ∈ <q×n be of full-rank with

p + q = n. Then (O1) and (U1) are equivalent if and only if

ABT = 0 and c = Bb. (4)

Under this equivalence, if x∗ solves (O1), then b−AT x∗ solves (U1); and if y∗ solves (U1),

then (AAT )−1A(b − y∗) solves (O1).

These solution-recovery problems have recently been studied by a number of authors

(for example, see [1, 2, 3, 4, 5, 6, 14, 15]), and many intriguing results have been obtained.

1.1 Notations

By a partition (S,Z), we mean a partition of the index set {1, 2, · · · , n} into two disjoint

subsets S and Z so that S ∪Z = {1, 2, · · · , n} and S ∩Z = ∅. In particular, for any h ∈ <n,

the partition (S(h), Z(h)) refers to the support S(h) of h and its complement – the zero set

Z(h); namely,

S(h) = {i : hi 6= 0, 1 ≤ i ≤ n}, Z(h) = {i : hi = 0, i = 1 ≤ i ≤ n}. (5)

We will occasionally omit the dependence of a partition (S,Z) on h when it is clear from

the context.

For any index subset J ⊂ {1, 2, · · · , n}, |J | is the cardinality of J . For any matrix

A ∈ <p×n and any index subset J , AJ ∈ <p×|J | denotes the sub-matrix of A consisting of

those columns of A whose indices are in J . For a vector v ∈ <n, similarly, vJ denotes the

sub-vector of v with those components whose indices are in J .

We call a vector a binary vector if all its components take value either −1 or +1 (not

zero or one). We use Bk to denote the set of all binary vectors in <k.

We use range(·) to denote the range space of a matrix and conv(·) the convex hull of a

set of points.
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2 A Recoverability Result

By recoverability, we mean that for b = AT x̂ + h, x̂ and h uniquely solve (O1) and (U1),

respectively. For notational convenience, let us define

φ(t) :=
t

1 − log(t)
, t ∈ (0, 1]. (6)

Obviously, φ(t) ≤ 1 for t ∈ (0, 1], limt→0 φ(t) = 0, φ(1) = 1, and the function is monotone.

Theorem 1. For any natural numbers p and n with p < n, there exists a set of p-

dimensional subspaces of <n (with a positive measure in Grassmanian) that has the fol-

lowing property. Let the rows of A ∈ <p×n span a p-dimensional subspace in this set and

b = AT x̂ + h with |S(h)| = k. Then x̂ and h uniquely solve (O1) and (U1), respectively,

whenever

k < αφ

(

n − p

n

)

n, (7)

where α > 0 is an absolute constant independent of p and n. In the case of n = 2p, the

recoverability holds whenever

k <
p

384
. (8)

In Theorem 1, the terms on the right-hand sides of the inequalities serve as lower bounds

on the maximal sparsity levels of h that allow recoverability. Unlike previously obtained

bounds, the bounds in Theorem 1 are completely deterministic. These results are existence

results, though, that do not give any concrete construction of a desirable subspace. The

general bound in (7) unfortunately involves a unknown constant.

The bounds in Theorem 1 are not tighter than the existing probabilistic bounds as far

as the order is concerned. A number of probabilistic results have been obtained [3, 4, 6, 14]

stating that recoverability holds in high probability for random matrices if k does not exceed

a fixed fraction of n and p/n remains a constant. Though, the bound in (8) for the case of

n = 2p appears tighter than currently available probabilistic ones. For instance, a bound

of k < p/3000 was given by Candes and Tao [4, Theorem 1.3] for this case which holds in

an overwhelming probability.

In the next section, we show that Theorem 1 is an immediate consequence of the following

specialization of a result by Garnaev and Gluskin [11] (which was an improvement to an

earlier result of Kasin [12]).

Lemma 1 (Garnaev-Gluskin). For any natural numbers p and n with p < n, there exists

a set of p-dimensional subspaces (with a positive measure in Grassmanian) of <n that has
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the following property. For any p-dimensional subspace A in this set,

‖v‖2 ≤ β

√

1 + log(n/(n − p))

n − p
‖v‖1, ∀v ∈ A, (9)

where β > 0 is an absolute constant independent of p and n.

3 A Simple Proof

We first need to make a crucial, yet extremely elementary, observation in Lemma 2 below.

Then Theorem 1 will follow immediately from (9) via some simple arguments (also used by

Linial and Novik [13] to prove a seemingly unrelated, yet in fact closed connected, result,

as explained in the next section).

Lemma 2. Given b = AT x̂ + h, the vector x̂ solves (O1) for all h with |S(h)| ≤ k if and

only if for all partitions (S,Z) with |S| = k,

‖vS‖1 ≤ ‖vZ‖1, ∀ v ∈ range
(

AT
)

. (10)

In addition, x̂ is always the unique solution if and only if the strict inequality holds.

Proof. Let |S(h)| ≤ k and v = AT (x − x̂) for an arbitrary x ∈ <p. Then

‖AT x − b‖1 = ‖AT (x − x̂) − h‖1 = ‖v − h‖1

= ‖hS − vS‖1 + ‖vZ‖1

≥ ‖hS‖1 − ‖vS‖1 + ‖vZ‖1

= ‖h‖1 + (‖vZ‖1 − ‖vS‖1)

≡ ‖AT x̂ − b‖1 + (‖vZ‖1 − ‖vS‖1).

Therefore, x̂ is a minimizer if ‖vZ‖1 ≥ ‖vS‖1 and a unique minimizer if the strict inequality

holds. This establishes the sufficiency.

On the other hand, for any given x ∈ <p, there are many h ∈ <n with |S(h)| = k such

that the inequality

‖hS − vS‖1 ≥ ‖hS‖1 − ‖vS‖1,

holds as an equality, as long as the components of hS are chosen to have the same signs

as and the same or larger magnitudes than the corresponding components of vS . This

establishes the necessity, and completes the proof.
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In view of Lemma 2, to prove Theorem 1 it suffices to show for some matrix A that

corresponding to any partition (S,Z) with |S| = k,

‖vS‖1 <
1

2
‖v‖1, ∀ v ∈ range

(

AT
)

,

which is clearly equivalent to the strict inequality in (10). Let A be a matrix so that AT

spans a subspace satisfying (9) in Lemma 1. Then

‖vS‖1 ≤
√

k‖vS‖2 ≤
√

k‖v‖2 ≤
√

kβ

√

1 + log(n/(n − p))

n − p
‖v‖1.

The right-most side in the above is less than (1/2)‖v‖1 if

√
k <

1

2β

√

n − p

1 + log(n/(n − p))
,

which is equivalent to (7) with α = 1/(4β2) > 0.

To prove (8), we again follow an argument used in [13]. A result by Kasin [12] implies

the existence of an orthogonal transformation U in <p such that (see equations (2) and (3)

in [13])

‖x‖2 ≤ 8e/π√
p

(‖UT x‖1 + ‖x‖1). (11)

Let A = [U I] ∈ <p×2p and v = AT x. Then by (11)

‖v‖2 =
√

2‖x‖2 ≤
√

2
8e/π√

p
(‖UT x‖1 + ‖x‖1) =

23.5e/π√
p

‖v‖1. (12)

Now we can verify (8) in the same way as we did with (7) except that the inequality (12)

is used in place of (9). The number 384 comes from the fact that 29e2/π2 < 384. This

completes the proof.

4 Recoverability Conditions in Different Spaces

Much has been learned so far about the necessary and sufficient conditions for recoverability.

In this section, we will try to give a “global picture” for these conditions by showing the

equivalence of three recoverability conditions as listed in Table 1. We first need to define

the terminologies used in the table.

Definition 1 (k-balancedness, k-thickness and k-neighborliness).

(1) A subspace A ⊂ <n is k-balanced (in `1-norm) if for any partition (S,Z) with |S| = k

‖vS‖1 ≤ ‖vZ‖1, ∀ v ∈ A.
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It is strictly k-balanced if the strict inequality holds.

(2) A subspace of <n is k-thick if it intersects with all the (n− k)-dimensional faces (or

simply (n − k)-faces) of the unit cube {v ∈ <n : ‖v‖∞ ≤ 1}. It is strictly k-thick if all the

intersections lie in the relative interiors of the the (n − k)-faces.

(3) Let B := [b1 · · · bn] ∈ <q×n be of full rank q < n. The polytope

Pc(B) := conv({±bj : j = 1, 2, · · · , n}) ⊂ <q (13)

is called (centrally) k-neighborly if every set of k vertices of Pc(B) not including any an-

tipodal pair is the vertex set for a face of Pc(B).

A precise statement for the equivalence of recoverability conditions in Table 1 will be

presented in Theorem 2. Recall that by recoverability, we mean a necessary and sufficient

condition for uniquely recovering x̂ by solving (O1) or h by solving (U1).

Table 1: Equivalent Recoverability Conditions for Different Spaces

Space Condition

range(AT ) ⊂ <n being strictly k-balanced

range(BT ) ⊂ <n being strictly k-thick

range(B) = <q Pc(B) being k-neighborly

It is not difficult to verify that the null space of A is k-thick if and only if for any u ∈ Bk

min
v∈<n

{‖v‖∞ : Av = 0, vS = u} ≤ 1,

and is strictly k-thick if and only if the strict inequality holds (see [16]).

Lemma 3. Let A ∈ <p×n (p < n) and (S,Z) be a partition with |S| = k, then

max
u∈Bk

min
v∈<n

{‖v‖∞ : Av = 0, vS = u} = max
x∈<p

{‖vS‖1

‖vZ‖1

: v = AT x

}

. (14)

Consequently, let A = range(AT ) and A⊥ be its orthogonal complement, then

A is (strictly) k-balanced ⇐⇒ A
⊥ is (strictly) k-thick. (15)
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Proof. First observe that for any binary vector u ∈ Bk,

min
w

{‖w‖∞ : AZw + ASu = 0} = min
w

{ξ : AZw = −ASu, ‖w‖∞ ≤ ξ}

= max
x

{(−ASu)T x : ‖AT
Zx‖1 ≤ 1}

= max
x

{(−AT
Sx)T u : ‖AT

Zx‖1 = 1}

≤ max
x

{‖AT
Sx‖1 : ‖AT

Zx‖1 = 1}

= max
x 6=0

{‖AT
Sx‖1/‖AT

Zx‖1},

where we have used an equivalent conic program in the first equality and its dual in the

second. This shows that the left-hand side of (14) is less than or equal to the right-hand side.

On the other hand, if x∗ is a solution to the right-hand side of (14), then u = sign(−AT
Sx∗),

which is in Bk, attains the equality. Therefore, (14) holds. Finally, (15) follows readily from

(14).

The polytope Pc(B) defined in (13) is centrally symmetric, i.e., z ∈ Pc(B) implies −z ∈
Pc(B) as well. Recently, Donoho et al [7, 8, 9, 10] have extensively studied the connections

between solution recovery for the under-determined problem (U1) and the k-neighborliness

of Pc(B). In particular, Donoho [7, Theorem 1] has shown that, for any c = Bh, solving

(U1) recovers all h with |S(h)| ≤ k if and only if Pc(B) is a k-neighborly polytope of 2n

vertices. We refer to their works (also that of Linial and Novik [13]) for detailed discussions

and further references on the topic of neighborliness of centrally symmetric polytopes.

Theorem 2. Let A ∈ <p×n and B ∈ <q×n be full rank such that p + q = n and ABT = 0.

Let b = AT x̂ + h and c = Bb. Then for any h with |S(h)| ≤ k, x̂ and h uniquely solve (O1)

and (U1), respectively, if and only if one of the following three equivalent conditions holds:

(1) range(AT ) ⊂ <n is strictly k-balanced; or (2) range(BT ) ⊂ <n is strictly k-thick; or (3)

Pc(B) ⊂ <q is a k-neighborly polytope of 2n vertices.

Proof. By Proposition 1, the recoverability of (O1) is equivalent to that of (U1), which in

turn is equivalent to the k-neighborliness of Pc(B) [7, Theorem 1]. On the other hand, by

Lemma 2 the recoverability of (O1) is equivalent to the k-balancedness of range(AT ), which

in turn is equivalent to the k-thickness of range(BT ) by Lemma 3.

The equivalence between recoverability and the k-neighborliness of centrally symmetric

polytopes allows one to utilize results from one side to obtain results for the other side, as

was done in [7]. Theorem 1 in this paper could have been established by invoking the recent

result of Linial and Novik [13] on k-neighborliness of centrally symmetric polytopes and
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its equivalence to recoverability. However, our proof is more self-contained and elementary,

requiring only the Garnvaer-Gluskin inequality. Moreover, it has led to additional equiv-

alence relationships and possibly opened up opportunities to study the problem at hand

from different subspaces.

5 Concluding Remarks

The solution recovery problems have rich geometric, algebraic and combinatoric structures,

and can be approached from different perspectives and spaces. Unlike most existing treat-

ment, our derivations demonstrates the benefit of studying recoverability through examining

the over-determined system in addition to the under-determined one.
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