Generalized Conjugate Directions

J.E. Dennis, Jr.¹

and

Kathryn Turner²

Revised, May 1986

¹Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsored by NSF MCS81-16779, DOE DE-AS05-82ER13016, ARO DAAG-29-83-K-0035.

²Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. Research sponsored by ARO DAAG-29-83-K-0035.
Abstract

This paper presents a simple unifying framework for a wide class of conjugate directions algorithms whose iterates minimize some quadratic functional over a subspace. Our approach is motivated by its advantages for nonlinear minimization, but the purpose of this paper is to present the greatly simplified convergence analysis that results for the linear case.

Key words

Generalized conjugate directions methods, conjugate gradients, conjugate residuals, Krylov subspaces, iterative methods.
GENERALIZED CONJUGATE DIRECTIONS

Introduction

We present a simple unifying framework for a class of conjugate directions algorithms for the solution of the linear system

\[Ax = b, \text{ where } A \in \mathbb{R}^{n \times n} \text{ is large, sparse, and nonsingular.} \]

The class under consideration consists of algorithms that minimize an error functional over a subspace or affine space at each step. This class includes the standard and the preconditioned conjugate gradient algorithms, the conjugate residual algorithm, Craig's method, Elman's generalized conjugate residual algorithm, Vinsome's ORTHOMIN algorithm, the ORTHODIR algorithm of Young and Jea, the GMRES algorithm of Saad and Schultz, and the truncated algorithms ORTHOMIN\((k)\) and ORTHODIR\((s)\). The main point of this paper is that our approach leads to a single simple geometric theorem giving the standard convergence results for all the untruncated methods without the usual clutter of lemmas. Another theorem, which we give without proof because the proof is so similar, suffices for the truncated methods. Furthermore, this paper should help clear up the common misconceptions about the relationship between these methods and the Krylov subspace.

The approach we have taken in formulating the Generalized Conjugate Directions (GCD) algorithm is based on an idea suggested to us by Peter Huber, who reported finding it useful in practice for nonlinear problems. It is implicit in work by others as well, especially Miele and Cantrell (1969), Cantrell (1969), Cragg and Levy (1969), and Nazareth (1984). The idea is simple; its key feature is to take the inverse point of view to the usual one of generating conjugate directions and then minimizing in the last direction generated.

Our formulation is similar in spirit to Axelsson's generalized conjugate gradient algorithm, but there is an important difference: we have used a basis for the subspace over which minimization must be carried out at each step that allows us to explicitly solve the minimization problem
for the general case. Our formulation facilitates analysis of domains of convergence and the number of previous directions required to be saved for these algorithms. We show a q-linear convergence rate under a very mild hypothesis for the class of algorithms.

The conjugate directions formulation we use for solving a linear system is also applicable to the solution by conjugate directions of equality constrained quadratic programming problems, and we discuss this adaptation of the GCD algorithm.

The Generalized Conjugate Directions Algorithm

Our GCD algorithm is stated as a means of finding the minimizer of the quadratic

$$q(x) = \frac{1}{2} x^T H x - h^T x,$$

where we assume H is symmetric positive definite. Thus, $q(x)$ has a unique minimizer, and finding it is equivalent to finding the zero of

$$\nabla q(x) = H x - h.$$

To apply the algorithm to the solution of $Ax = b$, one may use $H = A$, $h = b$ if A is symmetric positive definite, or $H =ZA$, $h = Zb$, where Z is nonsingular and ZA is symmetric positive definite.

We use the notation

$$\bar{r}_k = -\nabla q(x_k) = h - H x_k$$

and

$$r_k = b - A x_k.$$

The minimizer of $q(x)$ is

$$x^* = H^{-1} h,$$

and the minimum value of $q(x)$ is

$$q(x^*) = -\frac{1}{2} h^T H^{-1} h.$$
We define $||x - x^*||_H^2 = (x - x^*)^T H (x - x^*)$, and note that

$$(x - x^*)^T H (x - x^*) = x^T Hz - 2x^T Hz^* + z^T Hz^* = 2[q(x) - q(x^*)],$$

so that minimizing $q(x)$ is equivalent to minimizing $||x - x^*||_H$.

The GCD algorithm produces a sequence p_1, p_2, \ldots of linearly independent, mutually H-conjugate ($p_i^T Hp_j = 0, \ i \neq j$) directions. Conceptually, we do not choose these directions. Rather, at each step of the algorithm, we choose a direction d_k in any manner whatever, requiring only that it not be orthogonal to the gradient of q at x_{k-1}. We determine the next iterate x_k as the minimizer of $q(x)$ in $sp\{p_1, \ldots, p_{k-1}, d_k\}$, the subspace spanned by $\{p_1, \ldots, p_{k-1}, d_k\}$, and define $p_k = x_k - x_{k-1}$. Clearly, the choice of d_k, which we now discard, determines p_k.

For ease of exposition, we use the initial guess $x_0 = 0$. This is not restrictive. If a better approximate solution, say \hat{x}, is known, the problem $Ax = b$ with initial guess \hat{x} can be solved by solving $A(x - \hat{x}) = b - A\hat{x}$ with initial guess 0. It will be useful to let $argmin_{x \in S} q(x)$ denote the minimizer of $q(x)$ on S. Our GCD algorithm is as follows.

Generalized Conjugate Directions Algorithm

\[
\begin{align*}
x_0 &= 0, \quad \bar{r}_0 = h, \quad k = 1. \\
\text{while } \bar{r}_{k-1} \neq 0 \quad \text{do} \\
\quad \text{get } d_k \text{ such that } d_k^T \bar{r}_{k-1} \neq 0 \\
\quad x_k &= \argmin_{x \in sp\{p_1, \ldots, p_{k-1}, d_k\}} q(x) \\
p_k &= x_k - x_{k-1} \\
\bar{r}_k &= \bar{r}_{k-1} - Hp_k \\
k &= k + 1 \\
\text{end do}
\end{align*}
\]
The GCD algorithm with choices of H, h, and d_k given in columns 3-5 in the following table is equivalent to the algorithms named in column 1.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Assumptions</th>
<th>H</th>
<th>h</th>
<th>d_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>A spd</td>
<td>A</td>
<td>b</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>CG applied to</td>
<td>A nonsing.</td>
<td>$A^T A$</td>
<td>$A^T b$</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>normal equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Craig's Method</td>
<td>A nonsing.</td>
<td>AA^T</td>
<td>b</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>CR</td>
<td>A spd</td>
<td>$A^T A$</td>
<td>$A^T b$</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>PCG</td>
<td>A spd</td>
<td>A</td>
<td>b</td>
<td>$M^{-1}r_{k-1}$</td>
</tr>
<tr>
<td>GCR</td>
<td>$A+A^T$ pd</td>
<td>$A^T A$</td>
<td>$A^T b$</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>ORTHOMIN</td>
<td>$A+A^T$ pd</td>
<td>$A^T A$</td>
<td>$A^T b$</td>
<td>r_{k-1}</td>
</tr>
<tr>
<td>ORTHODIR</td>
<td>use Z such that $Z+Z^T$ is pd and ZA is spd</td>
<td>ZA</td>
<td>Zb</td>
<td>$d_1=b$; for $k \geq 2$ $d_k=Ap_{k-1}$</td>
</tr>
<tr>
<td>GMRES</td>
<td>A nonsing.</td>
<td>$A^T A$</td>
<td>$A^T b$</td>
<td>$\in {v_1, \ldots, v_m}$</td>
</tr>
</tbody>
</table>

CG denotes the standard conjugate gradient algorithm, and CR denotes the conjugate residual algorithm. For the solution of the linear system $Ax=b$ using Craig's method, put $z=A^T y$ and solve $AA^T y = b$. The computation can be arranged so that iterates in y are not actually computed. PCG denotes the preconditioned conjugate gradient algorithm. To solve the linear system $Ax=b$ using the preconditioned conjugate gradient algorithm, one finds a nonsingular symmetric matrix C^{-1} such that $C^{-1}AC^{-1}$ is better conditioned than A, and transforms $Ax=b$ to $(C^{-1}AC^{-1})(Cz)=C^{-1}b$. The matrix M that appears in the choice of d_k for PCG is defined to be C^2, and is called the preconditioner. Vinsome's ORTHOMIN using all previous directions is equivalent to Elman's generalized conjugate residual algorithm, denoted GCR. The ORTHODIR algorithm as given by Young and Jea is stated as requiring only that Z be nonsingular and $(ZA)+(ZA)^T$ positive definite, but ORTHODIR is included in the class of algorithms under present consideration (those algorithms that minimize the error functional $||x-x^*||_H$ over a subspace or affine space at each step) only if ZA is symmetric positive definite. Young and Jea
require the symmetric part of Z positive definite in order to ensure $z_k \neq z_{k-1}$. We have included this condition here, and will first discuss the equivalence of ORTHODIR and GCD when this condition is satisfied. Later, we show a way of viewing the ORTHODIR algorithm in our framework when Z is just nonsingular. The GMRES algorithm of Saad and Schultz does not compute iterates x_k to approximate x^*. Instead, it builds an orthonormal basis $\{v_1, ..., v_m\}$ for the Krylov space $K(b, A, n) = sp\{b, Ab, ..., A^{n-1}b\}$ and, using this basis, determines the solution to $Ax = b$ as the minimizer of $\|Ax - b\|_2$ over $K(b, A, n)$. The vectors $\{v_i\}$ are determined by Arnoldi's method:

$$v_1 = \frac{b}{\|b\|};$$

for $j = 1, ..., m-1$

$$\hat{v}_{j+1} = Av_j - \sum_{i=1}^{j} v_i^T Av_j v_i$$

$$v_{j+1} = \frac{\hat{v}_{j+1}}{\|\hat{v}_{j+1}\|}.$$

The truncated algorithms ORTHOMIN(k) and ORTHODIR(s) are equivalent to GCD(m), which we define later, with the same choices of H, h, and d_k shown for ORTHOMIN and ORTHODIR, respectively.

Here is the first of our two main results. Notice that the Krylov subspace is totally separated from the convergence analysis for the general method. Of course, a choice of d_k that implies minimization on a Krylov subspace may greatly reduce the computational complexity of the associated method, as we shall show. Furthermore, the Krylov subspace is essential to the Chebyshev polynomial error analysis usually associated with such methods.

Theorem 1: If H is symmetric positive definite, then the following statements are true about the GCD algorithm:

(i) The algorithm terminates after no more than n steps, and terminates if and only if $z_{n+1} = z^*$.
(ii) \(x_k \) minimizes \(q(x) \) on \(sp\{p_1, \ldots, p_k\} \).

(iii) Every \(p_k \) generated by the algorithm is nonzero.

(iv) \(\overline{r}_k^T p_j = 0, \ 1 \leq j \leq k \)

(v) \(p_i^T H p_j = 0, \ i \neq j \)

(vi) \(\dim sp\{p_1, \ldots, p_k\} = k \)

(vii) \(p_i^T H p_i = p_i^T h \) for all \(i \)

If in addition \(d_k \in sp\{d_1, Bp_1, \ldots, Bp_{k-1}\} \) for some matrix \(B \), then

(viii) \(sp\{p_1, \ldots, p_k\} = K(d_1, B, k) \), so that \(x_k \) minimizes \(q(x) \) on \(K(d_1, B, k) \).

(ix) \(\overline{r}_k^T B p_i = 0, \ 1 \leq i \leq k-1. \)

Proof:

The algorithm can terminate only because some \(\overline{r}_{k-1} = 0 \). If \(0 = \overline{r}_{k-1} = -\nabla q(x_{k-1}) \), then \(x_{k-1} \) is a critical point for \(q \). Since \(\nabla^2 q(x_{k-1}) = H \) is positive definite, this is necessary and sufficient for \(x_{k-1} = x^* \). We shall prove that the algorithm terminates after not more than \(n \) steps by proving (ii) and (vi) for \(k = n \), because then by (vi), \(R^n = sp\{p_1, \ldots, p_k\} \) and \(x_n = x^* \) by (ii).

Let us proceed by induction. For \(k = 1 \), if \(\overline{r}_0 (= h) \neq 0 \), we are finished. Otherwise, we choose \(d_1 \) such that \(d_1^T \overline{r}_0 \neq 0 \). We can certainly do this by taking \(d_1 = \overline{r}_0 \), for example. Since \(d_1^T \overline{r}_0 \neq 0 \), \(sp\{d_1\} \) contains a descent direction for \(q \) from \(x_0 \). Thus,

\[
p_1 = x_1 - x_0 \neq 0,
\]

which anchors the induction for (iii) and (vi), and

\[
sp\{p_1\} = sp\{d_1\},
\]

which anchors (ii). Since \(x_1 \) minimizes \(q \) on \(sp\{p_1\} \), \(sp\{p_1\} \) cannot contain a descent direction for \(q \) from \(x_1 \). Thus

\[
0 = -\nabla q(x_1)^T p_1 = \overline{r}_1^T p_1,
\]

anchoring (iv), and this is

\[
= (h - H x_1)^T p_1 = (h - H p_1)^T p_1,
\]
which anchors (vii). Also,

$$sp \{ p_1 \} = sp \{ d_1 \} = K(d_1, B, 1)$$

for any B, which anchors (viii). Statements (v) and (ix) are vacuously true.

Now assume that (i)-(vii) hold for $1 \leq j \leq k-1$. We have already taken care of the case when the algorithm terminates because $\tau_{k-1} = 0$, so we assume $\tau_{k-1} \neq 0$. Then we can choose d_k, and $sp \{ d_k \}$ contains a descent direction for q from x_{k-1}. Thus

$$0 \neq x_k - x_{k-1} = p_k, \quad (iii).$$

Since $x_{k-1} \in sp \{ p_1, ..., p_{k-1} \}$, and $x_k \in sp \{ p_1, ..., p_{k-1}, d_k \}$, we have $d_k \in sp \{ p_1, ..., p_k \}$. By the induction hypothesis, $\tau_k p_j = 0$ for $1 \leq j \leq k-1$, so $d_k \notin sp \{ p_1, ..., p_{k-1} \}$. Hence,

$$sp \{ p_1, ..., p_k \} = sp \{ p_1, ..., p_{k-1}, d_k \}, \quad (ii)$$

and

$$dim \ sp \{ p_1, ..., p_k \} = dim \ sp \{ p_1, ..., p_{k-1}, d_k \}$$

$$= dim \ sp \{ p_1, ..., p_{k-1} \} + 1$$

$$= k - 1 + 1 = k, \quad (vi).$$

Since x_k minimizes q on $sp \{ p_1, ..., p_k \}$,

$$0 = \nabla_q (x_k)^T p_i = -\tau_k^T p_i \text{ for } 1 \leq i \leq k, \quad (iv).$$

Note that $x_k = \sum_{j=1}^{k} p_j$, so that $\tau_k = h - \sum_{j=1}^{k} H p_j$. Thus for $i < k$,

$$0 = p_i^T \tau_k = p_i^T h - \sum_{j=1}^{k} p_i^T H p_j.$$

By the induction hypothesis, this is

$$= p_i^T h - p_i^T H p_i - p_i^T H p_k$$

$$= -p_i^T H p_k, \quad (v).$$

Furthermore,

$$0 = p_k^T \tau_k = p_k^T h - \sum_{j=1}^{k} p_k^T H p_j = p_k^T h - p_k^T H p_k, \quad (vii).$$

Now assume (viii) holds for $1 \leq j \leq k-1$, and that $d_k \in sp \{ d_1, B p_1, ..., B p_{k-1} \}$. There exist α and $\beta, 1 \leq j \leq k-1$, such that
\[d_k = \alpha d_1 + \sum_{j=1}^{k-1} \beta_j Bp_j = \left(\alpha d_1 + \sum_{j=1}^{k-2} \beta_j Bp_j \right) + \beta_{k-1} Bp_{k-1}. \]

By the induction hypothesis, for \(1 \leq i \leq k-1 \), \(p_i \in K(d_1, B, k-1) \), so that the first term \(\in K(d_1, B, k-1) \) and the second term \(\in K(d_1, B, k) \); thus \(d_k \in K(d_1, B, k) \). This, together with \(sp\{p_1, \ldots, p_k\} = sp\{p_1, \ldots, p_{k-1}, d_k\} \), gives
\[sp\{p_1, \ldots, p_k\} = K(d_1, B, k), \quad (viii). \]

For (ix), observe that by (iv) and (viii), \(\tau_k \) is orthogonal to \(K(d_1, B, k) \). For \(i \leq k-1 \), \(p_i \in K(d_1, B, k-1) \), so that \(Bp_i \in K(d_1, B, k) \). \(\bullet \)

At each step of the algorithm, \(z_k \) is to be determined as
\[z_k = \operatorname{argmin}_{x \in sp\{p_1, \ldots, p_{k-1}, d_k\}} q(x). \]

Let \(P_k = [p_1, \ldots, p_{k-1}, d_k] \), \(x = P_k c \), and
\[\dot{q}(c) = q(P_k c) = \frac{1}{2} c^T (P_k^T HP_k) c - h^T P_k c. \]

Then \(\nabla \dot{q}(c) = P_k^T HP_k c - P_k^T h \). Since \(H \) is positive definite and \(P_k \) has full column rank, \(P_k^T HP_k \) is positive definite. Hence, \(z_k \) can be found by solving the linear system \(P_k^T HP_k c = P_k^T h \) for \(c \), and setting \(z_k = P_k c \).

The matrix of the system of linear equations that determines \(z_k \) and hence \(p_k \) is symmetric with an arrowhead structure in the last row and column by part (v) of Theorem 1. All the standard recursions for \(p_k \) in each algorithm follow in an insightful and simple way from the general solution of the system. The way some algorithms under some assumptions can be seen to need only \(p_{k-1} \) and \(d_k \) to generate \(p_k \) is that the last row and column are zero in all but the last two elements.

By (v) and (vii) of Theorem 1, the linear system \(P_k^T HP_k c = P_k^T h \) is
\[
\begin{bmatrix}
p_1^T H p_1 & d_1^T H p_1 & \cdots & d_{k-1}^T H p_1 \\
p_2^T H p_2 & d_2^T H p_2 & \cdots & d_{k-1}^T H p_2 \\
\vdots & \vdots & \ddots & \vdots \\
p_{k-1}^T H p_{k-1} & d_{k-1}^T H p_{k-1} & \cdots & d_{k-1}^T H p_{k-1} \\
d_k^T H p_1 & d_k^T H p_2 & \cdots & d_k^T H p_{k-1} & d_k^T h
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_{k-1} \\
c_k
\end{bmatrix} =
\begin{bmatrix}
p_1^T H p_1 \\
p_2^T H p_2 \\
\vdots \\
p_{k-1}^T H p_{k-1} \\
p_k^T H p_k
\end{bmatrix}
\]

The solution to the linear system is

\[
c = \begin{bmatrix}
1 - \alpha_k \\
\frac{d_k^T H d_k}{p_k^T H p_1} \\
\vdots \\
\frac{1}{\alpha_k}
\end{bmatrix}, \quad \text{where} \quad \alpha_k = \frac{d_k^T h - \sum_{j=1}^{k-1} d_j^T H p_j}{d_k^T H d_k - \sum_{j=1}^{k-1} \frac{(d_j^T H p_j)^2}{p_j^T H p_j}}.
\]

The numerator of \(\alpha_k \) is equal to \(d_k^T r_{k-1} \), and let us define, for \(1 \leq j \leq k-1 \),

\[
\beta_j^{(k)} = -\frac{d_j^T H p_j}{p_j^T H p_j}.
\]

Then

\[
\alpha_k = -\frac{d_k^T r_{k-1}}{d_k^T H (d_k + \sum_{j=1}^{k-1} \beta_j^{(k)} p_j)}
\]

and

\[
x_k = P_k c = \sum_{j=1}^{k-1} p_j + \alpha_k (d_k + \sum_{j=1}^{k-1} \beta_j^{(k)} p_j) = x_{k-1} + \alpha_k (d_k + \sum_{j=1}^{k-1} \beta_j^{(k)} p_j).
\]

When \(d_k \) is chosen so that \(d_k^T H p_i = 0 \) for \(1 \leq i \leq k-2 \), the solution has the shorter form

\[
\beta_k = -\frac{d_k^T H p_{k-1}}{p_{k-1}^T H p_{k-1}}, \quad \alpha_k = \frac{d_k^T r_{k-1}}{d_k^T H (d_k + \beta_k p_{k-1})},
\]

and
\[x_k = x_{k-1} + \alpha_k (d_k + \beta_k p_{k-1}). \]

The standard conjugate gradient algorithm, conjugate gradient algorithm applied to the normal equations, conjugate residual algorithm, preconditioned conjugate gradient algorithm, and Craig's method all choose \(d_k \) so that only \(p_{k-1} \) and \(d_k \) are needed to generate \(p_k \) and \(x_k \).

For CG and CR,

\[d_k = r_{k-1} = b - Ax_{k-1} = b - \sum_{j=1}^{k-1} A p_j, \]

so that the matrix \(B \) that appears in the additional hypothesis of Theorem 1 is \(A \). For CG

\[d_k^T H_{p_i} = r_{k-1}^T A p_i = r_{k-1}^T A p_i, \]

and for CR

\[d_k^T H_{p_i} = r_{k-1}^T A^T A p_i = r_{k-1}^T A p_i, \]

since \(A \) is symmetric. Thus, for both of these algorithms,

\[d_k^T H_{p_i} = 0 \quad \text{for} \quad 1 \leq i \leq k-2, \]

by part (ix) of Theorem 1. For CG applied to the normal equations, which we henceforth refer to as CGNE,

\[d_k = r_{k-1} = h - H x_{k-1} = h - \sum_{j=1}^{k-1} H p_j, \]

and for Craig's method,

\[d_k = r_{k-1} = b - AA^T y_{k-1} = h - \sum_{j=1}^{k-1} H p_j, \]

so that the matrix \(B \) is \(H \) for each of these algorithms, and

\[d_k^T H_{p_i} = r_{k-1}^T H_{p_i} = 0 \quad \text{for} \quad 1 \leq i \leq k-2. \]

For PCG,

\[d_k = M^{-1} r_{k-1}, \]

and \(B \) is \(M^{-1} A \). Since \(M \) is symmetric,

\[d_k^T H_{p_i} = (r_{k-1}^T M^{-1}) A p_i = r_{k-1}^T (M^{-1} A) p_i = 0 \quad \text{for} \quad 1 \leq i \leq k-2. \]
GCR (ORTHOMIN) corresponds to the same choices of H, h, and d_k as CR, but since this algorithm is applied when A is not symmetric, all of the previous directions contribute to the calculation and must be saved.

For ORTHODIR, B is A, and

$$d_k^T Hp_i = p_{k-1}^T A^T Z A p_i .$$

Young and Jea refer to choosing Z such that Z (as well as ZA) is symmetric positive definite as the "symmetrizable" case. If Z is symmetric, the above is

$$= (r_{k-2} - r_{k-1})^T A p_i ,$$

so that

$$d_k^T Hp_i = 0 \text{ for } 1 \leq i \leq k-3 ,$$

and only the last two previous directions must be kept. If Z is not symmetric, all previous directions contribute to the determination of the iterates.

We now verify convergence of these algorithms. For convergence of GCD, we require only that $d_k^T r_{k-1} \neq 0$ whenever $r_{k-1} \neq 0$. This condition is easily seen to be satisfied for CG, CGNE, Craig's method, CR, PCG, GCR (ORTHOMIN), GMRES, and ORTHODIR, under the restrictions we have shown for the applicability of each algorithm:

- **CG**
 $$d_k^T r_{k-1} = r_{k-1}^T r_{k-1}$$

- **CGNE**
 $$d_k^T r_{k-1} = r_{k-1}^T A r_{k-1}$$

- **Craig's method**
 $$d_k^T r_{k-1} = r_{k-1}^T r_{k-1}$$

- **CR**
 $$d_k^T r_{k-1} = r_{k-1}^T A r_{k-1}$$

- **PCG**
 $$d_k^T r_{k-1} = r_{k-1}^T A^{-1} r_{k-1}$$

- **GCR, ORTHOMIN**
 $$d_k^T r_{k-1} = r_{k-1}^T A r_{k-1} = r_{k-1}^T \left(\frac{A + A^T}{2} \right) r_{k-1}$$

For GMRES, we cannot ensure convergence for general nonsingular A by selecting $d_k = v_k$, but we can guarantee this convergence by a slightly more judicious choice of d_k, as we shall discuss momentarily. The choice $d_k = v_k$ gives
\[sp \{ p_1, \ldots, p_k \} = sp \{ d_1, \ldots, d_k \} = sp \{ v_1, \ldots, v_k \} = K(b, A, k) \]

and

\[
\frac{\bar{r}_{k-1}^T \left(Av_{k-1} - \sum_{i=1}^{k-1} v_i^T A v_{k-1} v_i \right)}{|| \tilde{\delta}_k ||} = \frac{\bar{r}_{k-1}^T A v_{k-1}}{|| \tilde{\delta}_k ||} , \text{ for some scalars } \{ \varepsilon_i \} \text{ with } c_{k-1} \neq 0
\]

(because \(v_{k-1} \notin sp \{ p_1, \ldots, p_{k-2} \} \))

\[
= \frac{c_{k-1}}{|| \tilde{\delta}_k ||} \frac{r_{k-1}^T (r_{k-2} - r_{k-1})}{|| \tilde{\delta}_k ||}
\]

\[
= -\frac{c_{k-1}}{|| \tilde{\delta}_k ||} r_{k-1}^T r_{k-1}
\]

\[
= -\frac{c_{k-1}}{|| \tilde{\delta}_k ||} r_{k-1}^T A r_{k-1}.
\]

Hence, if the symmetric part of \(A \) is indefinite, we may have \(\bar{r}_{k-1}^T v_k = 0 \) at some step before the minimizer has been found, so that \(v_k \) will not be a suitable choice for \(d_k \). If this should occur, however, we may select \(d_k \) and subsequent directions \(d_{k+1}, \ldots, d_m \) from \(\{ v_k, \ldots, v_m \} \) in an order that gives \(\bar{r}_{k-1}^T d_k \neq 0 \) at each step, until \(x^* \) is found. If \(\bar{r}_{k-1}^T v_i = 0 \) for all remaining \(i, k \leq i \leq m \), then \(x_{k-1} \) minimizes \(g(x) \) on \(K(b, A, n) \), and we are finished. We have the latitude of using the direction vectors \(\{ v_i \} \) in any order in an algorithm equivalent to GMRES, since the iterates \(\{ x_i \} \) are not actually computed in the GMRES algorithm. The point here is that this allows our convergence analysis to apply to GMRES.
For ORTHODIR, we are assured of convergence using the easily computed choice of d_k shown in the table if the symmetric part of Z is positive definite (or negative definite). If the symmetric part of Z is indefinite, this choice of d_k will not ensure descent at each step. In that case, we can guarantee convergence by a strategy similar to that employed for GMRES. For ORTHODIR, using $d_1 = b$ and $d_k = A p_{k-1}$ for $k \geq 2$, we have
\[d_1^T r_0 = b^T Z b , \]
and for $k \geq 2$,
\[d_k^T r_{k-1} = r_{k-1}^T A p_{k-1} \]
\[= r_{k-1}^T (r_{k-2} - r_{k-1}) . \]
Note that since r_{k-1} is orthogonal to $K(b, A, k-1)$,
\[r_{k-1}^T r_{k-2} = r_{k-1}^T (b - A x_{k-2}) = r_{k-1}^T (b - \sum_{i=1}^{k-2} A p_i) \]
so
\[d_k^T r_{k-1} = - r_{k-1}^T r_{k-1} \]
\[= -r_{k-1}^T Z r_{k-1} . \]
Thus, if the symmetric part of Z is positive definite (or negative definite), $d_k^T r_{k-1}$ is always nonzero whenever r_{k-1} is nonzero, and ORTHODIR converges. Now, if the symmetric part of Z is indefinite, ORTHODIR is not guaranteed to give descent at every step, but is still convergent. ORTHODIR generates a sequence of vectors \(\{ q_i \} \) that are mutually ZA-conjugate (when the symmetric part of ZA is positive definite) and that form a basis for the Krylov space $K(b, A, n)$.
These vectors are determined as
\[q_0 = r_0 = b \]
and for $k = 1, \ldots, t$
\[q_k = A q_{k-1} + \sum_{j=0}^{k-1} \beta_j^{(k)} q_j , \]
where $t+1$ is the dimension of the Krylov space $K(b, A, n)$, and for $0 \leq j \leq k-1$,
\[\beta_j^{(k)} = - \frac{q_j^T Z A^2 q_{k-1}}{q_j^T Z A q_j} . \]
The ORTHODIR algorithm using an auxiliary matrix Z that is only required to be nonsingular can be viewed as a GCD algorithm in the following way. The distinct iterates of ORTHODIR are produced by GCD with the choice $d_k \in \{q_0, \ldots, q_t\}$, with $d_k = q_{k-1}$ provided $q_{k-1}^T r_{k-1} \neq 0$. If $q_{k-1}^T r_{k-1} = 0$, then x_{k-1} minimizes $q(x)$ on $sp\{q_0, \ldots, q_{k-1}\} = K(b, A, k)$, and this step, which would give $x_k = x_{k-1}$ in the ORTHODIR algorithm, is skipped in GCD. Thus, d_k is the first occurring element of $\{q_{k-1}, \ldots, q_t\}$ that is not orthogonal to the gradient of q at x_{k-1}.

The Truncated Generalized Conjugate Directions Algorithm

An alternative to choosing d_k so that only a fixed number of previous directions are needed in the calculations, while still avoiding the increasing storage and work at each iteration associated with keeping all of the previous directions, is to limit to m the number of previous directions saved, and at each step to minimize $q(x)$ over an affine space that is a translate of $sp\{p_r, \ldots, p_{k-1}, d_k\}$, where $r = \max(k-m, 1)$. This results in the truncated version of the Generalized Conjugate Directions algorithm.

Generalized Conjugate Directions (m) Algorithm

$x_0 = 0$, $r_0 = h$, $k = 1$.

while $r_{k-1} \neq 0$

do

got d_k such that $d_k^T r_{k-1} \neq 0$

$r = \max(k-m, 1)$

$x_k = \arg\min_{s \in \{x_{r-1} + sp\{p_r, \ldots, p_{k-1}, d_k\}\}} q(x)$

$p_k = x_k - x_{k-1}$

$r_k = r_{k-1} - Hp_k$

$k = k + 1$

end do
Analogous to Theorem 1, we have our second main theorem.

Theorem 2: If H is symmetric positive definite, then the following statements are true about the $\text{GCD}(m)$ algorithm (Let $r = \max(k-m,1)$):

(i) The algorithm terminates if and only if $x_{k-1} = x^*$.

(ii) x_k minimizes $q(x)$ on $\{x_{r-1} + s p \mid p \in \text{sp}\{p_r, \ldots, p_k\}\}$.

(iii) Every p_k generated by the algorithm is nonzero.

(iv) $p_j^T p_j = 0, \quad r \leq j \leq k$

(v) $p_i^T H p_j = 0, \quad i \neq j, \quad |i-j| \leq m$

(vi) $\dim \text{sp}\{p_r, \ldots, p_k\} = k-r+1$

(vii) $p_j^T H p_j = p_j^T x_{r-1}, \quad r \leq j \leq k$

The proof of Theorem 2 is similar to that of Theorem 1, and is omitted.

The linear system that determines x_k in the $\text{GCD}(m)$ algorithm is analogous to that of the GCD algorithm. At each step of the $\text{GCD}(m)$ algorithm, x_k is chosen to satisfy

$$x_k = \arg\min_{x \in \{x_{r-1} + s p \mid p \in \text{sp}\{p_r, \ldots, p_k\}\}} q(x).$$

Let $P_k = [p_r, \ldots, p_{k-1}, d_k]$, $x = x_{r-1} + P_k c$, and

$$\dot{q}(c) = q(P_k c + x_{r-1}) = \frac{1}{2} (P_k c + x_{r-1})^T H (P_k c + x_{r-1}) - h^T (P_k c + x_{r-1}).$$

Then $\nabla \dot{q}(c) = P_k^T H (P_k c + x_{r-1}) - P_k^T h$. P_k has full column rank, so that $P_k^T H P_k$ is positive definite, and x_k can be found by solving the linear system $P_k^T H P_k c = P_k^T (h - H x_{r-1})$ ($= P_k^T x_{r-1}$) for c, and setting $x_k = x_{r-1} + P_k c$.

The solution to the linear system is
\[
c = \begin{bmatrix}
1 - \alpha_k & \frac{p^T_k H d_k}{p^T_k H p_r} \\
\vdots & \vdots \\
1 - \alpha_k & \frac{p^T_{k-1} H d_k}{p^T_{k-1} H p_{k-1}} \\
\alpha_k & \alpha_k
\end{bmatrix}, \quad \text{where} \quad \alpha_k = \frac{d^T_k r_{r-1} - \sum_{j=r}^{k-1} d^T_k H p_j}{d^T_k H d_k - \sum_{j=r}^{k-1} \frac{(d^T_k H p_j)^2}{p^T_j H p_j}}.
\]

Again, we define for \(r \leq j \leq k-1 \)

\[
\beta^{(k)}_j = -\frac{d^T_k H p_j}{p^T_j H p_j}.
\]

Then

\[
\alpha_k = \frac{d^T_k r_{k-1}}{d^T_k H (d_k + \sum_{j=r}^{k-1} \beta^{(k)}_j p_j)},
\]

and

\[
x_k = x_{r-1} + P_k c = x_{r-1} + \sum_{j=r}^{k-1} p_j + \alpha_k (d_k + \sum_{j=r}^{k-1} \beta^{(k)}_j p_j)
= x_{k-1} + \alpha_k (d_k + \sum_{j=r}^{k-1} \beta^{(k)}_j p_j).
\]

To ensure convergence for the truncated version of the algorithm, we slightly strengthen the requirement that \(d_k \) not be orthogonal to the gradient of \(g \) at \(x_{k-1} \), asking that the angle between \(d_k \) and \(r_{k-1} \) be bounded away from 90°. We use the notation \(\kappa(H) = \lambda_{\text{max}}(H)/\lambda_{\text{min}}(H) \) for the condition number of a symmetric positive definite matrix \(H \).

The following theorem shows a q-linear rate of convergence for the entire class of \(\text{GCD}(m) \) algorithms. But it is pessimistic because the rate constant that appears is a lower bound on the amount of reduction that would be achieved with a \(\text{GCD}(0) \) algorithm. We shall remark at the end of the section on the relationship between this bound and other bounds given for special cases.

Theorem 3: If \(H \) is symmetric positive definite, \(d_k \neq 0 \) for all \(k \), and there exists \(\gamma > 0 \) such that \(|d^T_k r_{k-1}| \geq \gamma \|d_k\|_2 \|r_{k-1}\|_2\) for all \(k \), then the sequence of iterates \(\{x_k\} \) generated by a \(\text{GCD}(m) \) algorithm converges to \(z^* \) and satisfies
\[\| x_k - x^* \|_H \leq \left(1 - \frac{\gamma^2}{\kappa(H)} \right)^{\frac{1}{2}} \| x_{k-1} - x^* \|_H. \]

Proof:

If \(\bar{r}_{k-1} = 0 \) for some \(k \), then \(x_{k-1} = x^* \). Assume \(\bar{r}_{k-1} \neq 0 \) for all \(k \). Then

\[
q(x_k) - q(x_{k-1}) = \frac{1}{2} (x_{k-1} + p_k)^T H(x_{k-1} + p_k) - h^T(x_{k-1} + p_k) - \frac{1}{2} x_{k-1}^T H x_{k-1} + h^T x_{k-1}
\]

\[
= p_k^T H x_{k-1} + \frac{1}{2} p_k^T H p_k - p_k^T h
\]

\[
= -p_k^T \bar{r}_{k-1} + \frac{1}{2} p_k^T \bar{r}_{k-1}
\]

\[
= -\frac{1}{2} p_k^T \bar{r}_{k-1},
\]

\[
q(x_k) = \sum_{j=1}^{k} q(x_j) - q(x_{j-1})
\]

\[
= -\frac{1}{2} \sum_{j=1}^{k} p_j^T \bar{r}_{j-1} < 0.
\]

Since \(H \) is positive definite, \(q(x) \) is bounded below, so we conclude that \(\lim_{k \to \infty} \sum_{j=1}^{k} p_j^T \bar{r}_{j-1} \) exists. Hence, \(\lim_{k \to \infty} p_k^T \bar{r}_{k-1} = 0 \), and

\[
\bar{r}_{k-1}^T p_k = \bar{r}_{k-1}^T [\alpha_k (d_k + \sum_{j=r}^{k-1} \beta_j^{(k)} p_j)]
\]

\[
= \alpha_k \bar{r}_{k-1}^T d_k
\]

\[
= \frac{(\bar{r}_{k-1}^T d_k)^2}{d_k^T H d_k - \sum_{j=r}^{k-1} (d_k^T H p_j)^2 / p_j^T H p_j}.
\]

Since all the terms in the summation are nonnegative, this is

\[
\geq \frac{(\bar{r}_{k-1}^T d_k)^2}{d_k^T H d_k}
\]

\[
\geq \frac{\gamma^2 \| \bar{r}_{k-1} \|_2^2 \| d_k \|_2^2}{\lambda_{\max}(H) \| d_k \|_2^2}
\]

\[
= \frac{\gamma^2}{\lambda_{\max}(H)} \| \bar{r}_{k-1} \|_2^2 > 0.
\]

We have \(0 = \lim_{k \to \infty} \bar{r}_{k-1}^T p_k \geq \frac{\gamma^2}{\lambda_{\max}(H)} \lim_{k \to \infty} \| \bar{r}_{k-1} \|_2^2 \geq 0 \), so that \(\{ \bar{r}_k \} \) converges to 0. Since \(H \)
is positive definite, this is necessary and sufficient for \(\lim_{k \to \infty} x_k = x^* \).

We have

\[
q(x_{k-1}) - q(x_k) = \frac{1}{2} \alpha_k d_k^T \bar{r}_{k-1} \geq \frac{\gamma^2}{2\lambda_{\text{max}}(H)} \| \bar{r}_{k-1} \|_2^2,
\]

and

\[
\| x_k - x^* \|_H^2 = 2[q(x_k) - q(x^*)] \\
\leq \| x_{k-1} - x^* \|_H^2 - \frac{\gamma^2}{\lambda_{\text{max}}(H)} \| \bar{r}_{k-1} \|_2^2.
\]

Now

\[
\bar{r}(x) = h - Hx = H(x^* - x),
\]

so that

\[
\| x - x^* \|_H^2 = \bar{r}(x)^T H^{-1} \bar{r}(x),
\]

and

\[
\| \bar{r}_{k-1} \|_2^2 \geq \lambda_{\text{min}}(H) \| x_{k-1} - x^* \|_H^2.
\]

Thus,

\[
\| x_k - x^* \|_H^2 \leq \| x_{k-1} - x^* \|_H^2 - \frac{\gamma^2 \lambda_{\text{min}}(H)}{\lambda_{\text{max}}(H)} \| x_{k-1} - x^* \|_H^2
\]

\[
= \left(1 - \frac{\gamma^2}{\kappa(H)} \right) \| x_{k-1} - x^* \|_H^2.
\]

Convergence of ORTHOMIN\((k)\) is quickly and easily verified. For ORTHOMIN\((k)\),

\[
d_k = r_{k-1},
\]

and

\[
d_k^T \bar{r}_{k-1} = r_{k-1}^T A^T r_{k-1} = r_{k-1}^T A r_{k-1} = r_{k-1}^T \left(\frac{A + A^T}{2} \right) r_{k-1}.
\]

With the assumption that the symmetric part of \(A \) is positive definite, our hypothesis is satisfied.
Let $M = \frac{A + A^T}{2}$. Then

$$
|d_k^T \tilde{r}_{k-1}| = r_k^T A r_{k-1} \geq \lambda_{\min}(M) || r_{k-1} ||_2^2
$$

$$
= \frac{\lambda_{\min}(M)}{|| A^T ||_2} || A^T ||_2 || r_{k-1} ||_2 || d_k ||_2
$$

$$
\geq \frac{\lambda_{\min}(M)}{|| A ||_2} || \tilde{r}_{k-1} ||_2 || d_k ||_2.
$$

If the symmetric part of A is negative definite, we can use the bound

$$
|d_k^T \tilde{r}_{k-1}| = |r_k^T A r_{k-1}| \geq -\lambda_{\max}(M) || r_{k-1} ||_2^2.
$$

If the symmetric part of A is indefinite, convergence of ORTHOMIN (k) is not guaranteed. The algorithm can fail to produce descent at some step in that case, since $d_k^T \tilde{r}_{k-1} = r_k^T A r_{k-1}$ can be zero without r_{k-1} being zero.

The bound γ that appears in Theorem 3 is easily obtained for CG, CGNE, Craig’s method, and PCG. For CG, CGNE, and Craig’s method, $d_k^T \tilde{r}_{k-1} = || d_k ||_2 || \tilde{r}_{k-1} ||_2$, so that $\gamma = 1$. We have already established a bound for ORTHOMIN (k), which also applies to CR, GCR, and ORTHOMIN. Similarly, for PCG one can obtain $\gamma = 1/\kappa(M^{-1})$.

A better convergence rate constant than that shown in Theorem 3 can be obtained for particular choices of H and d_k. From the proof of Theorem 3

$$
q(x_{k-1}) - q(x_k) \geq \frac{(d_k^T \tilde{r}_{k-1})^2}{2d_k^T H d_k},
$$

which gives

$$
|| x_k - x^* ||_H^2 \leq || x_{k-1} - x^* ||_H^2 - \frac{(d_k^T \tilde{r}_{k-1})^2}{d_k^T H d_k},
$$

and it may be advantageous to use this rather than the coarser bound involving γ when d_k and H are known. For example, for CR, GCR, ORTHOMIN, and ORTHOMIN(k),

$$
H = A^T A, \quad d_k = r_{k-1}, \quad \tilde{r}_k = A^T r_k, \quad \text{and} \quad || x_k - x^* ||_H = || r_k ||_2^2,
$$

so that
\[
\frac{(d_k^T r_{k-1})^2}{d_k^T H d_k} = \frac{(r_{k-1}^T A r_{k-1})^2}{r_{k-1}^T A^T A r_{k-1}} \geq \frac{\lambda_{\text{min}}^2(M)}{\lambda_{\text{max}}(A^T A)} \| r_{k-1} \|_2^2, \quad \text{where} \quad M = \frac{A + A^T}{2},
\]

and
\[
\| r_k \|_2^2 \leq \left(1 - \frac{\lambda_{\text{min}}^2(M)}{\lambda_{\text{max}}(A^T A)}\right) \| r_{k-1} \|_2^2.
\]

Elman (1982) derives this q-linear error bound on \(\{\| r_k \|_2\}\) on page 49 in the proof of his Theorem 5.9. However, he weakens it in the statement of the theorem to the r-linear error bound
\[
\| r_k \|_2^2 \leq \left(1 - \frac{\lambda_{\text{min}}^2(M)}{\lambda_{\text{max}}(A^T A)}\right)^k \| r_0 \|_2^2.
\]

For PCG,
\[
H = A, \quad d_k = M^{-1} r_{k-1}, \quad \text{where} \quad M = C^2 \text{ is the preconditioner,} \quad \bar{r}_k = r_k,
\]

\[
\frac{(d_k^T r_{k-1})^2}{d_k^T H d_k} = \frac{(r_{k-1}^T M^{-1} r_{k-1})^2}{r_{k-1}^T M^{-1} A M^{-1} r_{k-1}} \geq \frac{(C^{-1} r_{k-1})^T (C^{-1} r_{k-1})^2}{(C^{-1} r_{k-1})^T (C^{-1} A C^{-1}) (C^{-1} r_{k-1})} \geq \frac{\lambda_{\text{min}}(C^{-1} A C^{-1})}{\lambda_{\text{max}}(C^{-1} A C^{-1})} \| C^{-1} r_{k-1} \|_2^2 \leq \frac{||x_{k-1} - z^*||_A^2}{\kappa(C^{-1} A C^{-1})},
\]

and
\[
|| z_k - z^* ||_2^2 \leq \left(1 - \frac{1}{\kappa(C^{-1} A C^{-1})}\right) \| x_{k-1} - z^* \|_A^2.
\]

This q-linear error bound implies the weaker r-linear error bound
\[
|| z_k - z^* ||_2^2 \leq \left(1 - \frac{1}{\kappa(C^{-1} A C^{-1})}\right)^k \| x_0 - z^* \|_A^2.
\]

The Chebychev polynomial approach yields only an r-linear error bound, but it is much better than the r-linear error bound above, since \(\kappa(C^{-1} A C^{-1})^{1/2}\) appears in place of \(\kappa(C^{-1} A C^{-1})\).

Conjugate Directions in Quadratic Programming

The formulation of the generalized conjugate directions algorithm that has been presented for solving systems of linear equations can be readily adapted to give a conjugate directions algorithm for solving the equality constrained quadratic programming problem.
minimize \[q(x) = \frac{1}{2} x^T H x - h^T x \]
subject to \[Ax = 0, \]

where we assume that \(H \) is symmetric positive definite on the nullspace of \(A \), and that \(A \) has full row rank. Given an initial feasible point, a problem with inhomogeneous constraints can readily be put in this form.

Starting with the initial feasible point \(x_0 = 0 \), the algorithm will maintain feasibility at each step, and will produce a collection of linearly independent, mutually \(H \)-conjugate direction vectors \(\{ p_i \} \) as in the GCD algorithm. Here, the direction vectors will all be in the nullspace of \(A \), and the algorithm will terminate after no more than \(s \) steps, where \(s \) is the dimension of the nullspace of \(A \). The case where \(A \) is the row of all ones arises in some problems from conservation laws.

Let \(P \) denote the projector onto the nullspace of \(A \): \(P = I - A^T (AA^T)^{-1} A \). To solve the quadratic programming problem, the GCD algorithm is modified so that the termination criterion is that the projected gradient, \(P \bar{r}_{k-1} \), is zero, and at each step we

choose \(d_k \) so that \(d_k \) is not orthogonal to the projected gradient of \(q \) at the current point:
\[d_k^T P \bar{r}_{k-1} \neq 0; \]

let \(\tilde{d}_k = P d_k \);

minimize \(q(x) \) over \(\{ p_1, ..., p_{k-1}, \tilde{d}_k \} \).

Since \(P \) is symmetric, \(d_k^T P \bar{r}_{k-1} = \tilde{d}_k^T P \bar{r}_{k-1} \), so that the modified algorithm operates in exactly the same way as the GCD algorithm, and Theorem 1, with \(n \) in part (i) changed to \(s \), applies to the quadratic programming conjugate directions algorithm.

Acknowledgment

The authors wish to thank the referee, whose helpful comments improved this presentation.
REFERENCES

NAZARETH, L. [1984]. Some approaches to making conjugate gradient methods for nonlinear minimization less dependent on notions of conjugacy, University of California, Berkeley, Center for Pure and Applied Mathematics.

