1. Consider the map $f : [1, \infty) \to \mathbb{R}$ defined by

$$f(x) = \frac{x}{2} + \frac{1}{x}.$$

Prove that this map is contractive and conclude that it has unique fixed point. What is the fixed point?

Proof. First we need to show that $f([1, \infty)) \subset [1, \infty)$. So we will compute the minimum of f over $[1, \infty)$. Since f is smooth over $(1, \infty)$ and increasing as $x \to \infty$, then the minimum is attained either at $x = 1$ or where $f'(x) = 0$. We have $f(1) = 3/2 > 1$. The derivative $f' : (1, \infty) \to \mathbb{R}$ is

$$f'(x) = \frac{1}{2} - \frac{1}{x^2}. \quad (1)$$

So that $f'(x) = 0$ implies that $x = \sqrt{2}$ and we have $f(\sqrt{2}) = 2/\sqrt{2} > 1$. Hence in any case, we have that $f(x) > 1$ for all $x \in [1, \infty)$. Therefore, $f([1, \infty)) \subset [1, \infty)$ as desired.

Now we proceed to show that $f : [1, \infty) \to [1, \infty)$ is contractive. Again, we consider the derivative $f' : (1, \infty) \to \mathbb{R}$ given by (1). This implies that $|f'(x)| \leq 1/2$ for all $x \in (1, \infty)$. Now, from the mean value theorem, we have that given $x < y \in [1, \infty)$ we can find $c \in (x, y)$ such that

$$|f(x) - f(y)| = |f'(c)(x - y)| = |f'(c)||x - y| \leq \frac{1}{2}|x - y|.$$

Hence f is a contraction mapping on $[1, \infty)$. Since $[1, \infty)$ equipped with the metric induced by the absolute value ($d(x, y) = |x - y|$) is a complete metric space, then the contraction mapping principle implies that f has a unique fixed point on $[1, \infty)$. The fixed point satisfies

$$f(x) = \frac{x}{2} + \frac{1}{x} = x.$$

which implies that the unique fixed point is $x = \sqrt{2}$.

2. Problem XVIII.1.3 in Lang page 504. Prove the following statement. Let \overline{B}_r be the closed ball of radius r centered at 0 in E. Let $f : \overline{B}_r \to E$ be a map such that:

(a) $|f(x) - f(y)| \leq b|x - y|$ with $0 < b < 1$.
(b) $|f(0)| \leq r(1 - b)$.

Show that there is a unique fixed point $x \in \overline{B}_r$ such that $f(x) = x$.

Proof. It only remains to show that $f(\overline{B}_r) \subset \overline{B}_r$. So let $x \in \overline{B}_r$ be arbitrary. We have that

$$|f(x)| \leq |f(x) - f(0)| + |f(0)| \leq b|x| + r(1 - b) \leq br + r(1 - b) = r.$$

Therefore, $f(x) \in \overline{B}_r$ for all $x \in \overline{B}_r$. Since \overline{B}_r is a complete metric space and from assumption (a) we have that f is contractive, the desired result follows from the contraction mapping principle.

3. Problem XVIII.1.4 in Lang page 504. Notation as in previous problem. Let \(g \) be another map of \(B_r \) into \(E \) and let \(c > 0 \) be such that \(|g(x) - f(x)| \leq c \) for all \(x \). Assume that \(g \) has a fixed point \(x_2 \) and let \(x_1 \) be fixed point of \(f \). Show that \(|x_2 - x_1| \leq c/(1-b) \)

Proof.

\[
|x_2 - x_1| = |g(x_2) - f(x_1)| = |g(x_2) - f(x_2) + f(x_2) - f(x_1)| \leq |g(x_2) - f(x_2)| + |f(x_2) - f(x_1)| \leq c + b|x_2 - x_1| \\
i.e.,
\]

\[
(1 - b)|x_2 - x_1| \leq c \quad |x_2 - x_1| \leq c/(1 - b) \quad \text{since } 0 < b < 1
\]

\(\Box \)

4. Problem XVIII.1.5 in Lang page 504. Let \(K \) be a continuous function of two variables, defined for \((x, y) \) in the square \(a \leq x \leq b \) and \(a \leq y \leq b \). Assume that \(\|K\| \leq C \) for some constant \(C > 0 \). Let \(f \) be a continuous function on \([a, b]\) and let \(r \) be a real number satisfying the inequality

\[
|r| < \frac{1}{C(b - a)}
\]

Show that there is one and only one function \(g \) continuous on \([a, b]\) such that

\[
f(x) = g(x) + r \int_a^b K(t, x)g(t)\,dt
\]

Proof. Let \(\mathcal{L} : C([a, b]) \to C([a, b]) \) and \(\mathcal{L}(g)(x) = f(x) - r \int_a^b K(t, x)g(t)\,dt \). Here \(C([a, b]) \) is a set of all continuous functions defined on \([a, b]\), and we equip this space with the sup-norm \(\| \cdot \| \). Let \(g_1, g_2 \in C([a, b]) \) be arbitrary. We have,

\[
\|\mathcal{L}g_1 - \mathcal{L}g_2\| = \left\| \left(f(x) - r \int_a^b K(t, x)g_1(t)\,dt \right) - \left(f(x) - r \int_a^b K(t, x)g_2(t)\,dt \right) \right\|
\]

\[
= |r| \left\| \int_a^b K(t, x)(g_2(t) - g_1(t))\,dt \right\|
\]

\[
\leq |r|C(b - a)\|g_2 - g_1\|
\]

\[
= \alpha\|g_1 - g_2\|
\]

Hence \(\|\mathcal{L}g_1 - \mathcal{L}g_2\| \leq \alpha\|g_1 - g_2\| \) with \(\alpha = |r|C(b - a) < 1 \).

As \(C([a, b]) \) is complete and there exists a number \(0 < \alpha < 1 \) such that \(\|\mathcal{L}(g_1) - \mathcal{L}(g_2)\| \leq \alpha\|g_1 - g_2\| \), from shrinking lemma \(\mathcal{L} \) has a unique fixed point, i.e., there exists a unique continuous function \(g \) such that \(\mathcal{L}(g) = g \), in other words, \(f(x) = g(x) + r \int_a^b K(t, x)g(t)\,dt \) \(\Box \)
5. Let $f : S \to S$, where S is a Banach space. Suppose that $\{\alpha_n\}_{n \geq 1}$ is a nonnegative sequence in \mathbb{R} converging to 0. Suppose also that f satisfies

$$\|f^n(x) - f^n(y)\| \leq \alpha_n \|x - y\|, \quad \text{for all } x, y \in S, \quad \text{and all } n \geq 1,$$

where $f^n = f \circ f \circ \cdots \circ f$. Prove that f has a unique fixed point.

Proof. Since $\{\alpha_n\}$ is a nonnegative sequence in \mathbb{R} converging to 0, then there exists $N \in \mathbb{N}$, such that $\alpha_n \leq \frac{1}{2}$ for all $n \geq N$. Then, in particular, we have that $\|f^N(x) - f^N(y)\| \leq \frac{1}{2} \|x - y\|$, for all $x, y \in S$. By the contraction mapping theorem, f^N has a unique fixed point in S; call it x_0, i.e. $f^N(x_0) = x_0$. Then $f^N(f(x_0)) = f^{N+1}(x_0) = f(f^N(x_0)) = f(x_0)$. We get that $f(x_0)$ is also a fixed point of f^N. By uniqueness, it follows that $f(x_0) = x_0$.

So far we have proven that f has a fixed point in S. Now we prove uniqueness. Assume $x_1 \in S$ is also a fixed point of f, i.e., $f(x_1) = x_1$. Then $f^N(x_1) = f^{N-1}(x_1) = \cdots = f(x_1) = x_1$. This implies that x_1 is the unique fixed point of f^N. Hence, it follows that $x_0 = x_1$. \qed
502 problem 1

For any \(f, g \in C([0,1]) \)

\[
\|Tf - Tg\|_{\infty} = \sup_{x} \left| x + \int_{0}^{x} tf(t)dt - \left(x + \int_{0}^{x} tg(t)dt \right) \right|
\]

\[
= \sup_{x} \left| \int_{0}^{x} (f(t) - g(t))dt \right|
\]

\[
\leq \sup_{x} \left| \int_{0}^{x} t|f(t) - g(t)|dt \right|
\]

\[
\leq \sup_{x} \left| \int_{0}^{x} t \sup_{s} |f(s) - g(s)|dt \right|
\]

\[
= \sup_{s} |f(s) - g(s)| \sup_{x} \int_{0}^{x} |t|dt
\]

\[
= \|f - g\|_{\infty} \int_{0}^{1} |t|dt
\]

\[
= \frac{1}{2} \|f - g\|_{\infty}
\]

So \(T \) is a contraction on \((C([0,1]), \| \cdot \|_{\infty}) \). Since \((C([0,1]), \| \cdot \|_{\infty}) \) is a complete space, the shrinking lemma (also known as the contraction mapping principle and Banach fixed point theorem) shows that \(T \) has a unique fixed point, call it \(f \).

Since \(f(x) = (Tf)(x) = x + \int_{0}^{x} tf(t)dt \), upon differentiating both sides, the fundamental theorem of calculus gives us

\[
f'(x) = 1 + xf(x)
\]

2. (a) Note: the process of part (a) is similar to part (b).

First, let \(M = \{ \alpha : R \to R \mid \alpha \text{ is continuous and increasing function on } R, \text{ and } \alpha(x + 1) = \alpha(x) + 1, \forall x \in R \} \). Prove \(M \) is complete.

Secondly, define \(T : M \to M \), s.t. \((T\alpha)(x) = g(\alpha(nx)) \), where \(g \) is the inverse function of \(f \). Prove the range of \(T \) is contained in \(M \).

Additionally, prove \(T \) is a shrinking map. Because \(g'(y) = \frac{1}{f'(g(y))} \) and \(f'(x) > 1 \). Then by MNT

\[
| g(\alpha(nx)) - g(\beta(nx)) | < | \alpha(nx) - \beta(nx) |, \forall x \in R
\]

(b) By assumption, \(f \) is continuous, strictly increasing, and therefore \(f \) has an inverse \(g \).

We contend that \(T \) maps \(M \) into \(M \). Clearly, \(T\alpha \) is continuous and increasing because \(g \) and \(\alpha \) are continuous and increasing. By induction, we find

\[
\alpha(n(x + 1)) = \alpha(nx) + n
\]

so \(f((T\alpha)(x + 1)) = \alpha(nx) + n \), and

\[
f((T\alpha)(x) + 1) = f((T\alpha)(x)) + n = \alpha(nx) + n
\]

The function \(f \) is injective so \((T\alpha)(x + 1) = (T\alpha)(x) + 1 \) which proves our contention. The map \(T \) is a shrinking map because the condition on \(f \) implies

\[
r_1(g(x) - g(y)) \leq f(g(x)) - f(g(y)) \leq r_2(g(x) - g(y))
\]
thus
\[\frac{x-y}{r_2} \leq g(x) - g(y) \leq \frac{x-y}{r_1} \]

so there exists a constant 0 < K < 1 such that \(|g(x) - g(y)| \leq K \ |x - y|\).

Finally we show that M is complete. Let \(\{\alpha_n\} \) be a Cauchy sequence in M. By induction, we see that \(\alpha(x + j) = \alpha(x) + j \) for all integers \(j \), so if \(\|\alpha_n - \alpha_m\| < \varepsilon \), then \(|\alpha_n(x) - \alpha_m(x)| < \varepsilon \) for all \(x \). Use an argument as in Theorem 3.1 of chapter 12, and the fact that the limit of a uniformly convergent sequence of continuous functions is continuous, to show that there exists a continuous function \(\alpha \) such that \(\alpha_n \to \alpha \) as \(n \to \infty \). Since \(\alpha_n(x + 1) = \alpha_n(x) + 1 \) in the limit we have \(\alpha(x + 1) = \alpha(x) + 1 \) and \(\alpha \) is increasing, whence M is complete.

The shrinking lemma implies that there exists a map \(\alpha_0 \) such that \(T\alpha_0 = \alpha_0 \) or equivalently
\[g(\alpha_0(nx)) = \alpha_0(x) \]

thus \(\alpha_0(nx) = f(\alpha_0(x)) \).