Problem 1

The following questions concern the proof of the sensitivity theorem given on the last three pages of Dense_LA_Notes: Set 7 (or Theorem 5.3.1 in Golub and Van Loan 3rd ed.).

a) Where in the proof is right hand inequality in the assumption

\[\varepsilon \equiv \max \left\{ \frac{\| \hat{A} - A \|}{\| A \|}, \frac{\| \hat{b} - b \|}{\| b \|} \right\} < \frac{\sigma_n}{\sigma_1} \]

required?

b) Explain why the vector valued function \(x(t) \) is well defined (exists and is unique) at each \(t \in [0, \varepsilon] \). Why is this function continuously differentiable with respect to \(t \)? Which assumption assures that this holds?

c) How is the smoothness (cont. differentiability) of \(x(t) \) used in the proof?

d) Verify that \(\| f \| \leq \| b \| \) and that \(\| E \| \leq \| A \| \).

Problem 2

Let \(AV = VH + f e_k^T \) be a \(k \)-step Arnoldi factorization of \(A \) with \(V e_1 = b \) (assume \(\| b \| = 1 \)) where \(\| \cdot \| \) is the 2-norm. Assume \(A \) is nonsingular.

Let \(r_k = p_k(A)b \) be the GMRES residual (i.e. \(r_k = b - Ax_k \), where \(x_k \) is computed with the GMRES method).

Prove the following results:

1. The \(j + 1 \)-st column \(v_{j+1} \) of \(V \) is of the form \(\phi_j(A)b \) where \(\phi_j(\tau) = \gamma_j \text{det}(\tau I - H_j) \) with \(H_j \) the leading \(j \times j \) submatrix of \(H \) (i.e. the value of \(H \) at step \(j \) of the Arnoldi process).

2. The roots \(\theta_j \) of the GMRES polynomial \(p_k(\tau) \) are the eigenvalues of the generalized eigenvalue problem

\[\overline{H}^T H z = H^T z \theta \]

where \(\overline{H}^T = [H^T, e_k \beta] \) with \(\beta = \| f \| \).

These are called Harmonic Ritz values.
3. When \(A \) is symmetric, demonstrate that these Harmonic Ritz values are reciprocals of the critical points of the generalized Rayleigh quotients

\[
\frac{w^T A^{-1} w}{w^T w}, \text{ where } w \in \text{AK}_k(A, b).
\]

4. Let \(A \) be symmetric and indefinite with \(\lambda_- \) the (algebraically) largest negative eigenvalue and \(\lambda_+ \) the smallest positive eigenvalue of \(A \). Prove there are no Harmonic Ritz values in the open interval \((\lambda_-, \lambda_+)\).

5. If \(x_k \in \text{K}_k(A, b) \) is any approximate solution drawn from the Krylov space (not necessarily the GMRES approximation) then \(b - Ax_k = p(A)b \) for some polynomial \(p \) of degree \(k \) such that \(p(0) = 1 \) and where \(x_k = \phi(A)b \) with

\[
p(\tau) = 1 - \tau \phi(\tau).
\]

Show that \(\phi \) is the unique polynomial of degree \(k-1 \) that interpolates the function \(\eta(\tau) \equiv \frac{1}{\tau} \) at the \(k \) roots of \(p \).

6. Graph the polynomial \(\phi \) from GMRES with \(k = 20 \) for \(A \) as the negative of the 1-D discrete Laplacian of order 100 (\(A = \text{trid}[-1, 2, -1] \)). Your graph should go over the interval \((\lambda_1, \lambda_n)\), the eigenvalue range of \(A \). On the same plot, graph the function \(\eta(\tau) = \frac{1}{\tau} \) over the same interval and show the interpolation points. Repeat this for \(A - 2I \) in place of \(A \).

Problem 3

Let

\[
A = \begin{bmatrix} 0 & 1 \\ I & 0 \end{bmatrix},
\]

where \(I \) is the \(n - 1 \times n - 1 \) identity. Note \(A \) is the \(n \times n \) left circular shift operator.

1. What is the \(k \)-step Arnoldi factorization \(AV = VH + f e_k^T \) for any \(k < n \)? What is it when \(k = n \)?

2. Let \(b = e_1 \). Give both the FOM and GMRES approximate solutions to \(Ax = b \) for a general iteration \(k \). What happens when \(k = n \)?

3. What are the Ritz values and the Harmonic Ritz values at each \(k \)?