This Lecture

- HW3 answers
- Coding time.
HW3 Q1

Q1) Code up a function (LEGENDRE) which takes a vector x and m as arguments and computes the m'th order Legendre polynomial at x using the stable recurrence relation.

A1) We use the following recurrence relationship:

\[
L_0(x) = 1 \\
L_1(x) = x \\
L_{m+1}(x) = \frac{2m+1}{m+1} xL_m(x) - \frac{m}{m+1} L_{m-1}(x), \quad m = 0, 1, \ldots
\]
function leg = LEGENDRE(x, p)

 if(p==0)
 leg = ones(size(x));
 end

 if(p==1)
 leg = x;
 end

 if(p>=2)
 legm1 = ones(size(x));
 leg = x;

 for m=1:p-1
 legp1 = ((2*m+1)*x.*leg - m*legm1)/(m+1);
 legm1 = leg;
 leg = legp1;
 end
 end

end
• Let's plot those Legendre polynomials and see how they behave over the interval [-1,1]

cols = 'bgorxc*msydkv';
N = 200;
x = linspace(-1,1,N);
clf
for p=0:6
 legp = LEGENDRE(x,p);
 hold on;
 plot(x, legp, cols((p+1)*2:(p+1)*2+1));
 hold off;
end
HW3 Q2

Q2) Create a function (LEGdiff) which takes \(p \) as argument and returns the coefficient differentiation matrix \(D \)

A2) The differentiation matrix which maps the Legendre coefficients to the Legendre coefficients of the derivative of the function:

\[
\hat{D}_{mj} = \begin{cases}
(2m + 1) & \text{if } j > m \text{ and } j + m \text{ odd} \\
0 & \text{otherwise}
\end{cases}
\]
HW3 Q2 cont

A2cont) The Matlab code is:

```matlab
function Dhat = LEGdiff(p)

    Dhat = zeros(p+1);

    for n=0:p
        for m=n+1:2:p
            Dhat(n+1,m+1) = (2*n+1);
        end
    end
```

HW3 Q2 cont

• Let’s test the output for \(p=5 \):

\[
\hat{D}_{mj} = \begin{cases}
(2m+1) & \text{if } j>m \text{ and } j+m \text{ odd} \\
0 & \text{otherwise}
\end{cases}
\]

Spot on!.

Note that there are only \(p + (p-2) + (p-4) \).. Non-zero entries
HW3 Q2 cont

- The form of Dhat

```matlab
>> Dhat = LEGdiff(25);
>> spy(Dhat)
>>
```
HW 3 Q3

Q3) Create a function (LEGmass) which takes \(p \) as argument and returns the mass matrix \(M \)

A3) Definition of the mass matrix:

\[
M_{nm} = \begin{cases}
 \frac{x_{i+1} - x_i}{2} & (n=m) \\
 \frac{2}{2n+1} & (n \neq m)
\end{cases}
\]

```
function mass = LEGmass(p)

mass = diag(2./(2*(0:p)+1));
```

(C:\Documents and Settings\Tim\Desktop\LEGmass.m)
HW3 Q3 cont

\[\text{ans} = \begin{bmatrix} 2.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.6667 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.4000 & 0.2857 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.2222 & 0.2222 & 0.2222 & 0.0000 & 0.0000 & 0.0000 \\ 0.1818 & 0.1818 & 0.1818 & 0.1818 & 0.0000 & 0.0000 \\ 0.1538 & 0.1538 & 0.1538 & 0.1538 & 0.1538 & 0.0000 \end{bmatrix} \]

\[M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]
HW3 Q4

Q4) Create a function LEGvdm which returns the following matrix:

A4) \[V_{ij} = L_j(x_i) \quad 0 \leq i, j \leq p \]
HW3 Q4 cont

\[V = \begin{bmatrix} 1.0000 & -1.0000 & 1.0000 \\ 1.0000 & 0.0000 & 0.5000 \\ 1.0000 & 1.0000 & 1.0000 \end{bmatrix} \]
HW3 Q5

Q5) Test them with the following matlab routine:

```matlab
p = 7;
x = transpose(sin(0.5*pi*linspace(-1,1,p+1)));
V = LEGvdm(x,p);
Dhat = LEGdiff(p);
M = LEGmass(p);

for m=1:8
F = x.^m;
Fcoeff = V\F;
diffFcoeff = (Dhat*Fcoeff);
diffF = V*diffFcoeff;
error = max(abs((m)*x.^(m-1) - diffF));
end
```
HW3 Q5 cont

• Note that x^m is exactly interpolated for $m \leq p$ when we use $p+1$ points and up to p'th order polynomials. $x^{(p+1)}$ is only approximately interpolated – and hence the derivative is only approximate.

```matlab
p = 7;

x = transpose(sin(0.5*pi*linspace(-1,1,p+1)));

V = LEGvdm(x,p);

Dhat = LEGdiff(p);

M = LEGmass(p);

for m=1:8
    F = x.^m;
    Fcoeff = V\F;
    diffFcoeff = (Dhat*Fcoeff);
    diffF = V*diffFcoeff;
    error(m) = max(abs((m)*x.^(m-1) - diffF));
end

plot(error, 'r*'); hold on; plot(error, 'k-'); hold off;
```
Note on Q5

• If we were to repeat this on an interval

 \[[x_n, x_{n+1}] \]

• We would need to use:

 \[
 \frac{dF}{dx} = \left(\frac{2}{x_{n+1} - x_n} \right) \hat{V}D\left(V^{-1}F \right)
 \]
HW3 Q6

Q6) Compute the condition number of the generalized Vandermonde matrix constructed with p=0,…40 and p+1 Chebychev points.

```matlab
for p=0:140
    x = sin(0.5*pi*linspace(-1,1,p+1))';
    V = LEGvdm(x, p);
    cgraph(p+1) = cond(V);
end
plot(cgraph, 'r**');
hold on; plot(cgraph, 'k-'); hold off;
xlabel('p-order'); ylabel('cond(V)');
```
Asymptotic Behavior $\text{cond}(V)$ as $p \to \infty$

```matlab
>> plot(cgraph./(1:p+1).^2, 'r-')
>>
```

![Plot of \(\text{cond}(V) \) vs. \(p \)](image)
Cliff note version of DG advection equation
Workshop Code

• Using your own routines or those on the web site code up the DG advection equation solver by Wednesday end of class.

• Spare time this class for coding…