Homework 2 correction

Q4) Implement the numerical approximation of:

\[
\frac{\partial \rho}{\partial t} + 3 \frac{\partial \rho}{\partial x} = 0
\]

\[
\rho(x, t = 0) = e^{-x^2}
\]

Geometry:

\[
x_1 = -4, x_N = 4, x_i = \left(\frac{N - i}{N - 1} \right) x_1 + \left(\frac{i - 1}{N - 1} \right) x_N
\]

Scheme:

\[
\bar{\rho}^{n+1}_i = (1 - \lambda) \bar{\rho}^n_i + (\lambda) \bar{\rho}^n_{i-1}
\]

\[
\lambda = 3 \frac{dt}{dx}
\]

Initial Condition:

\[
\bar{\rho}^0_i = \rho \left(\left(\frac{x_i + x_{i+1}}{2} \right), t = 0 \right)
\]

Boundary Condition:

\[
\bar{\rho}^0_0 = 0
\]
Homework 2 cont

Q4 cont)

For N=10,40,160,320,640,1280 run to $t=10$, with:

- $dx = \frac{8}{(N-1)}$
- $dt = dx/6$

Use

$$\rho_0^{n+1} = \left(1 - \frac{u}{dx} \frac{dt}{dx}\right)\rho_0^n + \left(\frac{u}{dx} \frac{dt}{dx}\right)\rho_{N-1}^n$$

On the same graph, plot t on the horizontal axis and error on the vertical axis. The graph should consist of a sequence of 6 curves – one for each choice of dx.

Comment on the curves.

NOTE: For the purposes of this test we define error as:

$$error^n = \max_{1 \leq i \leq N} \left|\rho_i^n - \rho\left(\frac{x_i + x_{i+1}}{2}, ndt\right)\right|$$
Lecture 5

- We will define stability for a numerical scheme and investigate stability for the upwind scheme.

- We will compare this scheme with a finite difference scheme.

- We will consider alternative ways to approximate the flux functions.
Recall

Basic Upwind Finite Volume Method

\[
\frac{d}{dt}(\bar{q}_i dx) = -\bar{u}q(x_{i+1}, t) + \bar{u}q(x_i, t)
\]

Approximate fluxes with upwind flux

\[
\frac{d}{dt}(\bar{q}_i dx) \approx -\bar{u}q_i + \bar{u}q_{i-1}
\]

Approximate time derivative and look for solution \(\bar{\rho}_i^n \approx \bar{q}_i^n \)

\[
(\bar{\rho}_i^{n+1} - \bar{\rho}_i^n) dx = -\bar{u} \bar{\rho}_i^n + \bar{u} \bar{\rho}_{i-1}^n
dt
\]

\[
\lambda = \bar{u} \frac{dt}{dx}
\]

\[
\bar{\rho}_i^{n+1} = (1 - \lambda) \bar{\rho}_i^n + (\lambda) \bar{\rho}_{i-1}^n
\]

Note we must supply a value for the left most average at each time step: \(\bar{\rho}_0^n \)
Convergence

• We have constructed a physically reasonable numerical scheme to approximate the advection equation.

• However, we need to do some extra analysis to determine how good at approximating the true PDE the discrete scheme is.

• Let us suppose that the i’th subinterval cell average of the actual solution to the PDE at time T=n*dt is denoted by

\[
\overline{q}_i^n = \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} q(x, n dt) \, dx = \frac{1}{dx} \int_{x_i}^{x_{i+1}} q(x, n dt) \, dx
\]

where \(q \) satisfies:

\[
\frac{d}{dt} \int_{x_i}^{x_{i+1}} q(x, t) \, dx = \frac{d}{dt}(dx \overline{q}_i) = -\overline{u} q(x_{i+1}, t) + \overline{u} q(x_i, t)
\]
Error Equation

- The goal is to estimate the difference of the exact solution and the numerically obtained solution at some time \(T=n\cdot dt \).

- So we are interested in the error:
 \[E_i^n = \left| \bar{q}_i^n - \bar{\rho}_i^n \right| \text{, } n = \frac{T}{dt} \]

- For the given finite volume scheme \(dt \) and \(dx \) will be related in a fixed manner (i.e. \(dt = Cdx \) for some \(C \), independent of \(dx \)).

- Suppose we let \(dt \rightarrow 0 \) and \(E^n = O\left(dt^s \right) \) then the scheme is said to be of order \(s \).
Norms and Definitions

• We define the **discrete** p-norms:

$$
\|E\|_p = \left(dx \sum_{i=-\infty}^{i=+\infty} |E_i|^p \right)^{1/p}
$$

• We say that the scheme is convergent at time T in the norm $\|\cdot\|$ if:

$$
\lim_{\begin{cases} dt \to 0 \\ ndt = T \end{cases}} \|E^n\| = 0
$$

• It is said to be accurate of order s if:

$$
\|E^n\| = O\left(dt^s\right) \text{ as } dt \to 0
$$
Local Truncation Error

- Suppose at the beginning of a time step we actually have the exact solution -- one question we can ask is how large is the error committed in the evaluation of the approximate solution at the end of the time step.

- i.e. choose
 \[\bar{\rho}_i^n = \bar{q}_i^n \]

- Then
 \[\bar{\rho}_i^{n+1} = \left(1 - \frac{dt}{dx} \bar{u}\right) \bar{q}_i^n + \left(\frac{dt}{dx} \bar{u}\right) \bar{q}_{i-1} \]

- We expand \(\bar{q}_{i-1} \), \(\bar{q}_i \) about \(x_i, t_n \) with Taylor series:
 \[\bar{q}_{i-1}^n = \bar{q}_i^n - dx \left(\frac{\partial q}{\partial x} \right) + \frac{dx^2}{2} \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^3) \]
 \[\bar{q}_i^{n+1} = \bar{q}_i^n + dt \left(\frac{\partial q}{\partial t} \right) + \frac{dt^2}{2} \left(\frac{\partial^2 q}{\partial t^2} \right) + O(dt^3) \]
Estimating Truncation Error

• Inserting the formulas for the expanded q’s:

\[R_i^n := \frac{1}{dt} \left(\left(1 - \frac{dt}{dx} \bar{u} \right) \bar{q}_i^n + \left(\frac{dt}{dx} \bar{u} \right) \bar{q}_{i-1}^n - \bar{q}_i^{n+1} \right) \]

\[
= \frac{1}{dt} \left(\frac{dt}{dx} \bar{u} \right) \left\{ \bar{q}_i^n - dx \left(\frac{\partial \bar{q}}{\partial x} \right) + \frac{dx^2}{2} \left(\frac{\partial^2 \bar{q}}{\partial x^2} \right) + O(dx^3) \right\}
\]

\[
- \left\{ \bar{q}_i^n + dt \left(\frac{\partial \bar{q}}{\partial t} \right) + \frac{dt^2}{2} \left(\frac{\partial^2 \bar{q}}{\partial t^2} \right) + O(dt^3) \right\}
\]
Estimating Truncation Error

• Removing canceling terms:

\[
R_i^n := \frac{1}{dt} \left\{ \left(1 - \frac{dt}{dx} \frac{\partial}{\partial x} \right) \bar{q}_i^n \right. \\
+ \left(\frac{dt}{dx} \frac{\partial}{\partial x} \right) \left\{ \bar{q}_i^n - dx \left(\frac{\partial \bar{q}}{\partial x} \right) + dx^2 \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^3) \right\} \\
- \left\{ \frac{\partial}{\partial t} \left(\frac{\partial \bar{q}}{\partial t} \right) + \frac{dt^2}{2} \left(\frac{\partial^2 q}{\partial t^2} \right) + O(dt^3) \right\}
\]
Estimating Truncation Error

• Simplifying:

\[
R_i^n := \frac{1}{dt} \left\{ \left. \frac{dx}{dt} \right| \partial_q \right\} - dt \left(\frac{\partial q}{\partial t} \right) + \frac{dt^2}{2} \left(\frac{\partial^2 q}{\partial t^2} \right) + O(dt^3) \right\}
\]

\[
R_i^n := \left\{ \left(\frac{\partial q}{\partial t} \right) + \bar{u} \left(\frac{\partial q}{\partial x} \right) \right\} - \left(\frac{dt}{2} \left(\frac{\partial^2 q}{\partial t^2} \right) + O(dt^2) - \left(\bar{u} \right) \frac{dx}{2} \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^2) \right\}
\]
Final Form

- Using the definition of \(q \)

\[
R_i^n := \left\{ \left\{ \frac{\partial q}{\partial t} + \bar{u} \frac{\partial q}{\partial x} \right\} - \left\{ \frac{dt}{2} \left(\frac{\partial^2 q}{\partial t^2} \right) + O(dt^2) - (\bar{u}) \frac{dx}{2} \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^2) \right\} \right\}
\]

Using that:

\[
\frac{\partial^2 q}{\partial t^2} = \bar{u}^2 \frac{\partial^2 q}{\partial x^2}
\]

\[
R_i^n := \frac{\bar{u}dx}{2} \left(1 - \frac{\bar{u}dt}{dx} \right) \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^2)
\]
Interpretation of Consistency

\[R^n_i := \frac{\bar{u}dx}{2} \left(1 - \frac{\bar{u}dt}{dx} \right) \left(\frac{\partial^2 q}{\partial x^2} \right) + O(dx^2) \]

So the truncation error is \(O(dx) \) under the assumption that \(dt/dx \) is a constant..

This essentially implies that the numerical solution diverges from the actual solution by an error of \(O(dx) \) every time step.

If we assume that the solution \(q \) is smooth enough then the truncation error converges to zero with decreasing \(dx \). This property is known as consistency.
Error Equation

- We define the error variable: \[\rho_i^n = q_i^n + E_i^n \]

- We next define the numerical iterator \(N: \) \[\rho^{n+1} = N \rho^n \]

- Then:

\[
E^{n+1} = N \left(q^n + E^n \right) - q^{n+1}
= N \left(q^n + E^n \right) - N \left(q^n \right) + N \left(q^n \right) - q^{n+1}
= \left\{ N \left(q^n + E^n \right) - N \left(q^n \right) \right\} + dtR^n
\]

- So the new error consists of the action of the numerical scheme on the previous error and the error committed in the approximation of the derivatives.
Abstract Scheme

• Without considering the specific construction of the scheme suppose that the numerical N operator satisfies:

$$\|N(P) - N(Q)\| \leq \|P - Q\|$$

• i.e. N is a contraction operator in some norm then…
Estimating Error in Terms of Initial Error and Cumulative Truncation Error

\[E^{n+1} = \left\{ N \left(\bar{q}^n + E^n \right) - N \left(\bar{q}^n \right) \right\} + dtR^n \]

\[\downarrow \]

\[\| E^{n+1} \| \leq \| N \left(\bar{q}^n + E^n \right) - N \left(\bar{q}^n \right) \| + dt \| R^n \| \quad \text{triangle inequality} \]

\[\downarrow \]

\[\| E^{n+1} \| \leq \| \bar{q}^n + E^n - \bar{q}^n \| + dt \| R^n \| \quad \text{contraction property of } N \]

\[\downarrow \]

\[\| E^{n+1} \| \leq \| E^n \| + dt \| R^n \| \]

\[\leq \left\{ \| E^{n-1} \| + dt \| R^{n-1} \| \right\} + dt \| R^n \| \]

\[\leq \ldots \]

\[\downarrow \]

\[\| E^{n+1} \| \leq \| E^0 \| + dt \sum_{m=1}^{m=n} \| R^m \| \quad \text{by induction} \]
Error at a Time T (independent of dx,dt)

\[
\|E^{n+1}\| \leq \|E^0\| + dt \sum_{m=1}^{m=n} \|R^m\| \\
\downarrow \\
\|E^{n+1}\| \leq \|E^0\| + T \max_{m=1,\ldots,n} \left(\|R^m\|\right)
\]

- If the method is consistent (and the actual solution is smooth enough) then:

\[
\|E^{n+1}\| \leq \|E^0\| + T \, O(dx)
\]

- As \(dx \to 0\) the initial error \(\to 0\) and consequently the numerical error at time \(T\) tends to zero with decreasing \(dx\) (and \(dt\)).
Specific Case: Stability and Consistency for the Upwind Finite Volume Scheme

• We already proved that the upwind FV scheme is consistent.

• We still need to prove stability of:

\[\overline{\rho}_i^{n+1} = (1 - \lambda) \overline{\rho}_i^n + (\lambda) \overline{\rho}_{i-1}^n \]
Stability in the Discrete 1-norm

\[\bar{\rho}_{i}^{n+1} = (1 - \lambda) \bar{\rho}_{i}^{n} + (\lambda) \bar{\rho}_{i-1}^{n} \]

\[\downarrow \]

\[\left\| \bar{\rho}^{n+1} \right\|_{1} = dx \sum_{i=1}^{N-1} \left| \bar{\rho}_{i}^{n+1} \right| \]

\[= dx \sum_{i=1}^{N-1} \left| (1 - \lambda) \bar{\rho}_{i}^{n} + (\lambda) \bar{\rho}_{i-1}^{n} \right| \quad \text{triangle inequality} \]

\[\leq dx \sum_{i=1}^{N-1} (1 - \lambda) \left| \bar{\rho}_{i}^{n} \right| + dx \sum_{i=1}^{N-1} \lambda \left| \bar{\rho}_{i-1}^{n} \right| \quad \text{assuming } 0 \leq \lambda \leq 1 \]

\[\leq dx \lambda \left| \bar{\rho}_{0}^{n} \right| + dx \sum_{i=1}^{N-1} \left| \bar{\rho}_{i}^{n} \right| \]

\[\leq dx \lambda \left| \bar{\rho}_{0}^{n} \right| + \left\| \bar{\rho}^{n} \right\|_{1} \]

So here’s the interesting story. In the case of a zero boundary condition then we automatically observe that the operator is a contraction operator.
Boundary Condition

• Suppose \(\bar{\rho}, \bar{\sigma} \) are two numerical solutions with \(\bar{\rho}_0^n = \bar{\sigma}_0^n \)

• Then:

\[
\left\| \rho^{n+1} - \sigma^{n+1} \right\|_1 \leq dx \lambda \left(\rho^n_0 - \sigma^n_0 \right) + \left\| \rho^n - \sigma^n \right\|_1 \\
\leq \left\| \rho^n - \sigma^n \right\|_1
\]

• i.e. if we are spot on with the left boundary condition the \(N \) iterator is indeed a contraction.
Relaxation on Stability Condition

• Previous contraction condition on the numerical iterator N
 \[
 \|N(P) - N(Q)\| \leq \|P - Q\|
 \]

• A less stringent condition is:
 \[
 \|N(P) - N(Q)\| \leq (1 + \alpha dt)\|P - Q\|
 \]

• Where alpha is a constant independent of dt as $dt \rightarrow 0$
Relaxation on Stability Condition

- In this case the stability analysis yields:

\[
E^{n+1} = \left\{ N\left(\bar{q}^n + E^n \right) - N\left(\bar{q}^n \right) \right\} + dtR^n
\]

\[
\downarrow
\]

\[
\|E^{n+1}\| \leq \|\bar{q}^n + E^n - \bar{q}^n\| + dt\|R^n\|
\]

\[
\downarrow
\]

\[
\|E^{n+1}\| \leq (1 + \alpha dt)\|E^n\| + dt\|R^n\|
\]

\[
\leq (1 + \alpha dt)\left\{ (1 + \alpha dt)\|E^{n-1}\| + dt\|R^{n-1}\| \right\} + dt\|R^n\|
\]

\[
\leq
\]

\[
\downarrow
\]

\[
\|E^{n+1}\| \leq (1 + \alpha dt)^{n+1}\|E^0\| + dt\sum_{m=1}^{m=n} (1 + \alpha dt)^{n-m}\|R^m\|
\]

\[
\leq e^{\alpha T} \left(\|E^0\| + T \max_{m=1,...,n} \left(\|R^m\| \right) \right) Ndt=T
\]
Interpretation

\[\| E^{n+1} \| \leq e^{\alpha T} \left(\| E^0 \| + T \max_{m=1,..,n} (\| R^m \|) \right), \text{ Ndt=T} \]

- Relaxing the stability yields a possible exponential growth – but this growth is independent of T so if we reduce dt (and dx) then the error will decay to zero for fixed T.
Next Lecture (6)

- Alternative flux formulations
- Alternative time stepping schemes