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Abstract. We explore a computationally efficient method of simulating realistic networks of neurons introduced
by Knight, Manin, and Sirovich (1996) in which integrate-and-fire neurons are grouped into large populations of
similar neurons. For each population, we form a probability density that represents the distribution of neurons over
all possible states. The populations are coupled via stochastic synapses in which the conductance of a neuron is
;aodulated according to the firing rates of its presynaptic populations. The evolution equation for each of these
probability densities is a partial differential-integral equation, which we solve numerically. Results obtained for
several example networks are tested against conventional computations for groups of individual neurons.

We apply this approach to modeling orientation tuning in the visual cortex. Our population density model is
based on the recurrent feedback model of a hypercolumn in cat visual cortex of Somers et al. (1995). We simulate
the response to oriented flashed bars. As in the Somers model, a weak orientation bias provided by feed-forward
lateral geniculate input is transformed by intracortical circuitry into sharper orientation tuning that is independent
of stimulus contrast.
~ The population density approach appears to be a viable method for simulating large neural networks. Its computa-
 tional efficiency overcomes some of the restrictions imposed by computation time in individual neuron simulations,
allowing one to build more complex networks and to explore parameter space more easily. The method produces
smooth rate functions with one pass of the stimulus and does not require signal averaging. At the same time, this
model captures the dynamics of single-neuron activity that are missed in simple firing-rate models.

. Keywords: neural networks, modeling, population density, orientation tuning, visual cortex

brain could contain tens of thousands of neurons and
~ hundreds of thousands of synapses. Although comput-
The ability to model realistic networks of neurons on ers are rapidly growing faster, these simple models are
computer is severely restricted by the computer time still being constrained by available computational time;
equired. Even a simple model of a small part of the one is forced to cut corners by reducing the numbers
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of neurons and synapses. Ideally, one would like to en-
large these models to more closely approximate the net-
works in the brain. This presently is not feasible since
these computations would require unrealistic amounts
of computer time.

The population density approach addresses this is-
sue in two ways. First, it is a computationally efficient
method for simulating large networks of neurons. Sec-
ond, it is a method where one does not need to cut
corners in the numbers of neurons and synapses simu-
lated. One can simulate networks that are, in effect, of
unlimited size.

Our approach is based on ideas and methods in-
troduced by Knight, Manin, and Sirovich (1996) and
further developed in Omurtag, Knight, and Sirovich
(2000). Although theories based on the notion of a
probability-density function have a long history in
theoretical neuroscience (Wilbur and Rinzel, 1983;
Kuramoto, 1991; Abbott and van Vreeswijk, 1993;
Gerstner, 1995), the particular way of applying this
theory to model interactions of large populations of
sparsely connected neurons introduced by Knight and
colleagues (Knight et al., 1996; Omurtag et al., 2000,
Sirovich et al., 1999; Knight, 2000) appears to be
novel. A similar approach has been taken recently by
Brunel and Hakim (1999).

In the population density approach, integrate-and-
fire neurons are grouped into large populations of sim-
ilar neurons. For each population, we form a probability
density that represents the distribution of neurons over
all possible states. In the simple version of this model
presented here, the state of a neuron is completely de-
scribed by its voltage.

We derive partial differential-integral equations for
the evolution of population density functions of cou-
pled populations and corresponding population firing
rates. We also develop a reduction of the equations to
a diffusion equation that produces similar results over
a wide range of parameters.

We compare the results of a simple network of pop-
ulation densities with a similarly organized network
of many individual integrate-and-fire neurons. We find
that the firing rates of population density simulations
closely match the average firing rates of individual neu-
ron populations when the individual neuron popula-
tions contain sufficient numbers of neurons. The popu-
lation density results were obtained in a fraction of the
time required for the individual neuron simulations.

As a demonstration of the population density ap-
proach, we apply the method to modeling orientation

tuning in visual cortex neurons. Our population den-,
sity model is based on the recurrent feedback model
of a hypercolumn in cat visual cortex of Somers
et al. (1995). We simulate the response to flashed
oriented bars. As in the Somers model, a weak ori-
entation bias provided by feed-forward LGN input
is transformed by intracortical circuitry into sharper
orientation tuning that is independen of stimulus con-

. trast. We demonstrate the speed at which the simula-

tion runs and the similarity of the population density
results to those of an equivalent individual neuron
network.

In Section 2 we outline the integrate-and-fire point
neuron model that underlies our population density
formulation. In Section 3 we introduce the popula-
tion density approach and derive the population den-
sity evolution equations. We present in Sections 4 and
5 the results of single population simulations and sim-
ple population network simulations, respectively. We
demonstrate a population density model of orienta-
tion tuning in Section 6. We discuss the results in
Section 7. Details on our diffusion approximation, nu-
merical methods, and parameters are presented in the
appendices.

2. The Integrate-and-Fire Neuron

Our implementation of the population density approach
is based on an integrate-and-fire point (single compart-
ment) neuron. Although the approach could be gen-
eralized to other neuron models, (see Omurtag et al.,
2000; Knight, 2000), the population density based on
an integrate-and-fire neuron is low-dimensional and
thus can be computed efficiently. In this presentation,
we make a further simplification that the synaptic time
courses are fast, which will allow us to form a one-
dimensional population density.

2.1.  General Model of an Integrate-and-Fire Neuron

The integrate-and-fire point neuron, schematized by
its equivalent circuit diagram in Fig. 1, contains three
conductances: a fixed resting conductance g, a time-
varying excitatory conductance g.(t), and a time-
varying inhibitory conductance g; (). When the con-
ductances are nonzero, they draw the transmembrane
voltage V (¢) of the neuron toward their respective equi-
librium potentials (&, &, and £;, where E < & < &)
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Figure 1. The equivalent circuit of an integrate-and-fire point neu-
ron. The transmembrane voltage of the neuron is V(1) = Uiy — Youts
where vj,, is the voltage inside the neuron and vgyr is the volt-
age outside the neuron. C is the capacitance of the neuron’s mem-
brane. The neuron has three ion channels modeled as a resistor and
battery in series. The resting conductance g, is fixed, while the exci-
tatory and inhibitory conductances, g.(t) and g; (¥) are time-varying
functions of the neuron’s input. E., &, and & are the resting, ex-
citatory, and inhibitory equilibrium potentials, respectively, with
5,’ < 5,. < 5}.

The evolution of V in time ¢ is specified by the
equation

T% + (V - g}) + Ge(t)(v - gc)

+Gi(t)(V—€i):0, (1)
where T = C/g, is the membrane time constant, Cis
__the membrane capacitance, and G./i(t) = 8ey (/g
Equation (1) holds as long as V(t) < vu, where vy, is
a fixed threshold voltage, and &, < vy < E..

When the voltage of a neuron reaches vy, the neuron
is said to fire a spike. The output of the neuron is the set
of times at which the neuron spikes. After each spike,
the voltage of the neuron is reset to the reset voltage
- Vyesets Ei < Vpeser < Vth- In this way, the voltage remains
in the range & < V(¢) < vu, provided it starts in that

inputs to an integrate-and-fire neuron are the
mes of excitatory and inhibitory synaptic inputs,
ch determine the synaptic conductances, ge(t) and
). When a neuron is at rest, the synaptic conduc-
es are zero. An excitatory or inhibitory synaptic

¥

input transiently increases the corresponding synaptic
conductance.

To simplify the population density equations, we as-
sume that the synaptic time courses are fast—that is,
much shorter than the membrane time constant T. We

- can then replace the conductance change caused by a

single synaptic input with a delta function of magni-
tude equal to the integral of the original conductance
chapge. Using normalized conductances as in (1), an
excitatory/inhibitory synaptic input at time Te"/i will
produce a conductance change similar to a delta func-
tion of magnitude A}, given by

Al = / G¥ (1) dt, )

where é’;/i (¢) is the change in G ./; (1) due to the synap-
tic input at time Te"/i.

With this approximation, the voltage jumps when
a neuron receives synaptic input. Solving Eq. (1) for
the time interval from immediately preceding to im-
mediately following the synaptic input (Tek/:, TL,k/J{), we
calculate that the jump size Av = V(Tek/f) - V(Tk/j) is

e

I k—
Av=(1-¢ ‘/')[ge/i'V(Te/i)]’ ®)
where ' = A* Jil T The size of the voltage jump is
proportional to

L3 =1-exp(=Tepi), O
which depends on the size of the conductance
change. Note that in the limit of a very large synap-
tic conductance change F’e‘ ;i 00 and I‘:}‘i — 1.In
this limit, V(T57) = Ee/i-

An example of the evolution of an integrate-and-
fire neuron with delta function conductance change
is shown in Fig. 2. An important consequence of our
delta function approximation is that the state of a neu-
ron is completely determined by its voltage V), & <
V(t) < vy. We do not need to track the state of its

synaptic conductances.

2.3.  Two Sources of Randomness

We introduce two sources of randomness in our model:
the arrival times of synaptic inputs and the size of
synaptic conductance changes.
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Figure 2. The evolution of the voltage of an integrate-and-fire
neuron with delta function unitary synaptic conductances. Between
synaptic inputs, the voltage decays toward & (dot-dash line). The
voltage jumps upward or downward on receiving excitatory or in-
hibitory synaptic input, respectively. When the voltage reaches
vy, (dashed line), the neuron is said to have fired a spike and its
voltage is reset to vreset (horizontal dotted line). The dotted verti-
cal lines are shown just to illustrate these spike times. The arrival
times of the synaptic input and the size of the resulting voltage
jumps are random. The jump sizes are shown atypically large for
illustration. Parameters used were & = —70 mV, & = —65 mV,
E =0mV, vyeger = —6TmV, vypp = — 55 mV, and v =20 ms.

In this model, only the synaptic input rates, which we
denote v,.(t) and v;(t), are specified. In general, these
rates are determined by the firing rates of presynap-
tic neurons. The precise arrival times of the synaptic
inputs, ch‘/ ;» are assumed to be given by a modulated
Poisson process with mean rate ve/; ).

We let the size of the synaptic conductance changes,
F’Cf /i be random numbers with some given distribu-
tion. Thus the F;‘;‘i are also random numbers with a
distribution function determined by that of T',/;. We de-
fine the complementary cumulative distribution func-
tion for I';,;,

Frs () = Pr(T); > x), )

which is some given function of x that depends on the
chosen distribution of ['% /;- The derivation of the model
is independent of the choice of Frx, (x). The choice of
F r, (x) for our simulations is given in Appendix D.
With these sources of randomness, a neuron will re-
spond differently to multiple presentations of the same
input rates. If one repeated the presentation of the same
input many times and analyzed the neuron’s response,

one could map out the relative frequency that a neuron,
is in a small neighborhood of a given voltage at each
time. The relative frequency per unit voltage given by
this procedure would be an estimate of the probabil-
ity density function of the neuron. Figure 3 illustrates
the relationship between the individual responses of
an integrate-and-fire neuron and its probability density
function.

3. The Population Density Approach

The direct calculation of the probability-density func-
tion forms the basis of the population-density ap-
proach. We ignore the trajectories of individual neu-
rons and instead model the evolution of a probability
density that is defined by

pv,t)ydv=Pr(V({t) € (v,v +dv)), & <v =< vg.
(6)

The key to modeling large neural networks with this
approach is the observation that for a population of
many similar neurons, this probability density can be
interpreted as a population density (Knight et al., 1996;
Omurtag et al., 2000; Kuramoto, 1991; Abbott and van
Vreeswijk, 1993; Gerstner, 1995):

p(v, t) dv = Fraction with V(¢) € (v,v+dv). (7)

Thus, for a fixed time ¢, the population density
p(v,t) describes the distribution of neurons over all
possible states. We emphasize that, since the state of our
model neuron is completely determined by its voltage,
this distribution is described by the one dimension of
voltage.

3.1. The Assumptions of the Population Density
Approach

The population density interpretation assumes that
there are a large number of similar neurons in each
population. These neurons have the same biophysi-
cal properties, which in the current model means the
same capacitance, resting conductance, and distribu-
tion of synaptic conductances. This assumption is more
restrictive than the more general view presented in
Omurtag et al. (2000), where the population density
is based explicitly on the notion of an ensemble aver-
age (of replica systems).
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In addition, we assume that each neuron in the popu-
 Jation receives excitatory and inhibitory synaptic input
with the same average rate (which we denote v, () and
v; (1), respectively). We assume that the arrival times of
synaptic events are random variables given by a mod-
ulated Poisson process (Knight et al., 1996). These as-
_sumptions are analyzed further in the discussion.

Derivation of the Evolution Equations
for a Single Population

e first derive the evolution equation for the probabil-
density function for a single population when the

Figure 3. Tllusiration of the relationship between the individual response
atory input rate (in arrivals/second) be ve(f)

me input rat
d as the limit of a large number of responses as in panel
olid line) and inhibitory (dashed line) input rates are ploited in gray using the

s of an integrate-and-fire neuron and its probability density. For
= 2000(1 + sin(27 ft)) and the inhibitory input rate be v;(f) =
s of a neuron to four presentations of the same input rate. Note that
1 at a low firing rate (around ¢ = 80 ms). B: A grayscale plot of the
es. A dark shade indicates a low probability; a light shade indicates
A. S1 and S2 indicate

time of high firing rate. The high probability near vreser is due to the

hot of the probability density function during a time of low firing rate. Parameters used
—65mV, vy, = —55 mV, and t = 20 ms.

synaptic input rates, ve(t) and v; (1), are given functions
of time. This development is similar to that ina number
of previous papers (see Discussion).

The evolution equation for p(v, f) is based on con-
servation of probability. We first look at the evolution
of the probability contained in an interval (a, b):

b
Pr{V(t) € (a,b)} = / oV, 1)dv'. (8)

The probability contained in that interval can change
only through the flux of probability across the end-
points of the interval. Probability flux is a signed
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quantity. By convention, a positive/negative flux at a
point v is interpreted as the probability per unit time of
crossing v from below/above. If we let J (v, t) = flux
of probability across v at time ¢, then

d
Ja,t)y—J(b,t) = " Pr{V (t) € (a, b)}
5 b
= 5/[1 e, t)dv'. )
Letting b = v, and differentiating (9) by v, we have
d aJ
Bé(v,t) = -0, &<v<u (10)

We modify (10) to account for the firing and sub-
sequent resetting of the voltage in integrate-and-fire
neurons. Integrate-and-fire neurons that cross vy fire a
spike. In the probability model, movement of a neuron
across a voltage corresponds to flux across that volt-
age. Thus, the population firing rate is the flux across
threshold:

rt) = J (vg, t). (11)

The population firing rate is not a temporal average but
is an average across all neurons in the population.

When an integrate-and-fire neuron fires, its voltage is
reset tO Uneser. This reset of neurons produces a source
of probability at v,e.. To reflect this source, (10) is
modified to?

ap aJ
e = = — A+ 8(V — Vpeser) S (U, 1),

E < v < vy
at dv ; ’

(12)
To include a refractory period of length 7., we can

modify (12) to

a aJ
a—f - —% +6(v — vreset)J(vtln t— Tref)~ (13)

What remains is to calculate an expression for the
flux J (v, 1). In the rest of this section, we derive the
following equations for J (v, £):

J,t) = Ji(v, t) + J(v, 1) + Ji (v, 1)

1
Ji(v, 1) = —;(v —-&)p(v, 1)

14

Jo(v, 1) = ve(t)/ Fr; ( P ) p(', 1) dv'
& ¢ ge —v

Pl v—1v / /
Ji(v, t) :——v,-(t)/ Fr: (5 /)p(v,t)dv.
v i — v

3.2.1. Components of the Flux. We calculate the flux
of probability J (v, t) based on (1), the subthreshold
equation for V (¢). We break the flux into three compo-
nents, corresponding to the three conductances of the
integrate-and-fire neuron:

J,t) = Ji(, t) + Je(v,t) + Ji(v, 1). (14)

Ji(v, t) is the leakage flux toward &, due to the rest-
ing conductance; J, (v, t) is the excitation flux toward
£, due to the excitatory conductance; and J;(v, )
is the inhibition flux toward &; due to the inhibitory
conductance.

We calculate the equation for each component of the
flux separately.

3.2.2. Leakage Flux. For an integrate-and-fire neu-
ron, the voltage evolution due to leakage alone is (1)
with G,/ = 0:

dv

1 |
— =V =&, (15)

The voltage decays exponentially toward the resting
potential, &;.

This movement of the neuron’s state gives a leak-
age flux of probability in the population density

A

positive flux negative flux
1 -, = |
I | |
& Er Vth
B

g w—Aw v £,

Figure 4. Diagram of the source of leakage flux. A: Neurons with
V(t) < & move upward due to leakage, creating positive flux of
probability, Neurons with V (f) > &, move downward due to leakage,
creating negative flux of probability. B: In the positive flux region
from A, neurons cross a fixed voltage v from below. A sample p(v, {)
is plotted. The shaded region indicates the probability of crossing v
in the time interval At.
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model, as illustrated in Fig. 4. For V(¢) € (&, &), V()
increases, creating a positive leakage flux across all
v € (&, &). Similarly, the decreasing voltage will cre-
ate a negative leakage flux across all v € (&, vy). For
simplicity, this derivation of the Jeakage flux will focus
on the positive flux regime, v € (&, E).

Since for v € (&, &), the only movement of neu-
rons across v is upward, the leakage flux at v is the
probability per unit time that a neuron crosses v from
below. We calculate this by first looking at the proba-
bility that a neuron will cross v in some short time Af,
as schematized in Fig. 4b.

The voltage of a neuron will cross v in the time
interval (¢, t + A1) if V(¢) € (v — Av, v), whgre

dv

Av=—- AL+ O (A%). (16)

The probability that a neuron is in that interval is
dv
p(v, )Av = p(v, t):EAt +o®. (17)

Therefore, the leakage flux, the probability per unit
time that a neuron crosses v, is

o(v, t)Av
At

Ji(v, 1) = + O(AD)

= p(v, t)dg‘ti + O(Ab). (18)

Letting At — 0 and substituting the value for %‘t/—

"~ from (15), we obtain the following expression for the
leakage flux:

1
Ji(v, t) = —;(v —&)p(v, 1). (19)

2.3. Excitation Flux. Since the conductance
ehange due to synaptic input is modeled as a delta
inction, the voltage of a neuron will jump upward
excitatory input. This jump will create a positive
ux of probability across the jumped voltages, which
e call the excitation flux.

o calculate the excitation flux across a fixed volt-
v, we first calculate the probability that a neuron
Voltage V() =/, v < v, will cross v, given that
euron received an excitatory synaptic input (see

eceiving an excitatory synaptic input, the neuron
Jnitial voltage V (¢) = v’ will jump to the voltage

-

positive flux

v e (&,v)

Figure 5. Diagram of the source of excitation flux. A: If a neuron
receives an excitatory input that causes its voltage to jump over v, it
will create a positive flux of probability across v. B: Neurons could
potentially cross v from any voltage v’ € (&, v), if they received an
excitatory input with a large enough conductance change.

v, where

b=v +TE —), (20)

(see Eq. (3)).

If 7 > v, the excitatory input will cause the neuron
to cross the voltage v, creating positive flux at v. This
condition is equivalent, by (20), to

rr> 2= 1)

> .
e
E —

Since I'? is a random variable, it has the following
probability of meeting condition (21):

- v—1v
Fr« ,
rc<£e_v/>

where I:}: (x) = Pr(I'} > x), as in Eq. (5).

Expression (22) is thus the probability that a neuron
with voltage V(¢) = v/, v < v, will cross v, given that
the neuron received an excitatory synaptic input. The
rest of the calculation of the excitation flux follows
quickly from (22) as follows.

The excitatory synaptic input rate, v,(t), is the prob-
ability per unit time that a neuron will receive excitatory
input. Note that this probability is independent of
past history by the Poisson assumption (Section 3.1).2
Since the random input times are given by a modulated
Poisson process and are independent of I';, the prob-
ability per unit time that a neuron with voltage v will

(22)
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cross v is simply the product of v(¢) and (22):

ve(t) Fr (; __';) . (23)

For a neuron to cross v from v’, the neuron must start

with the voltage V (¢) = v'. The probability of V(¢) €
(v, v +dv")is p(v', t)dv. Thetotal flux of probability
from V (¢) € (v/, v/ +dv’) across v is therefore

—v
’

> )p(v’,t)dv'. (221)

~ v
Ue(t)Fr;(g —

A neuron with voltage V(t) anywhere in the in-
terval (&;, v) could contribute to the flux across v if
it received a large enough excitatory synaptic input
(Fig. 5b). The total excitation flux at v is thus given
by summing (24) over all infinitesimal intervals from
E tov:

Jo(v. 1) = ve(t) f Frf(” 0 >p<v’,r>dv’. (25)
& ‘ ge v’

3.2.4. Inhibition Flux. The inhibition flux is deter-
mined in the same way as the excitation flux, with
two important differences (see Fig. 6). First, a neu-
ron can cross the voltage v only if its voltage V (¢) is
in the interval (v, vy). Second, since neurons Cross v
by moving to lower voltages, they contribute negative
flux to the inhibition flux. Thus, the total inhibition
flux is

" v—v ' ’
Ji(U,t):—Ui(t)/ Fr;(a_v/)p(v,t)dv,
v 1 (26)

where ﬁr;(x) = Pr(I'} > x).

negative flux

VRN -

v " Vih,
'U/ € (U7 vth,)

Figure 6. Diagram of the source of inhibition flux. A neuron could
possibly cross v from any voltage v € (v, vy) if it received an in-
hibitory input with large enough condutance change. The downward
movement would create a negative flux of probability across v.

3.3. Derivation of Network Equations

Up to this point, we have looked only ata single popula-
tion density, which represents neurons that are all simi-
lar. Furthermore, the input rate to the single population
was a given function. Our primary interest, though, is
modeling networks of neurons.

Deriving network equations involves only two more
steps. First, we group neurons into many populations
and create a population density for each group. Second,
we connect the populations together via their firing
rates to form networks of population densities.

3.3.1. Grouping Neurons into Populations. To sim-
ulate a network of neurons, the first step is to group
the neurons into populations. The groups must be cho-
sen to satisfy the assumptions in Section 3.1. The neu-
rons must be similar so that they can be described
by one population density. In addition, the popula-
tions must Be large enough so that the population den-
sity interpretation (7) is applicable. More details on
the restriction of these assumptions are given in the
discussion.

We form a population density for each group of neu-
rons: pF(v, 1), k=1,2,..., N, where N is the num-
ber of populations. As outlined in the single-population
case, each population has a firing rate, r%(t). Bach
population evolves according to the population density
model Egs. (12), (14), (19), (25), and (26).

The difference between network equations and the
single-population equations is that the synaptic input
rates for each population in the network, vk(t) and
v{‘ (t), are not given functions. Instead, the input rates
are determined by the firing rates of the presynaptic
populations as well as any external input rate. The cal-
culation of these input rates thus depends on the con-
nectivity of the network.

3.3.2. The Coupling of Populations. We denote
the connectivity of the network by Wi, j, k=1,

2,...,N. Wj is the number of presynaptic neurons ‘

from population j that project to each postsynaptic
neuron in population k.

Each population, with density p*(v,?), k=1
2, ..., N, is either excitatory or inhibitory. We denote
the set of excitatory indices by Ag and the set of in-
hibitory indices by A;—that is, {p* (v, 1) | k € Mgy}
is the set of excitatory/inhibitory populations.

If the excitatory and inhibitory external input rates to
population k are vif’o (t) and vfo(t), then the total input

.
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rates to population k are

o0
0 = 0+ YW [ anric -t
0

JEAE):

27)

where o i (¢') is the distribution of latencies of synapses
from population j to population k. The choice of o jx (¢')
used in our simulations is given in Appendix D.

With synaptic coupling, the input is a combination
of outputs from other neurons. Since the output of a
single neuron is certainly not guaranteed to be Poisson
distributed, the assumption that the input is Poisson
distributed (see Section 3.1) needs justificatien. This
justification is given in the discussion.

3.4. Summary of Population Density
Model Equations \

—_

Combining our equations for the flux (19, 25, 26) with
the probability conservation Eq. (12), we have a par-
tial differential-integral equation for the evolution of a
- population with synaptic mput rates v, (¢) and v; (¢). In
a network with populations p k(v, t), these input rates
are given by (27). The firing rates of each population
are given by (11).

~ The following summarizes the equations of the
_ population density approach with populations k =
- 1,2,....,N

k

ap* aJ
P oty = =2 ) + 80 — Vs (s 0)
ot ov

(28)

Tr, 0y = JFw, 0 + J5w, ) + Jf (v, 1) (29)

o = —te-gpten G

(v, 1) = v (t)/ Fr*<
e b ””'~* v—1
) vl(t)/; FF"(&—U’

)p @, Hdv (31)

)pk(v’, t)dv
(32)

k() = J*(oar, 1) (33)

Uﬁ/i(t) = Uéc/i,o(t) =+ ZW]k/O Oljk(t/)rj(t . t/) dt’.
j€AE/

: o (34)

The boundary conditions for these partial differential-
integral equations are that PX(& 1) = p*(ug,, t) = 0.

In general, the parameters Eeji/rs Vihjreser» and T, as
well as the functions ﬁr:ﬂ, could depend on £.

3.5. Diffusion Approximation to the Model
Equations

The above partial differential-integral equations for
the population density model can be solved efficiently
on a computer. Even so, one can make a rigorous
approximation to each equation that turns it into a
diffusion equation, which can be solved even more
quickly.

The diffusion approximation is based on an assump-
tion that the synaptic conductance changes I';/; are
small. The voltage then makes many small jumps due
to synaptic input, leading to movement of probabil-
ity that is similar to diffusion. However, as shown in
Section 4.3, the diffusion approximation gives good
results even with voltage jumps of moderate size.

The condition that the I',;; are small is equivalent
to the condition that Fr* (y) < 1 except for small y
Under this condition, we obtam the following dlffusmn
approximation (see Appendix A) for (28) to (33)

ap . d v — (c:r ' .
= = — - ve(t)cie (V) + v; (t)Cli(U)>,0

d ap
+ — [(Ve(t)c2e(v) + v (t)ca (v)) 5;]

av
+ 8(V — Vreser)T () (35)
r(t) = —Ve(t)Cze(Uth) (Uth, 1), (36)

where the cie2. and cy;pp; are given in Appendix A.
Here, we have dropped the dependence on k. To obtain
the final form of the diffusion equation, we used the fact
that p (v, t) = 0 and ¢2; (vy) = 0. For the excitatory
population parameters given in Appendix D, the values
of Fr* Clej2e and cy;po; are plotted in Fig. 7.
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Figure 7. Complementary cumulative distribution functions for
I, and diffusion coefficients for excitatory population parameters
given in appendix D. A: 151-; (y) is plotted with a black line and
I:"ri* (y) is plotted with a gray line. Already for y near 0.1, both func-
tions are nearly zero. For y > 0.1 (not shown), both functions are
practically zero. B: Coefficients for the diffusion equation (35). For
c1, and c¢y;, the scale is in mV. For ¢z¢ and cz;, the scale is in mV2.

4. Single-Population Results

In this section, we demonstrate simulations of a single,
uncoupled population density. This population repre-
sents uncoupled neurons receiving input from an exter-
nal source. The population firing rate and distribution
of neurons over voltage are compared to corresponding
estimates obtained from various numbers of individual
neurons.

The population density equations are solved numer-
ically using the method given in Appendix B, using a
delta function modification specific for the case where
Vst = &r. The parameters we used are given in
Appendix D. For each simulation, we show the re-
sults after the populations have settled into their pe-
riodic states, so the results do not depend on initial
conditions.

The computation times listed are from simulations
run on a Silicon Graphics Octane computer with 1
195 MHz MIPS R10000 processor.

4.1. A Single-Population Density

We simulated the response of a single population to
the following excitatory and inhibitory synaptic input
rates:

Veyi(t) = Veyi (1 + sin(27 ft)), 37

where the mean excitatory input rate v, = 2000 ar-
rivals/second, the mean inhibitory input rate v; =
1000 arrivals/second, and f = 10 Hz. Using the param-
eters given in Appendix D, the average voltage jump
due to excitatory and inhibitory input was about 0.5 mV
and —% mV, respectively.

Figure 8 shows the response of the population den-
sity model to these synaptic input rates. The popula-
tion density, which is the distribution of neurons over
voltage states, is plotted in Fig. 8a, and the resulting
population firing rate is plotted in Fig. 8b along with
the input rates (37).

The high peak in the population density around ¢ =
80 ms corresponds to a time of low firing rate; most of

the neurons have voltages near £, = —65 mV. During
periods of high firing rate (such as around ¢ = 20 ms),
many of the neurons are closer to vy, = —55 mV. Addi-

tionally, since the neurons that have crossed threshold
and fired are reset tO Uy, there is a sharp peak of
probability at v, during this period.

4.2.  Comparison with Population of Individual
Neurons

The population density represents the fraction of neu-
rons per unit voltage in the mathematical limit of an
infinite number of neurons. Since such numbers aren’t
encountered in practice, the usefulness of the popula-
tion density depends on its ability to represent accu-
rately the behavior of populations of a finite number
of individual neurons. We thus created populations of
various numbers of integrate-and-fire neurons to com-
pare with the population density. Details of how we
computed the activity of the individual neurons are de-
scribed in Appendix C.

Figure 9 compares the population density with in-
dividual neuron populations of 10, 100, 1,000, and

’%
.
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Figure 8. The evolution of the population density and its corre-
sponding firing rate in response (o sinusoidally modulated input rates.
A: Distribution of neurons over voltage states as a function of
time. Note that the periods of high firing rate (see panel B) correspond
to periods with many neurons near threshold (=55 mV). The high
peak near ¢ = 80 ms corresponds to a low firing period when most
of the neurons are near & = —65 mV. Snapshots of similar high
and low firing-rate distributions were shown in Fig. 3c, d. Neurons
hat are in the refractory state are not shown. B: Resulting firing rate
of the population are plotted using the lefthand scale; the synaptic
input rates (v (1) and v; (¢)) are plotted using the righthand scale. Pa-
_ rameters used were & = —70 mV, & = —65mV, & = 0 mV,
Breset = —65 mV, vy, = —55 mV, T =20 ms, and T, = 3 ms.

10,000 neurons. Each neuron received synaptic input
that was a modulated Poisson process with the rates
iven in (37). The left column compares snapshots of
the ;robability density at time ¢ = 20 ms, and the right
column compares the firing rates during the whole pe-
od. The results are obtained from one pass of the
imulus.

The distribution across voltages for 10 neurons
g. 9a) is too sparse to compare well to the population
18ity model, but already with 100 neurons (Fig. 9¢)
distributions are pretty similar. The firing rates,

.

too, are already close to each other when the individ-
ual neuron population has 100 neurons (Fig. 9d). Both
the distribution of neurons and the firing rate have al-
most converged with a population of 1,000 neurons
(Fig. 9e¢.f).

- We made no attempt to smooth the results of the in-
dividual neuron populations. We used histograms with
fixed bin sizes (1/4 mV for the distribution across
voltages, 2 ms for the firing rates). The small popu-
lation results would have appeared even closer with
smoothing.

This comparison serves as a verification of the popu-
lation density method since all our assumptions, includ-
ing the Poisson assumption, are satisfied in this simula-
tion. This setup corresponds to the situation where the
number of neurons in a population is vast, but one is
observing only a limited number of them. Thus, Fig. 9
allows us to determine how many individual neurons
must be followed computationally to estimate the pop-
ulation results at a given level of accuracy.

In addition, the comparison enables us to bench-
mark the computational efficiency of the population
density approach. With a single population, all the
times are small, but they shed light on relative dif-
ferences. A simulation of two periods with the popula-
tion density method took 0.1 seconds of computational
time with a time step of 1 ms. The individual neu-
ron simulation took 1.1 seconds with 100 neurons per
population and 11 seconds with 1,000 neurons per pop-
ulation. The individual neuron results begin to give a
smooth estimate around 100 neurons per population.
Thus, even without synaptic interactions, the popu-
lation density approach is between 10 and 100 times
faster than the individual neuron simulations. Further
savings of computational time can be achieved with
the diffusion approximation of the population density
equations.

4.3.  Comparison with Diffusion Approximation

The diffusion approximation speeds up the population
density simulations at the expense of minor differences
in the firing rate and distribution of neurons.

A comparison between the diffusion approxima-
tion results and full model results is illustrated in
Fig. 10. Snapshots of the distribution of neurons over
voltages at 1 = 20 ms are shown in Fig. 10a. The
firing rates over the whole stimulus period are shown
in Fig. 10b.
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Figure 9. Comparison of the population density model with populations of individual neurons. The response to a single pass of the synaptic
input rates from Fig. 8) is shown. The population density results (from Fig. 8) are shown by the solid line. The individual neuron results
are shown by the histograms. Both a snapshot of the probability density at ¢ = 20 ms (left column) and the firing rates (right column) are
shown. The comparisons are with four population sizes for the individual neurons: A, B: 10 neurons, C, D: 100 neurons, E, F: 1,000 neurons,
and G, H: 10,000 neurons. In the snapshots, neurons in the refractory state are not shown. Parameters are the same as in Fig. 8.
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The population density snapshots of Fig. 10a show
that the versions are similar. The diffusion approxima-
tion contains a peak at v, = —65 mV because the
equations are not completely diffusion equations. As
explained in Appendix B, we calculate separately the
evolution of a delta function component of p(v, ¢) at
vl'CSE['

The resulting population firing rates shown in
Fig. 10b are also similar. The diffusion approximation
tends to overshoot the peaks in the firing rate. The root
mean squared error of the diffusion approximation rate
is less than 5%.

Figure 11 shows how the error in firing rates in-
creases as the strengths of the synapses, and thus the

AN
S & o

—
Q

Diffusion Error (%
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2 4 6 8
Excitatory Jump Size (mV)
Figure 11. Root mean squared errors of the diffusion approxima-
tion rates compared with the full partial differential-integral equation
rates. The error is plotted against the average voltage jump due to
an excitatory synaptic input with a starting voltage halfway between
£, and vy,. Average inhibitory jumps were approximately half the
excitatory jumps. The first data point is from Fig. 10. For each sub-
sequent data point, the synaptic conductance changes were doubled
and the input rates halved.
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synaptic voltage jumps, are increased. Although the
evolution of the voltage may not be similar to diffusion
for excitatory voltage jumps as large as 2 mV, the diffu-
sion approximation is still close to the full solution. We
thus view the diffusion approximation as mathemati-

cal tool to speed the computation rather than a claim -

that the evolution of the voltage is physically similar to
diffusion. For excitatory voltage jumps of 4 mV, the ac-
curacy of the diffusion approximation begins to break
down.

The diffusion approximation leads to a further in-
crease in computational efficiency. For the parameters
used in Fig. 10, a population density simulation of two
periods was reduced from 0.1 seconds with the full
model to 0.03 seconds with the diffusion approxima-
tion. With larger synaptic conductance changes, the
difference between the diffusion and full model speeds
becomes greater, although the diffusion approximation
becomes less accurate.

5. Network Results
5.1. A Simple Network

To illustrate the performance of the population den-
sity approach, we constructed a simple network of
two populations. A schematic of the network is shown
in Fig. 12. The network contained one excitatory (E)
and one inhibitory (I) population. Each element of the
connectivity matrix, Wy, j,k = E, I, gives the num-
ber of synapses made by population j onto each indi-
vidual neuron in population k (see Section 3.3.2). W
was chosen so that all connections were equal, ex-
cept that the excitatory-excitatory weight was half

W
El
E |
e
Wi
Wee Vo® W,

Figure 12.  Schematic of the network architecture used in the sim-
ulations. The network contained one excitatory population (E) and
one inhibitory population (I). The synaptic connection weights were
WEE = W2, Wep=Wig =Wy = W. The external excitatory input
rate to the excitatory population (E) was v, (t) = o(1 + sin(2w f1)),
f = 10 Hz.

the others:
- (05 1
W=Ww ( 1 1 ) (38)

where the parameter W determines the overall strength
of the synaptic connections.

In addition to the synaptic connectiens between the
populations, the excitatory population received an ex-
ternal excitatory synaptic input at the rate

Ve o(t) = vo(t) = Vo(1 +sin(2m 1)), (39)

where f = 10Hzand 1, is a parameter determining the
overall strength of the external input. The inhibitory
population received no external input, v ,(#) = 0.

With this network structure, we solved Egs. (28) to
(34) to obtain the output of the network for various
values of W and 7.

5.2.  Individual Neuron Network for Comparison

The simple network can be used to test how well the
population density approach models the interactions of
finite populations. The Poisson assumption may not be
completely satisfied with finite populations, and thus
the population density results may not match finite-
population results.

To test the accuracy of the population density net-
work, we implemented an individual neuron simulation
of the network in Fig. 12. We created one population
of M, excitatory neurons and one population of M; in-
hibitory neurons. We connected the neurons randomly
so that the number of connections a neuron received
from a particular population was given by the same ma-
trix, W, from Eq. (38). The synaptic delays between
each pair of neurons were chosen randomly from the
same distribution of latencies «  (t) used for the pop-
ulation density simulations (see Appendix D).

The excitatory population received external excita-
tory input that was a modulated Poisson process with
rate v, (¢) from Eq. (39). The other synaptic input that
neurons received was not forced to be Poisson; a neu-
ron received a synaptic conductance change some delay
after one of its presynaptic neurons fired. Inhibitory
neurons received no input with an imposed Poisson
distribution. In this way, a comparison between the
population density and the individual neuron imple-
mentation serves as a test of the Poisson assumption.
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jgure 13. Comparison of the inhibitory firing rates for population density and individual neuron implementations of the network in Fig. 12.

- The firing rates of the population density are shown by solid lines. Average firing rates of the individual neurons are shown by the histograms.
ly A: A sparse network with M = 100, W = 30 and v, = 700 arrivals/second. B: A nonsparse network with M = 100, W =70, and vy =
:d 00 arrivals/second. C: A sparse network with M = 100, W = 10, and v = 1000 arrivals/second. D: The same network as in C but with
a- pandom numbers of synapses.

:n

he Comparison of Results errors between the individual neuron histograms and
p- the corresponding areas under the population density

e compared the firing rates of the population density curve.

a- and individual neuron implementation of the simple Figure 13 compares the firing rates given by the in-
th v ork. We looked at two sizes of individual neuron hibitory population density with the firing rates given
at ulations. In both cases M, = M; = M. In one by a single realization of an individual neuron network
- M = 100 neurons/population, and in the other for two sets of parameters. We focus on the inhibitory
ay = 1000 neurons/population. population since the inhibitory population received no
ry o determine precisely how well the results matched, external input. The match between the excitatory pop-
on raged over many periods of v,(¢) (500 when ulations (not shown) was always as good as the match
he : 100, 50 when M = 1000) for the individual between the inhibitory populations. We show the re-
le- S.'The errors given below are root mean square sults from individual neuron networks with M = 100.
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Increasing M to 1000 only improved the match (not
shown).

Figure 13a shows the results with W =30and v, =
700 arrivals/second. The average individual neuron
firing rates are close to the population density firing
rates with an error of less than 15%. For the excitatory
populations, the firing rates were within 10% of each
other (not shown). The same simulation with M =
1000 produced similar results (not shown). The close
fit of the two models demonstrates that, at least for this
set of parameters, the Poisson assumption is satisfied
well enough.

The population density approach assumes sparse
coupling since it represents an infinite number of neu-
rons with a finite number of synapses per neuron. This
sparse coupling allowed us to argue that the inputs
to each neuron are conditionally independent as re-
quired when we approximate the input to each neuron
as a modulated Poisson process (see discussion). Thus,
one might expect that in an individual neuron network
where the coupling was not sparse, the results would
begin to diverge from that of the population density
simulation.

An example where the coupling is not sparse
is shown in Fig. 13b. In this figure, W =70 and
Do = 500 arrivals/second. Since the number of neu-
rons/population M =100, the coupling is not sparse
and the error has increased to almost 40%. Increasing
M to 1000 restores the sparseness, and the error drops
below 20% (not shown).

The Poisson assumption also requires a sufficient
number of converging synapses. For the parameters

W = 10 and 9y = 1000 arrivals/second, W is not large
enough and the error exceeds 40% for both M = 100
(Fig. 13c) and M = 1000 (not shown). However, in
realistic networks, the number of converging synapses
is likely to be larger. Moreover, these results change
significantly with randomization in the number of
synapses that each neuron receives.

5.4. A Random Number of Synapses

In the derivation of the population density equations,
we required that each neuron in a population k re-
ceived exactly W, synapses from neurons in pop-
ulation j. This requirement was met in the simula-
tions above. However, this requirement is unrealistic
since one would expect the number of synapses to vary
among neurons in each population.

We tested the importance of this restriction by creat-
ing individual neuron networks with random numbers

of synapses and comparing the results to the popula-
tion density network. In the random network, W is
interpreted as the expected number of synapses from
neurons in population j onto each neuron in population
k. For each neuron in population k, the precise num-
ber of synapses from population j was chosen from a
binomial distribution with parameters p = 1/M; and
n = WM, (thus, the mean = Wik)..

To our surprise, we found that the introduction of
this type of randomness did not hurt and sometimes
improved the match between the firing rates of the in-
dividual neuron and the population density networks.
The improvement was dramatic when W was very
small, as shown in Fig. 13c,d. In this case, the er-
ror dropped from over 40% to below 10%. The drop in
error was noticable but less dramatic for almost all the
other examples mentioned. For example, with W =30,
the error dropped from almost 15% to almost 10%
(not shown). However, for the nonsparse network of
W =70 and M = 100, the error changed very little.

Clearly, an equal number of synapses for each neu-
ron in a population is not crucial for the validity of the
population density results. Although we don’t have a
completely satisfactory explanation for the almost uni-
versal improvement of the error with randomness, we
propose an explanation for the improvement with very
low connectivity (e.g., W = 10) in the discussion.

In our subsequent individual neuron networks, we
use a random number of synapses. Not only does this
test the population density model against a more real-
istic network, it also allows us to implement individual
neuron networks where W is not an integer, such as
in the following orientation tuning example.

6. Orientation Tuning in the Visual Cortex

As a further test and as a demonstration of the compu-
tational efficiency of the population density approach,
we implemented a population density model of one
hypercolumn of visual cortex. Our network model
is based loosely on the model of orientation tuning
in cat visual cortex by Somers et al. (1995), which
we paraphrased and recast in the population density
framework.

6.1. Overview of Orientation Tuning

Figure 14 is a schematic illustration of the response of a
typical cortical neuron to the presentation of an oriented
dark bar on a uniform background. This hypothetical
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Figure 14. Nlustration of the orientation tuning of a cortical neuron.
This neuron fires most rapidly in response to a vertical bar. (Adapted
from Somers et al., 1995.)

neuron is said to have a vertical preferred orientation
because it responds most strongly to vertically ori-
ented stimuli. The neuron displays sharp orientation
tuning—that is, the response falls off quickly as the
orientation changes from vertical. A salient feature
of orientation tuning in visual cortex (not shown) is
that the sharpness of tuning is almost independent of
stimulus contrast. The origin of this sharp, contrast-
~ independent orientation tuning is a controversial sub-
ject (cf. review by Shapley and Sompolinsky, 1997).
Our focus in the present article is to illustrate the pop-
ulation density method and test its accuracy with vari-
ous practice problems rather than to address underlying
neural mechanisms. In the Somers model, and thus in
ours, this contrast-independent orientation selectivity
s a result of sharpening by the cortical network. Sim-
lar mechanisms underlie the models of others (Ben-
:;Y,ishai et al., 1995; Hansel and Sompolinsky, 1996;
 Carandini and Ringach, 1997).

.
é,

6.2. A Population Version of the Somers et al.
Model

he structure of our network is very similar to the net-
ork of Somers et al. (1995). We made some modi-
tions to a neuron’s response to synaptic input and
‘number of synaptic connections. In this section,
describe the details of the model, including varia-
1s from the Somers et al. model. More details on
neters are given in Appendix D.

e modeled one hypercolumn of layer IV neu-
in cat primary visual cortex. The neurons in the
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Figure 15. Schematic of our model network of one hypercolumn
of visual cortex. Layer IV excitatory (E) and inhibitory (I) neurons
of cat primary visual cortex are grouped into populations of neu-
rons with similar orientation preference (denoted by oriented bars).
The cortex receives feed-forward input from the LGN with weak
orientation bias. Cortical interaction strength depends on the differ-
ence in preferred orientation. Inhibitory interactions are longer range
than excitatory interactions. Typical interactions are shown by the
arrows.

hypercolumn received input from the same part of vi-
sual space but had different preferred orientations that
span the full set of 180 deg. In this model cortical
neurons have broad orientation tuning even in the ab-
sence of cortical-cortical interactions as a consequence
of anisotropic projection from the lateral geniculate nu-
cleus (LGN) to each cortical column.

We grouped the neurons into populations with simi-
lar preferred orientation, dividing the orientation space
into a set of discrete orientations, 8;, j = 1,2, ..., N,
as schematized in Fig. 15. We made an arbitrary choice
of N = 18, while Somers et al. took N to be 11.
At each preferred orientation, 6;, we formed one ex-
citatory (E) and one inhibitory (I) population density
function, p*/! (v, t, §;), and corresponding firing rates,
rE/1(¢,0;). Somers et al. (1995) estimated that there
are 2,500 to 4,500 neurons in layer IV of one hypercol-
umn. According to this estimate, each of our columns
in reality would contain ~200 excitatory and ~50 in-
hibitory neurons.

As in the Somers et al. model, cortical interac-
tion strength depended on differences in preferred
orientation. The synaptic connectivity was a gaussian

.
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Figure16.  A:Normalized synaptic connectivity functions. Wg and
W, were used for excitatory and inhibitory connections, respectively.
B: The rectangular center-off subfield flanked by center-on subfields
of the LGN — cortex weighting function.

function of the preferred orientation difference, with
the maximum connectivity being within the same pop-
ulation. Inhibitory interactions were longer range than
excitatory interactions, o; = 60deg, o = 7.5deg.
The gaussian functions were clipped at 60 deg. The
synaptic connectivity functions are shown in Fig. 16a.

In our model, the total number of excitatory synapses
onto each excitatory and inhibitory neuron was 72 and
112, respectively, and the total number of inhibitory
synapses onto each excitatory and inhibitory neuron
was 48 and 16, respectively. Each excitatory neuron re-
ceived 48 excitatory synaptic inputs from the LGN, and
each inhibitory neuron received 32. These numbers are
twice those used in the Somers et al. model. The num-
ber of synapses they used is a vast underestimate of the

actual number of synapses. In reality, each excitatory

neuron receives 3,000 to 6,000 synapses, though only
some fraction of these come from other layer IV cells
and the LGN. Somers et al. chose few synapses for
sake of computational ease and compensated to some
extent by also choosing large unitary postsynaptic con-
ductance magnitudes. In the population density frame-
work, a larger number of synapses from one population

- to another has no effect on computational complexity.

Therefore, we easily doubled the number of synapses
Somers et al. used and reduced the size of the unitary
postsynaptic conductance magnitudes by half.

Synaptic delays between cortical populations were
gamma distributed with a mean of 3 ms and a standard
deviation of 1 ms. This is similar to Somers et al. zero-
bounded gaussian function.

The integrate-and-fire point neuron model underly-
ing our population density equations is less elaborate
than that of Somers et al. In particular, we omitted the
elevation and decay of spike threshold following a spike
and omitted the activation of the after-hyperpolarizing
conductance following a spike. Instead we simply re-
set the voltage to vy, Which we took to be equal to
the resting voltage &,.

In the model of Somers et al., the time courses of the
unitary postsynaptic conductances were fast on the time
scale of the membrane time constant for both inhibitory
and excitatory neurons. Therefore, our approximation
of the conductance waveforms by delta functions (see
Section 2.2) was justified.* In an effort to be realis-
tic, we made the unitary postsynaptic conductances in
our model random with a coefficient of variation of 0.5
(see Appendix D). The average size of the jumps in
voltage due to each type of synaptic input was simi-
lar to half the size of the postsynaptic potentials in the
model of Somers et al. Starting from halfway between
& and vy, our average excitatory postsynaptic poten-
tials in excitatory and inhibitory neurons were 0.5 and
1.2 mV, respectively. Average inhibitory postsynaptic
potentials were —0.3 and —0.7 mV in excitatory and
inhibitory neurons, respectively.

The weak orientation bias in cortical input from the
LGN was produced, as in the model of Somers et al.,
by an elongated rectangular center-off subfield flanked
by two identical center-on subfields. In our model each
cortical neuron received input from every LGN neuron
in the three subfieclds. In the model of Somers et al.,
the field lengths along the major axis were random
with a mean ratio of major to minor subfield length of
2:1, and the LGN — cortex connections were random.

;
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The various preferred orientations of the inputs to the
various cortical columns were obtained by simply ro-
tating the LGN — cortex weighting function shown in
Fig. 16b. Using the weighting function in this way, we
transformed the spatial structure of the stimulus (asre-
flected in the LGN response) to a bias in the orientation
coordinates of our cortical model.

In our model, as in the model of Somers et al., an
individual LGN neuron simply mirrored its input from
a single retinal neuron. We generated the firing rate of
an LGN neuron/retinal ganglion cell by first convolving
a spatiotemporal separable impulse response function
with the stimulus and then multiplying by a contrast
dependent scale factor. Then this computed signal was
nalf-wave rectified (giving only the positive ‘part) to
give the rate. The spatial part of the spatiotemporal
impulse response function was the same difference of
gaussians as that used by Somers et al. The temporal
part was not the simple exponential function of Somers
et al. Instead, we used the model of Victor (1987) for
the dynamics of the center mechanism of a cat retinal
ganglion cell.

6.3. Population Equations

As described above, our model of one hypercolumn
has 2N probability densities, pE/ (v, t,0;), and corre-
/ spa)ndingﬁringrates,rE/’(t, 6,),j=12,..., N. For
‘each population density, we have one set of Egs. (28)
t0(34). .

- The external input to our network is the excitatory
aput from the LGN to excitatory and inhibitory pop-
ulations. Denote the corresponding input rates to ex-
jtatory and inhibitory populations with preferred ori-
entation 6 by v, (1; 0;) and v} (13 6;), respectively.
here is no external inhibitory input (v; = 0).

In this notation, Eq. (34) for the excitatory input rate
the inhibitory population at 6, for example, becomes

ué(t; 8]) = U(If’o(l‘; 9]') + ZWEI(Qj — 6k)
P
xf a()rf — 1,6 dr, (40)
0

e Wi (6; —6k) is the number of synapses from the
tatory neurons at 6 onto inhibitory neurons at ;.
istribution of synaptic delays, «(7), is given in
ndix D.

merically solve this system of equations under
, stimulus conditions, where the external input

vLE ,/,1 (t;0;)is generated from the response of the LGN

to the stimulus.

6.4. Orientation Tuning Network Results

P:igures 17 and 18 show the firing rates of the excitatory
population to the presentation of a flashed dark bar

(@2}
o
— .

| 0 deg
§50 +10deg
2 +20 deg
§ 40t +30deg |
5 >40 deg
v30>—
i)
©
20 |
[®)]
£
ir 10¢
0 ELSSUALEALALTETCLLOrs
0 300 400 500
Time (Ms)

Figure 17. Responses of populations of excitatory neurons with
different preferred orientations to a flashed bar at 0 deg. The bar is
flashed for 250 ms, beginning at 100 ms, as shown by the horizontal
line. After the initial transient, neurons with preferred orientation
>20 deg from zero are silent.
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Figure 18. A 3D view of the same excitatory responses shown in
Fig. 17, demonstrating the orientation tuning of the neurons. Firing
rate across preferred orientations is plotted against time. The initial
transient reflects the orientation bias of the input from the LGN
(not shown). Subsequently, the tuning sharpens dramatically. The
stimulus onset is at 100 ms, as in Fig. 17. The arrow indicates the
time of the snapshot in Fig. 19.
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ooo

Probability Density

Figure 19. Snapshot of the distribution of excitatory neurons over
voltage. The probability density across voltage is plotted against
preferred orientation. This snapshot is from ¢+ = 300 ms in Fig. 18.
Neurons with preferred orientation near 0 deg are distributed closer
to vy, as they are the only ones firing.

oriented at 0 deg. The bar was flashed for 250 ms
beginning at t = 100 ms with 100% contrast. The
initial transient of the response is broadly tuned across
the preferred orientations. This response reflects the
weak orientation bias of the input from the LGN (not
shown). However, the later response is much more
sharply tuned; only neurons within 20 deg of zero fire
significantly.

The full set of excitatory probability densities for
¢ = 300 ms is plotted in Fig. 19. At that time, the firing
rate response in Fig. 18 was sharply tuned around 0 deg.
Correspondingly, the probability densities near 0 deg in
Fig. 19 are closer to vy, (—55 mV) than the other proba-
bility densities. The excitation of these neurons across
vy, created the tuning of the firing rate seen in Fig. 18.

Further details of the orientation tuning produced by
the cortical network are shown in Fig. 20. For different
contrasts of the flashed bar, the mean firing rate remains
sharply tuned around 0 deg (symbols). Note that the
tuning width is roughly independent of stimulus con-
trast. The tuning is much sharper than the orientation
bias of the input from the LGN (gray line).

6.5. Comparison with Network of Individual
Neurons

We implemented an individual neuron network of this
model of a hypercolumn of visual cortex in the same
way we implemented an individual neuron version of
the simple network in Section 5.1. The parameters and
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Figure 20.  Orientation tuning as measured by the mean firing rate
during the 250 ms that the flashed bar is visible. Cortical excitatory
population response (symbols) is plotted against preferred orienta-
tion for contrasts ranging from 10% to 100%. The orientation bias
of the input from the LGN (gray line) is plotted on an arbitrary scale.

network structure of the individual neuron network
were the same as the population density network given
in Section 6.2. Excitatory and inhibitory neurons were
each grouped into 18 populations with identical ori-
entation preference. Each excitatory/inhibitory neu-
ron with a preferred orientation of 6; received excita-
tory external input that was an independent modulated
Poisson process with the mean rate vf é’ (t; 6;), above.

For all simulations, we let each population contain
the same number of neurons, which we denoted M ,
giving a total of 36M neurons. We created a single
realization of the individual network with M = 100
and a second with M = 1,000, both with a random
number of synapses as in Section 5.4. We compared
the average firing rates of each individual neuron pop-
ulation with the firing rate of the corresponding popu-
lation density. To obtain the firing rates for individual
populations, we averaged over 20 passes of the stim-
ulus for M = 100 and 2 passes of the stimulus for
M = 1,000. Additional passes would have improved
the match between the population density and individ-
ual neuron firing rates. However, since we were inter-
ested in comparing running times, we did not wish o
slow the individual neurons simulations down to im-
prove the results.

The comparison of populations with 0 deg and
90 deg orientation preference is shown in Fig. 21a—
d. The individual neuron results are from the network
with M =100. For both orientation preferences, the

.
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fe 21,  Comparison of excitatory neuron responses for the population density and individual neuron networks of a hypercolumn of visual
Population density results are shown by solid lines; average individual neurons results are shown by the histograms. A: Probability
‘snapshotat + = 300 ms of excitatory neurons with 0 deg. The population density line is the 0 deg cross-section of Fig. 19. The individual
 network contained M = 100 neurons at each orientation. B: Firing rates of the same networks in A. The population density line is the
_Cioss-section of Fig. 18. C, D: Same as panels A and B, but at 90 deg. E: Same as panel B but with M = 1000. F: Same as panel B,
that individual neuron results are averaged over 10 realization of the network.
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probability density snapshots at ¢ = 300 ms for the two
networks match well (panels A and C). The individual
neuron firing rate matches most of the qualitative fea-
tures of the population density firing rate (panels B and
D). Much of the time, the results match quantitatively,
as well. However, for 0 deg the individual neuron sim-
ulation overshoots the initial transient and undershoots
the following maximum firing rate. For 90 deg the fir-
ing rates are so low that the individual neurons haven’t
fired enough spikes to obtain a good estimate of the
firing rate. Nonetheless, the results match well, except
for undershooting around ¢ = 200 ms. ’

Increasing the size of the individual populations to
M = 1,000 improves the match with the population
density. As shown in Fig. 21e, the initial transient for
the 0 deg population is reproduced well, and all other
discrepancies are smaller than for M = 100. For the
90 deg population (not shown), the results differ little
from the M = 100 case.

The 0 deg and 90 deg populations were represen-
tative of the other populations. Since the individual
neuron results were based on one realization of the
network, there was some variation due to the random
connections. To test which differences for M = 100
were due to the random connectivity, we ran an indi-
vidual neuron simulation with M = 100 and averaged
over 10 passes of the stimulus for each of 10 realiza-
tions of the network. As seen in the comparison with
the population density in Fig. 21f, there still are system-
atic difference between the population density network
and the individual neuron network with M = 100. This
difference is significantly reduced, but not eliminated,
for M = 1,000 (not shown).

The population density simulations with 36 popula-
tions took 30 seconds for a 500 ms run and 0.5 ms time
step. The equivalent individual neuron simulation took
530 seconds for 20 passes and M = 100; for 2 passes
and M = 1,000, it required 1,090 seconds. Thus the
individual neurons simulations took 17 and 35 times
longer than the population density. The diffusion ap-
proximation sped the population density simulations
to 5 seconds at the cost of the differences shown in
Fig. 22. Thus, the diffusion approximation was over
100 times faster than the individual neuron simulation
with M = 100 and over 200 times faster than the sim-
ulation with M = 1,000.

7. Discussion

We have explored a novel population density method
for modeling large groups of interacting neurons that
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Figure 22.  Comparison with the diffusion approximation. The fir-
ing rates of the excitatory population density with a 0 deg orientation
preference are shown for the full model, the diffusion approxima-
tion. After the initial transient, the diffusion approximation fires
more slowly than full model.

was introduced by Knight et al. (1996). A similar ap-
proach has recently been taken by Brunel and Hakim
(1999). Two salient differences of Brunel and Hakim’s
approach are that they based their work on neurons
that were driven by current rather than conductance
changes, and they used a Fokker-Planck (diffusion)
approximation for the partial differential-integral equa-
tion. The method of Knight and colleagues is further
elaborated in Omurtag et al. (2000), Sirovich et al.
(1999), and Knight (2000).

Our emphasis in the present article was on test-
ing the population density method against direct in-
dividual neuron computations for various networks..
We also presented conservative, second-order-accurate
schemes for solving the partial differential-integral
equations and associated, approximate diffusion-like
equations in Appendices A and B.

7.1. Previous Population Models

Population density theory has a rich history in theo-
retical neuroscience. We mention below only a few
examples and do not attempt to present a comprehen-
sive review of the field.

Until the early 1990s the population density func-
tion had been applied, in large part, to analyzing the
statistics of spike trains in individual neurons with pre-
scribed synaptic input (cf. review in Tuckwell, 1988).
However, the ideas behind modeling large populations
of neurons go back to the early 1970s (e.g. Wilson and

g,
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Cowan, 1972, 1973; Knight, 1972a, 1972b; Amari,
1974). The seminal work of Wilson and Cowan (1972,
1973) was based on statistical mechanical-like reason-
ing and dealt explicitly with important nonlinearities
in the dynamical behavior of neural networks. Knight
(1972a, 1972b) related the activity of a single integrate-
and-fire neuron to that of a population of such neurons
and investigated the nonlinear behavior intrinsic to such
neurons.

In the early 1990s, investigators began applying
population density theory to populations of neurons
that were coupled in an all-to-all manner. These

. studies were concerned with stability of the steady
. <tate, synchronous versus asynchronous firing activity,
and collective oscillations (Kuramoto, 1991; Strogatz
and Mirollo, 1991; Abbott and van Vreeswijk, 1993;
Treves, 1993). An early application of the population
density function to modeling the responses of inter-
acting populations of sensory neurons is the study of
Chawanya et al. (1993). They presented a model for fea-
ture linking through collective oscillations of neurons

SR sy

this study, any pair of coupled populations was coupled
in an all-to-all manner.

A novel integral equation method for modeling pop-
lation activity has been analyzed by Gerstner and col-
eagues (Gerstner and van Hemmen, 1994; Gerstner,
995, 1999). Gerstner’s integral equation is a general-
zation of the integral equation of Wilson and Cowan; it
ssumes all-to-all coupling and is applicable for certain
¢inds of noise when synaptic input is modeled as cur-
nt injection. Very recently Pham et al. (1998) an-
zed activity in a sparsely connected excitatory net-
rk by a probability approach in which states and time
re discretized. Tanabe et al. (1998) used a Fokker-
nck approximation to analyze information transfer
- a population of leaky integrate-and-fire neurons.
roa et al. (1998) simulated rhythmic activity in a
ppocampal CA3 slice using probability density func-
s that described the states of both neurons and prop-
ing spikes; this probability density approach was
cquently used by Adorjan et al. (1999) to model
ntation selectivity in the primary visual cortex. Fi-
¥, the paper of Brunel and Hakim (1999) concerns
with global oscillations in a sparsely connected
ation of integrate-and-fire neurons.

- methods of Knight and colleagues (Knight
5 1996; Omurtag et al., 2000; Sirovich et al.,
Knight, 2000) and Brunel and Hakim (1999)
sual in the way the interacting populations are

in the orientation columns of primary visual cortex. In’

4

coupled. The coupling mechanism provides a natural,
intrinsic source of noise that gives asynchronous behav-
jor over a wide range of conditions. Thus, the model
has no external, independent source of noise. However,
other noise sources could easily be accommodated.

-

7.2.  Analysis of Assumptions

We have demonstrated that, when the assumptions un-
derlying the population density method (Section 3.1)
are met, the method of Knight et al. gives the same
results as direct individual neuron computations in a
fraction of the time. Furthermore, our sample compu-
tations show that the population density resilts remain
valid over a larger range of conditions than implied
by these assumptions. Some assumptions, however,
are fundamental to the current approach, and devia-
tions from the assumptions would require modifica-
tions of the population density equations to guarantee
good agreement between the population density and
individual neuron behavior.

The derivation of the population density equations
was based on four assumptions. First, each population
contained a large number of identical integrate-and-
fire point neurons. Second, each neuron in the pop-
ulation received excitatory and inhibitory input with
the same average rate. Third, the arrival times of the
synaptic events were conditionally independent ran-
dom variables given by a modulated Poisson process.
As explained below, this assumption implies that the
networks are sparsely coupled. Fourth, we used a
simple single compartment neuron model where the
synapses were fast compared to the membrane time
constant.

7.2.1. A Large Number of Identical Neurons. We
have shown a close similarity between population den-
sity results and direct individual neuron results when
we performed computations on only one realization
of the random individual neuron network with as few
as 100 neurons per population. It thus appears that the
population density method provides a good approxima-
tion to the behavior of networks even when the number
of neurons in each group is not vast.

7.2.2. Identical Input Rates. In the Knightetal. pop-
ulation framework, each member of a target population
is assumed to receive synaptic inputs from neurons in
a source population at a rate that is proportional to the
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population firing rate of the source. The constant of
proportionality is the number of synapses made by the
source population on a single target neuron. The input
rate, and thus the number of synapses, for each neuron
in a given population is assumed to be identical.

However, our individual neuron computations have
shown that this assumption is not necessary. The match
between the firing rates of the population density and
individual neuron simulations is not harmed by the in-
troduction of randomness in the number of synaptic
connections. In most of our test cases, the introdugtion
of randomness improved the match. This result is puz-
zling because the assumption of a common input rate
for each neuron in a given population can be regarded
as a mean-field approximation for synaptic input rates.
We would expect that this mean-field approximation
would introduce additional errors.

We do not have a completely satisfactory explanation
for the almost universal improvement of the error with
randomness. For networks with very low connectivity
(e.g. W = 10 in (38)), we posit the following expla-
nation. The error with very low connectivity is due to
insufficient numbers of converging inputs to achieve
a modulated Poisson process. With random numbers
of synapses, some neurons receive a larger number of
synpases. These additional converging inputs would
cause the input to these neurons to be closer to Poisson.
If the additional inputs were excitatory, these neurons
would fire faster and contribute more to the population
firing rate than other neurons, helping the firing rate be
closer to that of the population density. It is unclear
why this positive effect would be stronger than the ad-
verse effect of neurons firing faster due to a decreased
number of inhibitory inputs. By the above reasoning,
those neurons should have input that is further from
Poisson. Nonetheless, this argument does explain why
the largest improvement is observed in networks with
very low connectivity.

7.2.3. The Poisson Assumption. Despite the com-
mon synaptic input rate, neurons in a target popula-
tion receive inputs that differ in detail. The arrival
times of excitatory/inhibitory synaptic inputs are as-
sumed to be governed by a modulated Poisson process
at a rate that is the net rate of excitatory/inhibitory in-
puts. This net rate is obtained by summing over source
populations. In this method, the input Poisson pro-
cesses for all neurons in a given population are assumed
to be conditionally independent—that is, independent
given the average rate. This conditional independence

can be satisfied exactly only if target neurons in each
population do not share inputs- from any individual
source neurons. Hence, sparse connectivity is an im-
plicit assumption in the model. A similar argument
was used by Brunel and Hakim (1999).

Sparse connectivity is implicit for another reason
as well. In the model, the postsynaptic conductance
amplitudes are chosen to give postsynaptic potential
amplitudes in the physiological regime. This choice
of conductance amplitudes is incompatible with dense
or all-to-all coupling because the population density
represents the limit of an infinite number of neurons.
A dense coupling would imply that, in the limit, each
neuron would receive an infinite number of synaptic
connections and thus would receive input at an infi-
nite rate. This limit cannot give a sensible limiting
evolution equation for the population density func-
tion unless the unitary postsynaptic conductances ap-
proach zero in such a way that the product of the input
rate and the unitary postsynaptic conductance remains
order 1.

Sparse connectivity is a Feature of our implemen-
tation of the population density approach because we
have used the resulting Poisson distributed input as the
major source of noise in our networks. In many of
the models mentioned above, other local noise sources
were added to all-to-all coupled models. The addition
of other noise sources to our model may improve the
match with direct individual neuron simulations when
the connectivity is not sparse.

The assumption of Poisson input to each neuron
may seem troubling at first glance because there is no
guarantee that each neuron fires action potentials in a
Poisson manner. However, a limit theorem of point
processes (Cinlar, 1972) says that a composite point
process formed by superposing a number of uniformly
sparse, conditionally independent non-Poisson point
processes approaches a Poisson process as the number
of components approaches infinity. Thus, if each neu-
ron receives enough conditionally independent synap-
tic inputs, the overall input point process should be
close to Poisson. The fact that a typical neuron has
thousands of synaptic inputs argues in favor of the va-
lidity of the Poisson assumption.

The good match between population density re-
sults and individual neuron results for several neu-
ral networks presented in this article suggests that the
Poisson approximation is good even for a modest num-
ber of synaptic inputs from sources with some over-
lap. However, the assumptions of the model de not
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allow one to model faithfully a network composed of
small subpopulations in which neurons in any subpop-
ulation share a substantial fraction of their synaptic
inputs.

7.2.4. Simple Neuron Model. Our implementation of
the population density theory in the present article em-
ployed a very simple model for the individual neurons
in the populations. The individual neuron, which is
in reality spatially extended with extensively branched
dendritic tree and axonal arbor, was collapsed into a
single isopotential compartment (point neuron). The
complex time- and voltage-dependent conductances
that underlie the action potential were modeled crudely
by a simple conductance-driven integrate-and-fire
mechanism.

Furthermore, the unitary postsynaptic conductance
waveform was modeled as a delta function with ran-
dom magnitude. We have only shown so far that the
population density method is much faster than the
point neuron method for integrate-and-fire neurons
with instantaneous postsynaptic conductance wave-
forms. The approximation of instantaneous postsynap-
tic conductances is not always appropriate. For ex-
ample, the time course of conductances governed by
class B y-aminobutyric acid (GABAg) receptors can
be quite slow (Howe et al., 1987). Accurate model-
_ ing of neurons containing such conductances by the
~population density method would require introduc-
ing at least one additional argument into the popu-
lation density function. If the inhibitory conductance
is assumed to jump up instantaneously on arrival of
“a single synaptic input and then to decay exponen-
tially, the state of the neuron would be completely de-
scribed by its voltage and the value of its inhibitory
conductance.

- Itis presently unclear how computation time for the
population density method will compare with that of
the point neuron method for more complicated under-
lying models for the individual neuron, such as the one
_above. The dimension of the population density in-
eases with the number of variables used to describe
the ncuron. Thus, the computation time required for
¢ population density simulations increases rapidly
;the complexity of the neuron model increases. For
ore complex neurons, additional techniques, such as
principal components analysis method by Knight
_colleagues (see Section 7.4), may be required
the population density method to retain its speed

7.3. A Comparison to Rate Models

The population density approach captures dynamics
of neurons that cannot be contained in equations in-
volving only the mean rate of each population. For
example, firing rates in the population density model
can be dramatically altered by changes that leave the
expected synaptic input unchanged and thus would not
affect firing rate equations. When the unitar'y postsy-
naptic conductances and input rates are scaled in in-
verse proportion such that the expected synaptic input
remains unchanged, the population density changes its
behavior. The effect of such a scale change can be seen
very clearly in the diffusion approximation for the par-
tial differential-integral equation in which the diffusion
coefficient is scaled by the synaptic conductance scale
factor.

Another difference between the population density
model and firing-rate models is that firing-rate mod-
els give only mean firing rate, while the population
density model also contains information on fluctua-
tions. The population density model allows one to
compute any moment of the spike count in any time
interval.

A simple example is provided by specializing to
the steady state for the model considered in this pa-
per. In this case, spike firing is a renewal process in
which all moments of the random number of events
(spike count in this case) in any time interval are com-
pletely determined by the probability density function
for the interevent interval (interspike interval in this
case). The probability density function for the inter-
spike interval can be computed as follows. First one
solves for the steady-state firing rates. Then, using
those steady input rates and starting with a delta func-
tion probability density function at vese, one solves
the partial differential-integral equation for a given
population without reseting neurons after they fire.
Neurons that fire are simply removed from the pop-
ulation. The flux across threshold gives the proba-
bility per unit time that a neuron crosses thresh-
old (fires a spike), and, in this case, every neuron
that fires a spike is firing for the first time since re-
set. Thus, the flux across threshold can be interpreted
as the probability density function for the interspike
interval.

Specifically, the population density method captures
dynamics, such as rapid transients, that are missed by
the classical Wilson-Cowan-like differential equation
(Wilson and Cowan, 1972, 1973) for firing rate of each
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population:

k oc N
L0k = g / S Culo)r (¢ = 5)ds

di U= .
(41)

fork = 1.2...., N, N = the number of populations.
Here r0(¢) is the firing rate of external sources, and
#k(t) for k > 1 is the firing rate of the kth popula-
tion. Input from population j to population & is filtered
through the kernel C jx (s); () is the transfer function
of the population, and ;. is the time constant at which
the firing rate evolves.

The limitations of Eq. (41) have been discussed by
others (Wilson and Cowan, 1972; Abbott and van
Vreeswijk, 1993; Gerstner, 1995, 1999). Gerstner
(1999) demonstrated that the transient response of the
population changes at the time scale of the postsynaptic
conductances while the longer-time average response
evolves more slowly. An equation of the form of (41)
cannot capture those two time scales. A demonstra-
tion of a single population to a step in input rate is
shown in Fig. 23 (designed after Gerstner, 1999, Fig. 5).
Since in our model, the postsynaptic conductance time
course is modeled as a delta function, the firing rate
changes instantaneously with the synaptic input be-
fore settling to a new steady state. This instantaneous
dependence results from the fact that the population
firing rate is equal to the excitation flux evaluated at
the threshold voltage and the fact that this flux (31) de-
pends instantaneously on the excitatory synaptic input
rate v.(t).
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Figure 23.  The transient response of the population firing rate to
a rapid change in input. Beginning at t = 50, the excitatory in-
put rate to the a single population of uncoupled neurons is stepped
up from 1,000 Hz to 2,000 Hz (shown by black bar). The firing
rate transiently jumps up before returning to a new steady-state
response.

7.4.  Computational Speed

The population density method was dramatically faster
than the individual neuron method even when we
solved the exact system of partial differential-integral
equations. A further reduction in computation time was
achieved by a numerical method giving a diffusion-like
approximation. Furthermore, these savings in com-

- putation time were obtained without any attempt to

find a fast algorithm for solving the population density
equations. Knight and colleagues (Knight, 2000) have
found that computation time can be substantially re-
duced even further by using principal-component anal-
ysis to approximate the population density function by

a superposition of components in a function space of

low dimension (~10).

The speed of the Knight et al. population density
approach will facilitate modeling more complex neu-
ral networks than one could realistically simulate with
direct individual neuron models. Provided that a neu-
ral network can be grouped into populations with hun-
dreds of similar, sparsely coupled neurons, the popula-
tion density implementation of the network can quickly
produce accurate population firing rates and distribu-
tions of neurons across voltage. Thus, the population
density approach may be an important tool in the imple-
mentation of truly large-scale models of the networks
in the brain.

Appendix A. Derivation of Diffusion
Approximation

The diffusion approximation is based on the assump-
tion that synaptic inputs are small and thus the voltage
jumps due to synaptic inputs are small. Correspond-
ingly, in the synaptic flux Eqs. (31) and (32), the inte-
grals at a voltage v are determined mainly by the values
of p(v/, t) withv' — v small. These integrals can thus
be replaced with expressions involving the derivatives
of p(v, t), giving a diffusion equation for the evolution
equation for p(v, ).

The diffusion approximation assumes that p is suf-
ficiently smooth so that we can approximate the value
of p(v', t) with the first two terms of a Taylor series
centered around v:

, , ap
o, 1) =p, 1)+ @ — v)é—(v, t)
v

(' —v)? 8%p

where £ is between v’ and v.

S

.
-
=
,g
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The error that we make by neglecting the third term
will be less than

M@ —v)?, (43)
where
1 3%p
M= gm0 “

To calculate the approximation for the excitation
flux, we substitute the first two terms of the Taylor
series for p(v', t) (42) into the flux Eq. (31) to obtain

.i.v(v,t)=ve(t)[clc(v)p(v,t) C2¢(U) (v t)]
(45)

cnw>=/Lﬁa(”‘”>mx (46)
c P gc__v/
U 7 I3
,>(v —vhdv'. (47)
v

() fﬁ(“/
C20V) = r
g \&—

The error in this approximation is less than (see (43))
‘= v—v ’ 2 .
v ()M Fr. (v — vy dv. (48)
“:’- ¢ (C/‘e _ UI

The error term can be 51mpliﬁed by changing variables

where

- in the integral to y = £ ”/, giving

€

l— v & 2d

. femti = y-ay

. g Fre ()2

'S ] 1-y)

S < Vv (OM(E, — &) P ) v (49)
s Ve e —Ci) Y )———>

& o A=)

nee & < v < &,
f- The integral on the right in (49), which we denote
y I, can be simplified through integration by parts:

1 zd)/
I = T
/FW% —y

1 A=y’ +y
+f e

A-yi+y* 1
= [ o[5S e o

2)

/ﬁW&l 1)

where
fr:(y) = ——;Fx +(¥) (52)

is the probability density function for I"}. Note that

1
fretyydy =1 (53)
)

since 0 < I'} < 1. Also, implicit in the calculation of
the boundary term is the fact that

Fr:(0) =1 (54)
and the assumption that

. Frny)

Substituting the value of the integral / from (51) into
expression (49) for the error, we find that the error in
the diffusion approximation is less than

yidy
(1—y)

If the excitatory synaptic conductances are small,
then fr:(y) is almost zero except for small y, and the
value of the integral in the error bound (56) is the third
moment of ["¥ to smallest order in y. Thus, the error
is proport10nal to the third moment of I';, which is
small when the excitatory synaptic conductances are
small.

In the same way, the full diffusion approximation for

the inhibition flux is

M 1
wm?@—&ffﬁﬂw (56)
0

Ji(v, t) = —v;i(t) [ch(v)p(v t)+Cz,(v) (v t)]
(57)

where

Vth . v—v ,
cii(v) = / Fr,.*(g — v/)dv : (58)

Czi(v)=/th ﬁr,*(g — )(v —v)dv'. (59)

and

e e
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The error bound for the inhibition flux is

3d)/

u,(r)—<v,h - &) i

fr*()’) (60)

where fr,* (y) is the probability density function for I*,*

Combining Egs. (45) and (57) with Egs. (28) to (30),
we obtain a diffusion equation for the evolution of
p(v, t) (35). This diffusion equation can be solved nu-
merically more quickly than the full partial differential-
integral equation.

-

Appendix B. Numerical Method for Solving
Partial Differential-Integral Equation

To solve Egs. (28) to (32) numerically, we discretized
% in voltage and solved the resulting set of ODEs
using the trapezoid rule. For the diffusion approx-
imation, this resulted in the Crank-Nicolson method
(Crank and Nicolson, 1947). We used the second or-
der in voltage discretization described below for the

partial differential-integral equation.

B.1. Discretization of the Flux

We divided (&;, vy) into K intervals so that &;, &,,
and vy were half grid points. With interval lengths
Av = (vy — &;)/K, the grid points were numbered
v =&+ k- DAv, fork = 1,2,..., K. We let
Pr = (g, ).

We discretized 2%, 9L

v’ dv?

and ‘“ 3o separately.

B.1.1. Discretization of the Leakage Flux. Forv <
&, the leakage moves probability upward and for
v > &, the leakage moves probability downward. To
ensure stability, we used a downward second-order ap-
proximation for the derivative for v < &, and a upward
approximation for v > &,.

For v, < &,, we let

aJ,
5;’(1)/(, 1) = [— (k2 — ENpr—z + 4(Vhet — E) 1t
— 3 — &) ]/ R Av), (61)

and for v, > &,, we let

0J
a—vl(vk, 1) = [3(n — &) pr — 4k — &) prsa
+ (V42 — &) prs2]/ 2T AV).  (62)

B.1.2. Discretization of Excitation Flux. To obtain
a second-order scheme, we used a centered difference
on the half grid points to discretize the spatial deriva-
tives of J, at the grid points:

8J, Te(Ver 1. t) = Je(vi_1, 2)
1) = = . (63)

To complete our second-order scheme, we needed a
third-order approximation to the integral J, (v, t), since
it would be divided by Av in the derivative approxima-
tion. To obtain this, we changed variables to

v—1v

E —v’

vyE

To compute the resulting p(=%>*) that appears in the
integral, we interpolated o from the known values at
neighboring grid points with a quadratic polynomial.
This procedure gave a third-order approximation of .
The resulting integral was independent of p, and we
computed it using a midpoint rule in y, decreasing the
discretization interval in y until we achieved a relative
error of less than 1075,

B.1.3. Discretization of Inhibition Flux. We dis-
cretized the inhibition flux in the same way as the
excitation flux. We used a centered difference with
the half grid points to discretize the spatial deriva-
tives and computed the integrals using the change of
variables:

v—1v

5; —U/.

y:

p was interpolated with quadratic polynomials from
the known values at grid points, and the resulting inte-
grals, which were independent of p, were computed to
a relative error of 107,

B.2.  Delta Function Modification

When v,e5e; = &, the flux reset to v, does not advect
away. Thus the delta function source in Eq. (28) buiids
up, forming a delta function component of p at v,
Convergence estimates of our numerical methods de-
pend on existence of derivatives of p, which clearly
wouldn’t exist at v,ege;.

To improve our numerical method so that it can han-
dle this situation, we divide p into two components, a
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smooth component p; and a delta function at v With
weight 0s:

p(v, 1) = ps (U, 1) + 8V — Vreser) 05 (). (64)

o should then have sufficient derivatives in v, allowing
our methods to converge well.

The evolution of p, (v, ¢) is determined by the com-
ponents of %% that are smooth. The evolution of p;s(¢)
is determined by the explicit delta function §(v —
Vyeser)J (U, 1) as well as delta function components of
%%. In this section, we derive these modified evolution
equations.

Since the delta function sits at &,, it is not affected
Iry the leakage. Thus the equation for the leakage flux
(20) contains only a smooth component:

1
Jiw 1) = ——(v - ENps(v, 1). (65)

Combining the new expression for p (B4) with the
excitation flux (31), we obtain a new expression for the

excitation flux:

oo e

Je(v» [) - Je..y(vs t) + H(U - Ureset)-]e.é(v» t), (66)

where

I

)psﬁ/,t)dvﬁ
(67)

v v—v
, ‘]c,\‘(v’ t) = Ve(t) Frf(—-
€ e ge_v/

————; - Dreser )Ps(l), (68)

e — Ureset

Jes(v, 1) = Ve(t)ﬁr;(

d H(y) is the Heaviside unit step function:

m
e- HO) 1 ify>0 69)
to Y= 0 otherwise.

Similarly, the new expression for the inhibition flux

vV—v
i

z );k(vﬁt)dv/

(71)

!
_U/

and

U — Vpeser )PE ). (72)

E i — Ureset

Jis(v, 1) = —v; (r)ﬁr;(

. Plugging these modified flux expressions (65), (66),
and (70) into the original evolution Eq. (28) will result
in both smooth and delta function components on the
right-hand side. (Some of the delta function compo-
nents drise from the fact that %(v) = §(v).) Using
Eq. (64) and separating the smooth components and

- the coefficients of 8 (v — vyeser) INtO two equations gives
the following evolution equations:

9ps 9 0es
— = ——A] Jg_y Jis - = Urese -
g~ gyl et S S ) T
0J;
- H(Ureset - U) '_3 ’ (73)
av
dps
7;;.::_{uea)-+1n(0]p5+—r(0, (74)
where

r) =J(m, t) = JesWm, 1) + Je s, ). (75)

In deriving these equations, we used the fact that
Fr, (0) = 0and J (v, 1) = Je(van, 1.
The numerical method above can be easily modified
for the new equations.

B.3.  Accuracy of Numerical Method

To determine the accuracy of the numerical method,
we first verified that our method was indeed second-
order accurate in both voltage and time. Through this
verification process, we also determined how small we
needed to make the discretizations to be in the second-
order accurate regime. We determined that we already
achieved second-order accuracy in time with a time step
of At = 1 ms and achieved second-order accuracy in
voltage with a voltage discretization of Av = 0.25 mV
(K = 60).

With a voltage discretization of Av = 0.25 mV
(K = 60), the maximum error in the population fir-
ing rate was a few spikes/second. We decided to use
K = 60 for all our population density simulations, in-
cluding those from Section 5 where we were focusing
on accuracy.
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We chose a time step At so that additional error intro-
duced by the time discretization was less than the error
from the voltage discretization. We used A¢ = 0.5 ms
for all orientation tuning simulations as well as single
population simulations. For Section 5, since the focus

of the section was accuracy and not speed, we used a

smaller time step of A¢ = 0.25 ms just to ensure that
our error percentages were accurate. The error per-
centages changed by about 1% when we moved from
At = 0.5 ms to At = 0.25 ms.

Appendix C. Event-Driven Simulation for Solving
Individual Neuron Networks

Since we have reduced the unitary synaptic conduc-
tances to delta functions (see Section 2.2, the evolution
equation for the voltage of an integrate-and-fire neu-
ron (1) can be easily solved analytically. G.;; (1) =0
between synaptic events, and the voltage decays expo-
nentially to & until the neuron receives synaptic input,
when the voltage jumps the amount in Eg. (3). We thus
need to update each neuron’s voltage only when it re-
ceives a synaptic event. This procedure is much faster
than a time stepping algorithm and gives an exact so-
lution, up to limits imposed by machine precision.

When a neuron fires, we schedule synaptic events
for each of its postsynaptic neurons at a time offset by
the delay for each synapse. These events are added to
the queue of upcoming events. Since the delays are
random, the order of the events differs from the order
in which the events were created. An important task is
determining which event is next. Thus, the implemen-
tation of a priority queue is central to the event-driven
simulation.

A priority queue is a queue in which the first item in
the queue is always the one with the highest priority,
which in this case is the earliest time. We implemented
our priority queue using a heap, which obtains the ear-
liest event in O (nlogn) steps, where n is the number
of events in the queue.

To run the event-driven simulation, we kept track
of the time of each neuron’s last synaptic input and
the voltage of the neuron after that input. Each step
consisted of taking the next event off the priority queue
and acting on that event. Each event included the time
of the event, the neuron affected, and whether the event
was excitatory or inhibitory. Based on that neuron’s
previous state and the information from the event, we
could update the neuron’s voltage.

» Vyeser, and schedule events for the postsynaptic neurons

For example, if the next event was an excitatory input
for neuron j at time ¢, and neuron j had a voltage of
v, at its previous input at time #,, we would update its
voltage to

v=E e 6 + (v, — E)eT T — &, ). (76)
If v > vy, we would then record a spike, reset v to

of neuron j.

Appendix D. Parameters

For all simulations, we used a gamma distribution for
the distribution of sizes of unitary synaptic conduc-
tances:

_ . nepi—1
fro () = e_R(_fo‘/_)( x ) o

Aei(nesi — 1! \aey;

where fr,,(x) is the probability density function of
Ie/i. Since I“Zf/i = 1 — exp(—T,;), the probability

density function of I'; ; is

fr., (=log(1 —x))
1—x '

fry, (x) =

Therefore, the complementary cumulative distribution
function for I'}; is

- 1 (=1 1 —
Fr;/,(x)zf fro,€ 1°f(y Wiy @)

"3 w6
=e > —5 (79)
=0 :
where u(x) = —log(l — x)/a./;.

The average values of I',;; corresponded to postsy-
naptic potentials that were half those used in the model
by Somers et al. (1995). We used the following aver-
age values: ur, = 0.008, ur, = 0.027 for excitatory
neurons, and ur, = 0.020, ur, = 0.066 for inhibitory
neurons. We chose a coefficient of variation of 0.5 for
all I's. This determined the values of a.;; and n,,, for
both excitatory and inhibitory neurons. ’

We used the following parameters for both excitatory
and inhibitory neurons: & = =70 mV, & = Vpeer =
—65mV, vy, = —55mV,and £, = OmV. For excitatory
neurons, T = 20 ms and 7,,f = 3 ms. For inhibitory
neurons, T = 10 ms and 7,y = 1 ms.
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For simulations involving a single population, we
used the parameters for excitatory neurons.

The distribution of synaptic latencies a(¢) were cho-
sen so that the mean latency was 3 ms and the standard
deviation was 1 ms, approximately. We used a gamma
distribution of order 9 with mean 3 ms, which we trun-
cated for ¢ > 7.5 ms:

ng—1
A (L) 0<t<75ms
alt) = To(ne — D! \ T

0 otherwise,

(80)

Z
E

where ng = 9, T, = 1/3 ms, and & is a constant so that
¢ (¢) integrates to one. We used the same o(¢) for each
type of connection.
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1 Throughout this article, we use an upper-case V to denote the
random, fluctuating voltage of a single integrate-and-fire neuron
and a lower-case v to denote fixed voltages.

. This modification is equivalent to subtracting

9)
J (g, YH @ — Vreser)

from J (v, t) reflecting the negative flux of neurons moving from
Uy tO Vreser. Here H(x) is the Heaviside step function, H(x) = 1
y- forx > 1, H(x) = 0 otherwise. Without modification, (10) does
el not conserve probability for v € (&, vgp), since, in general,

a1- A (v, 1) #0.
ry _The Poisson nature of the random synaptic input times is required
ry Huse we ignore past history when calculating the probability of
jmput at time 7. Implicit in this calculation is the assump-
for 6n that the probability of an input in nonoverlapping intervals
for  independent—that is, the assumption that the inputs are a mo-
ulated Poisson process. If one wanted to assume a more compli-
Sty d distribution of inputs, one would have to track the proba-
— ies-of past input sequences. For example, for another renewal
ess, one could add an extra dimension to the population
ory 8ity (say p(v, s, f), where s = the time since the last input),
ory alculate a more complicated expression for the excitation

4. In reality this may not be a good assumption for inhibitory
synapses. See Discussion.
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