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WITH A BAYESIAN LEARNING RULE
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Dept. of Numerical Analysis and Computing Science
Royal Institute of Technology, S tockholm, Sweden
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A probabilistic artificial neural network s presente
graded units. The learning rule is derived from Bay
and recall as a statistical inference process. Units ¢
compatibility coefficients in a logarithmic combination

d. It is of a one-layer, feedback-coupled type with
es’s rule. Learning is regarded as collecting statistics
orrespond to events and connections come out as
rule. The input to a unit via connections from other

active units affects the a posteriori belief in the event in question.

The new model is compared to an earlier binary model

with respect to storage capacity, noise tolerance,

etc. in a content addressable memory (CAM) task. The new model is a real time network and some results
on the reaction time for associative recall are given. The scaling of learning and relaxation operations is
considered together with issues related to representation of information in one-layer artificial neural
networks. An extension with complex units is discussed.

Introduction

During the last few years, research in the area of
neural computation has brought forward a number of
different models. Although based on the same general
scheme, they differ considerably with respect to both
performance, e.g. learning capability, computational

~ demand, robustness, etc. and biological plausibility. It
is common to distinguish between two classes of
models, those of the one-layer, feedback-coupled
(recurrent) type and the multi-layer feedforward ones.
The former are essentially mathematical realizations
of Hebb’s theory of cell assemblies.! Examples are the
linear?>*% and binary®’ matrix models and the
Hopfield model.? Models of this class have been used
as auto- or heteroassociative CAMs, for solving
constraint satisfaction problems, efc. Computer
simulations primarily aimed at investigating the biolo-
gical plausibility of Hebb’s theory have also been
undertaken.”'%!!

The second class of neural network models are the
feedforward networks, e.g. multi-layer feedforward
perceptrons. A well-known and commonly used
learning rule for these systems is based on back-
propagation of errors.'? The multi-layer feedforward

architectures are primarily used for hetero-
association, i.c. for learning stimulus-response (§-R)
mappings.
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The binary, one-layer model

In an earlier investigation,13 we studied the capabi-
lities of a binary one-layer matrix model operating as a
content addressable memory (CAM). A deterministic,
asynchronous relaxation scheme was developed and
we investigated the storage capacity and noise toler-
ance by means of computer simulation. Earlier
theoretical results on the storage capacity’ were
verified. In a network with N units the number of
random patterns possible to store increases prop-
ortional to (N/log N)?, provided that the number of
active units in each pattern increases as log N. Asan
example, a network with 3000 units could store close
to 18 000 random patterns, each comprised of 16
active units. For each of these, when activating half of
its units, the other half could be retrieved with 95%
reliability. This is an efficient memory in the sense
that the information that can be retrieved is prop-
ortional to the size of the physical memory (the
connection matrix). The scaling properties and poten-
tial speed-up given a massively parallel machine were
also considered.

A network with binary connections and binary
output units is clearly a dramatic simplification with
respect to biology and, furthermore, its functionality
is limited. The aim of the work presented here was
to modify the binary model to incorporate graded
connections and continuous units. Graded connec-
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tions would allow units to become more or less specific
depending on their frequency of occurrence in the
training set. The model also treats graded stimulation
more properly since units can produce graded outputs
in response to graded stimulation. Having units with
continuous output makes a truly parallel, synchronous
updating scheme feasible. Convergence to a stable
state can be guaranteed provided the connection
matrix is symmetric and the input-output relation of
the units is monotonically increasing.!* When sear-
ching for a suitable learning rule, unit input-output
relation, and relaxation procedure for the new model,
focus was on maintaining the “efficient storage”
properties and noise tolerance in the CAM task related
above.

A Bayesian Learning Rule

A model with graded connections but binary
output units was recently presented.!> It employs a
Bayesian learning rule which gives it a slightly higher
storage capacity and the same scaling behavior as the
earlier binary model. In the following we will describe

this learning rule in somewhat more detail and also

give a formulation that allows for graded unit output.
Thereafter, a couple of implementation issues will be
discussed and some results from computer simulations
of the improved model will be presented.

Derivation of the learning rule

A probabilistic perspective on learning and recall in
neural networks often seems natural. Learning is then
regarded as collecting statistics and recall as a statistic-
al inference process based on the world model thus
acquired, i.e. through experience. In the following,
the training set consists of a number of activity
patterns on a network with N units. Each unit may be
seen as representing a feature or event in the
observable world.

Assume that we have observed some events and
want to determine the probability of some other
events. Provided that the observed events are statisti-
cally independent, Bayes’s rule can be used to
calculate the posterior probability of the latter event in
the following way.

According to Bayes’s rule, if we know that event ¢
has occurred and we want to know the posterior
probability of event ¢, then

p(lg)

pQli) = p(9) o)

If we instead consider ¢ conditioned by the composite
event 1 & 7,

-
plali &) = p(g) L EIND)

PG&) D

Assuming i and j are independent, both with and
without ¢ given, we have

p@ &) = p()p(j) )
(i &jlg) = p(i|9p(lg) . 3)
Inserting (2) and (3) into (1) gives:

Gl p( )

20) 20) @

p(qli &) = p(g)

The same line of reasoning holds even when there are
several conditioning events i, j, k, etc.:

Al p( ) pk|q)
P p(y) pk)

Pli& &k &...)=p(g

h
=p [] 2ikle) - (3
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Here, A stands for the set of observed events. In the
following, a one-to-one correspondence is assumed
between events and units in a model neural network.
An observed event is represented by activity in the
corresponding unit. Inactive units represent a lack of
knowledge rather than knowledge that the events in
question have not occurred. Units, i.e. model
neurons, are assumed to sum their inputs according to

So =By + hzw,,qwh ) (6)

Here s, is the support of the receiving unit ¢, B, is the
bias of g, m, is the output of the sending unit / and wy,
1s the weight of the connection from k to q. If binary
output units are assumed and A is the set of active
units we have

s, =By + 2 Wy - 7

heA

Taking the logarithm of (5) we get

h
log p(q|A) = log p(g) + > o Q(I—Q)- (8)

heA g p(h)




By identifying terms in (7) and (8) we arrive at
formulas for weights and bias values:

log pile) _ o p(gli)
p@®) p(q)

Bi = log p(2) . €)

wiq =

Characteristics of the learning rule

Our learning rule is yet another instance of a
Hebbian learning rule in the sense that persistent
co-activation of two units leads to the strengthening of
the positive (excitatory) connection between them.
Moreover, it also provides lateral inhibition, since
anti-correlated activation of two nodes brings about a
negative weight between them. Statistically indepen-
dent units will get zero connections between them.
From (9) it also follows that the connection matrix W
is always symmetric which, as already mentioned, is
critical for having convergence to stable states.'*

Implementation

Here, the purpose of learning is to collect statistics
of unit activity and co-activity of pairs of units to
be able to estimate the probabilities and conditional
probabilities used to calculate W and g, values. An
input pattern consists of a stimulus strength in the
range [0, 1] for each unit in the network. The
logarithm of the stimulation replaces the bias value in
(7). In our model, the network is entirely “stimulus
driven” during learning. Otherwise the network
would first interpret the input and thereafter learn its
own interpretation which is not desirable. This also
has favorable consequences for computing time dur-
ing learning.

We have been working with two different imple-
mentations of the learning algorithm, one aimed at a
stationary and the other at a non-stationary world. In
the first case, which will be described here, we
developed a model based simply on counting occurr-
ences and co-occurrences. More recently we have
developed an alternative incremental learning rule
based on calculating running averages. Here weight
decay (“forgetting”) is also incorporated. By adjusting
a time constant for connection modification the
plasticity of the network can be changed. This
implementation and its consequences will be de-
scribed in a forthcoming paper.'®

In the counter model, a matrix C is used to
accumnulate statistics. When values for weights are
required these are calculated from C. For each unit ¢
we want to determine its bias value and for each pair
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of units (i, j) the connection between them according
to:

_ . Gl pli &)
Bi = log pli)  wy = log = (57 =108 L 55p (-

Since our estimate of p = ¢/Z we have

C; Cl‘jZ
Bi = log - w;; = log ——
VA CiC;
where
Z = 2 kY ¢ = 2 PRy Cij = E K(")m'nj .
[e4 (24 [¢4

(10)

Here, 7, is the output of unit 7, « is an index over the
patterns in the training set, and « is the significance
attributed to a certain learning event. The parameter
« actually serves an important functional role as a
global, graded “print now” control providing a
mechanism for over-representing subjectively impor-
tant learning examples and ignoring unimportant
ones. Some special care has to be taken when counters
come out as zero. In case ¢; or ¢; is zero, w;; is also set
to zero. If ¢, and ¢, are both non-zero but ¢;; IS zero, w;;
is set to a large negative value, log(1/Z). This also
happens for 8; when ¢; is zero.

A Real Time Relaxation Procedure

During learning the connectivity of the network is
formed. The actual processing of information takes
place during relaxation of the network, during which
the connection matrix W is assumed fixed. A stimulus
pattern is fed to the network and the relaxation starts.
Unit states are iteratively updated and support is
distributed via connections. In the present model,
conduction delays are assumed to be shorter than the
time for one iteration. The relaxation process termin-
ates when a stable state is reached. As already
mentioned, since the connection matrix W is symmet-
ric, convergence is guaranteed.

The input via connections to a unit accumulates in
its support value. In our model, the output is not
calculated directly from the support but from a
dynamic support variable E. The differential equation
for E 1is

;s Ei an
dt TE

This makes a unit operate as a one-compartment
“leaky integrator” model neuron which to some
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extent mimics the passive membrane dynamics of real
neurons. The E value then corresponds to the overall
transmembrane potential of the neuron. Such ele-
ments have been used for quite some time in neural
modeling work!” and were also later on introduced in
more abstract models with non-spiking units.'*

Input-output relation of units

The output of a unit is calculated from its E value.
The input-output relation is naturally derived from
the above learning rule. It seems reasonable to take
the position that the output of a unit 7 should signal
the a posteriori probability of observing the corres-
ponding event. Ideally, according to (8), the support
of unit ¢ is the logarithm of this probability. Thus, the
output of ¢ should be calculated as the exponential of
the support. Since in reality the independence
assumptions made above are often violated, making
support values become greater than zero, we must
take special care to restrict the output to [0, 1]:

0 E =6,
mo=1e" 6, <E =0. (12)
1 0<E,

In a resting system the support and E values are both
equal to the logarithm of the a priori probability of the
unit. Simulations have indicated that all units then
have to be silent. This is obtained by letting each unit
have a threshold equal to its bias value, i.e.

b = Bi - (13)

The input-output relation of a unit is shown
graphically in Fig. 1.

Finally, the graded output values enter naturally
into the relaxation scheme by generalizing the Baye-
sian learning rule given above to continuous units as
suggested by (6):

pq|h)
(@)

log p(g|A) = log p(q) + ; [log ]ﬂh- (14)

Implementation

Simulation of the graded model could be quite time
consuming since it comprises a set of coupled differen-
tial equations with discontinuities at unit thresholds.
We will therefore, in the following, restrict ourselves
to the study of a finite difference approximation of the
true continuous system implemented as described
below.

—

—4 -3 6 -2 -1 0 1 E

Fig. 1. Input-output relation for the units in the model. For
E values between the threshold 6 and 0.0 the output is the
exponential of the E value. The threshold is individual for
each unit according to formula (13).

In the relaxation procedure put forward here, unit
outputs are restricted to make only small changes
during each iteration. We regulate the time step such
that the largest change is below a certain value,
A7™*_ This restriction may be violated when a unit
passes its threshold. The change of its output is then
equal to the a priori probability (frequency of occurr-
ence) of the unit which may be larger than A7™*. A
very small time step is made as soon as some unit
passes its threshold during an iteration.

Typical values for 75 and A7™* in the simulations
described below are 10 ms and 0.03, respectively.
Both during learning and relaxation, the stimulus
pattern is held constant for ten time constants (7g)
during which time the network settles down. During
this phase, internal connections are disabled. In the
case of learning, modification of connections is then
made whereas during relaxation, the internal connec-
tions are enabled and relaxation resumes. One short-
cut possible in the implementation is to set E values
directly from the support.

Another essential implementation feature is the
incremental updating of the network. The connections
of a sending unit are traversed only when the unit
output value changes. Since the interval of E values
where this happens is rather narrow, most units
maintain their output constant from one iteration to
another. This arrangement saves a lot of computing
time when patterns have only a few active units as they
usually do in our simulations (see below).

Some Simulation Results

We will here compare the old binary model and the
new one with graded connections and units with
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respect to storage capacity, noise tolerance and
computational complexity in the CAM task. We will
also illustrate capabilities of the new model that go
beyond those of the binary one. Furthermore, the real
time character of the model also allows a study of
reaction times in different situations. Results illustrat-
ing this point will also be presented.

CAM storage capacity

We have used a pure pattern completion version of
a CAM task in which a number of binary random
patterns (‘“‘prototypes”) each comprised of m active
units are first learned by the network. Thereafter, m/2
of the units in one stored pattern are stimulated and
the ability of the system to recall the missing m/2 units
and no others is checked. The error is calculated as the
relative Euclidean distance between the prototype and
the unit outputs in the recalled pattern. The number
of active units in each pattern is a free parameter. In
an earlier study m = 6.25 logjo N — 2.75 was nearly
optimal for the binary model.!® We still use this result
here (with a correction such that m is always even).

A number of simulations with networks of different
sizes, N, were performed. For each value of N we
determined how many random patterns could be
stored without getting a mean error greater than 5%
(averaged over twenty test patterns from the training
set). The relation between the storage capacity deter-
mined in this manner and the size of the network is
shown in Fig. 2.

100000

X190 o P

g - Binary

E 1000

k-]

2 <

g

Z 100 -

10 T —
10 100 1000 10000
Network size

Fig. 2. The number of random patterns which networks of
different sizes can store. Pattern completion from half the
pattern was used as test. The lower curve shows results from
an earlier binary model. The upper curve shows the capacity
of the model presented here. The number of active units in
each pattern for net sizes 50, 100, 300, 500 and 1000 was 8,
10, 12, 14, and 16, respectively.

An Artificial Neural Network . . . 81

It can be seen that the new learning rule actually
gives a higher storage capacity than the old one.
However, since the number of bits used is larger (we
use 32 bits/connection but could probably do with
much fewer) the ratio between physical memory and
information retrieved is now lower. More important-
ly, these results show that we have succeeded in our
aim expressed above, to design a model with graded
connections and units which maintains the properties
of an efficient associative memory. In fact, the
learning rule put forward here gave superior perform-
ance in the CAM test problem compared to several
alternative rules for setting up graded connections that
we tried out in the course of this investigation.

Noise tolerance

In the earlier study of the binary model we also
investigated the noise tolerance of the recall process. A
distorted input pattern was presented to the network
and its ability to recall the correct pattern among the
ones learned was checked. This was quite straightfor-
ward with the binary model since we knew the correct
answer for every input. As long as it was not saturated
by storing too many patterns, this network operated as
a Hamming net recalling the memory with the
smallest Hamming distance to the input. In the case of
graded connections we 1o longer have a simple
Hamming matching network. The system now per-
forms something much more like a maximum a
posteriori (MAP) decision as to which of the learned
patterns is the most likely one to have generated the
input.'® To illustrate the level of noise that can be
tolerated in the recall process by the new model we
give some examples.

Noise was introduced in two different ways. The ‘

first one gives binary distorted patterns. Starting with
the active units in one of the patterns stored, a fraction
p is randomly selected. These units are kept with the
probability m/N and removed otherwise. A similar
random selection is made among the inactive units.
Here, units are activated with the same probability. In
Fig. 3a we show the results for a network with one
hundred units. The training set contained forty
random patterns with ten units active in each plus the
patterns <2” and “4” (resembling the corresponding
digits). Figure 3a shows an example where “2” was
distorted as above with p equal to 0.3. The reconstruc-
tion capability demonstrated is representative for the
other stored patterns as well. The values displayed in
this and the following similar figures are belief values,
i.e. the exponential of the support value bounded
upwards at 1.
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In a second example, continuous valued noise with
normal distribution was added to the input. The
actual input to a unit was the confidence value for the
hypothesis that, in the undistorted image, the input to
the unit would have been one. Figure 3b shows the
result when noise with o = 0.6 was added to “2”.

The results demonstrate that the recall process has
a high tolerance towards both kinds of noise in the
input. We have also studied learning in the presence
of noise with interesting results. In this case, instead
of showing the network the prototype patterns them-
selves, only a number of instances generated by
adding noise to the prototypes were presented. It was
shown that the prototypes could be extracted given a
sufficient number of instances.
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Fig. 3a. Relaxation with binary noise (p = 0.3) in the
input. The input is shown in the upper left frame. Five
iterations were performed between successive frames. The
area of each square is proportional to the belief of a
corresponding unit.

Fig. 3b. Relaxation with normal distribution noise
(o = 0.6) in the input. The actual input to the network was
the confidence that the unit was one.

Competing interpretations

Another important issue concerns competition
between interpretations when ambiguous input pat-
terns are fed to the network. This demonstrates why
graded weights and outputs are useful. In Fig. 4 the
effect of giving a mixed input is illustrated. The “4” is
the preferred interpretation since it is kept together by
stronger connections, i.e. it represents an internally
more consistent interpretion. This difference depends
on the overlap with the other forty random patterns in
this particular training set. This also shows up in the
fact that the mean support of the activity pattern ““4”
was higher (6.4) than in “2” (5.5).

When the input to all units in “4” is gradually
decreased, a sudden shift in the interpretation occurs
(Fig. 4b). The stimulus of units common to “2” and
“4” is the geometrical mean of the two stimulus
strengths. In another experiment we wanted to show
that a number of fully stimulated units can be
overcome by more numerous but less potently stimu-
lated ones. Thus, three units from “4” were fully
stimulated. All the “2” units, including those com-
mon to both patterns, were given less stimulation. If
the “2” units were stimulated with a strength below
about 0.4 the “4” interpretation dominated (Fig. 4c¢),
but above 0.4 the “2” pattern was recalled.

There is still another quite different way of shifting
the balance between patterns. During learning the «
parameter can be used to weight a learning event.
Thus we learn “four” with a lower x which can
signify, for instance, that we are uncertain during
learning about the input pattern or that we want to
discount it for some other reason. An example of this
is when the “4” is given a weight during learning
which is 0.5 compared to 1.0 for “2”. Simultaneous
stimulation of both patterns now vields “2” instead of
“47,

Here we also want to illustrate another effect of
graded connections, namely that units will take on
different degrees of specificity depending on how
many prototyes they participate in. Some features are
shared among many prototypes and are thus less
discriminative, i.e. more unspecific.

A data base containing a description of sixty
different animal species was generated from a hierar-
chical description of the animal kingdom. There were
some ten to fifteen characteristics for each species, 163
characteristics  (including 60 species names)
altogether. Each property (including the name of the
species) was given a unique unit to represent it. The
species descriptions was then learned by a network




Fig. 4a. Relaxation with both «“2” and “4” as input. “4”
wins since it is the most tightly connected activity pattern,
i.e. the most “internally consistent” interpretation.
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Fig. 4b. The input to “4” is lowered to 0.6 for each unit.
Now the “2” interpretation is preferred.

Fig. 4c. Effect of graded stimulation. Three units from “4”
and all from “2” were stimulated with 1.0 and 0.3,
respectively.

Fig. 4d. The same as 4c but the “2” units were stimulated
with 0.6.
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with 163 units. In the recall phase, a set of characteris-
tics was given as input to the network. Relaxation was
then performed in which, in the great majority of
cases, one species was recalled. The following example
illustrates the effect that some characteristics are
specific, others more common.

In the data base, bear and lion share the character-
istics moving, spine, fur, and eats-animals. The
bear has several characteristics that the lion does not,
for instance, brown and robust and the lion has
yellow and tail which the bear does not. If we feed
the input moving, spine, fur, eats-animals, tail, and
robust (which fits no animal description in the data
base) to the network the bear description is recalled.
The property tail is at the same time deactivated. In
our data base, the property robust occurs in only five
species whereas nineteen species has tail. Consequent-
ly, robust is a more specific piece of information than
tail and the bear interpretation is preferred. Howev-
er, if we instead give moving, spine, fur, eats-
animals, yellow, and brown the lion is recalled. In
this case, yellow with four occurrences is more
specific than brown with seventeen. By lowering the
simulation on yellow we indicate an uncertainty in
this piece of information. We found that for a
stimulation of 0.7 or lower for yellow, the bear again
became the preferred interpretation.

Reaction time

Reaction time experiments are common in psychol-
ogy. Since the model presented here is a real time
model it might be interesting to look into how reaction
time is affected under various conditions. Reaction
time is defined here as the time from the start of the
relaxation until the output of units reach their final
state. The actual relaxation time also includes the time
for E values to settle down, which is longer. The
questions addressed here were:

(i) Do we get a faster decision with more informa-
tion given?

(i) How do conflicting inputs affect reaction time ?

(iii) What is the effect of relatively non-specific
facilitation on reaction time?

Figure 5 shows the effect on reaction time when
more and more of a pattern is provided as input. In
Fig. 6 the effect of conflicting information and
competing interpretations is illustrated. Here the
input is produced by mixing two of the patterns
learned. These particular patterns had no units in
common. The input pattern always had ten active
units. The abscissa gives the number of units originat-
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10

Reaction time (ms)

Fig. 5. Reaction time in milliseconds when more and more
of an input pattern is given. The prototype was comprised of
ten units. The abscissa gives the number of units from the
prototype given as input.

Reaction time (ms)
[FS)
1

Fig. 6. Reaction time in milliseconds when a mixed input
pattern is gradually moved from one prototype to another.
Prototypes were comprised of ten units each. The abscissa
gives the number of units from the second prototype mixed
into the first prototype pattern. The prototype recalled is
indicated by the markings (filled for the first, outline for the
second).

ing from the first pattern and the rest were taken from
the second one. Black and outline markings indicate
when the first and second pattern, respectively, was
retrieved.

Occasionally, when the balance between the two
patterns was very even, the peak reaction time
observed was two or three times as high as is shown in

Fig. 6.

Our third question concerns the effect of non-
specific facilitation on reaction time. Here we com-
posed a pattern f that recalled “4” with a reaction
time of 0.018 s. When we stimulated f together with
weak stimulation on the entire “4”, reaction time was
reduced to a third of this. When we instead stimulated
f and four other patterns in the training set, reaction
time increased by a factor of more than three. In all
cases the final result was the same, i.e. “4” was
recalled. Stimulating only the four extraneous pat-
terns recalled one of these. This can be interpreted
such that supporting and conflicting information may
affect reaction time by shortening and prolonging it
respectively, without actually changing the outcome
of the relaxation. These results indicate that the
difficulty in making the decision as to which memory
to recall shows up in the reaction time. The more
difficult the decision the longer the reaction time.

Scaling of learning and relaxation

The scaling properties of the model, i.e. how
requirements for computational capacity and memory
increase with the size of the network, N, is an
important question. Since real neural networks are
extremely large this is important from the point of
view of biological plausibility. Furthermore, the
majority of serious technical applications of artificial
neural networks are likely to involve the use of large
systems with many thousands of units. In this case,
too, scaling properties are critical. For obvious
reasons, we also have to take the possibilities for
parallel computation into account here.

If we first consider ‘“one shot” learning of
prototype patterns of size m, which is proportional to
log N, we know that the number of counters in the C
matrix that must be updated for each prototype is
m?/2. Thus, the overall asymptotic complexity is
O[log? N]. The operations are entirely independent

*so given at least O[log® N] processors learning time is

independent of N.

The computational demands of relaxation is some-
what harder to determine. We will here only give an
estimate of the average case, partially based on
simulation results. Each iteration involves updating E
values for all units, calculating new output values and
distributing support via connections. Updating E
values and outputs are both O[N] operations. Since
iterations are incremental, support is distributed only
via connections from units that really change their
output. For these we have N connections to traverse.




The interval of E values, between the threshold and 0,
in which units have dw/dE # 0 is fairly narrow. It is
crucial to estimate how many units on the average are
in this transient state. Empirically, it turns out that
the units in a network are quite early split up into two
groups. One is the bulk of units that ends up fully off,
and the other is a small set of units belonging to the
prototype recalled, that ends up fully on. During
relaxation, the former group is quickly pushed to-
wards negative E values by the latter one that is
becoming more and more active in small steps.

A pessimistic estimate is that all the m, Ollog N1,
units in the recalled prototype change their output in
each iteration. Each unit has N connections whereby
the computational load due to support distribution via
connections becomes O[N log N]. This overtakes E
value and output updating and is, in fact, the overall
complexity of the entire relaxation, since simulations
indicate that the number of iterations is independent
of N, being controlled only by the free parameter
A7™_ In fact, operations in one iteration are
independent and can thus, in principle, be carried out
in parallel. This would make relaxation time indepen-
dent of N. The limiting factor then becomes the
dynamics of the units and conduction delays in the
network.

Memory requirement of a fully connected network
is obviously O[N?]. However, large networks are
likely to contain many uncorrelated pairs of units
which will need no connection between them. This
means that the C and W matrices could be sparse. The
amount of memory required then depends on how
many prototypes one likes to store. That information
storage capacity per bit of physical memory is
theoretically still maintained at a reasonable level also
for sparse networks has been shown.'?

Discussion

We have presented here a one-layer, feedback-
coupled neural network model which is derived from
an earlier model with binary connections and units.
The new model employs graded connections and
units, a Bayesian learning rule and a real-time, parallel
relaxation procedure. It belongs to the same category
of artificial neural networks as e.g. Anderson’s “Brain-
State-in-a-Box” model and the Hopfield model. In
particular, it is similar to the continuous Hopfield
model in that the units have dynamic properties
reminiscent of the passive membrane properties of
real neurons.

Tf—”
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Qur model is comparatively free from parameters
and ad hoc assumptions, since, apart from providing
updating rules for the connection matrix, the Bayesian
learning rule also gives the bias values and the
input-output relation of the units. The remaining
parameters are the time constant 7g and A7™**, The
time constant can be chosen quite arbitrarily since it
only determines the time course of the relaxation and
not its trajectory through state space. The value of
A7™* is merely a tolerance parameter and it should,
in principle, be made as small as possible. In practice,
values below a certain limit give identical results.

The storage capacity of the model when it operates
as an autoassociative, content addressable memory is
comparable to the binary model. It is important here
that, provided a suitable representation, the number
of items that can be stored and retrieved by associative
recall can be much greater than the number of units in
the network. In the derivation of the learning rule
some independence assumptions are made. In prac-
tice, violation of these assumptions are unavoidable.
Yet, in the tasks we studied this caused no great
problems. However, things might change when input
patterns spread out less evenly than with the random
patterns used here. We have also demonstrated that
this graded model is qualitatively more capable than
the earlier binary one in several respects. For instance,
different units may take on different specificities
depending on their frequency of occurrence in the
training set and graded stimulation and uncertain
information is treated appropriately.

With respect to noise tolerance, the model is
capable of pattern completion as well as removing
units from the input pattern to reconstruct the most
similar of the memories stored. Instead of making a
Hamming matching between input pattern and stored
memories, something like a maximum a posteriori
(MAP) decision is made regarding which object was
the most likely one to have generated the input
pattern. Interesting effects on reaction time for recall
were noticed. For instance, in several examples
reaction time seemed to be directly related to the
difficulty in making the decision as to which memory
to retrieve.

Complex units

When given an appropriate representation, e.g. via
an adequate set of feature detectors, a one-layer,
feedback model performs quite well. However, if the
representation is inappropriate, function degrades due
to cross-talk between the items to be stored. The need
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for an internal mechanism to automatically improve,
i.e. orthogonalize, representations becomes acute. In
an earlier model we tried to deal with this problem by
providing a mechanism that generated complex units
by replacing the original “feature detectors” one by
one until a test criterion was met.'>-?® Augmented in
this way, this model was capable of solving the 4-bit
ADDER problem. The number of learning epochs
(passes through the entire training set) required to
solve the 2-bit ADDER problem was around ten
which is considerably less than the more than 3000
epochs required by a multi-layer feedforward network
using back-propagation.!? Our model is in many
respects quite different from back-propagation, e.g.,
in that it is a recurrent network and utilizes only
global error information in learning. At present we are
modifying the scheme for generating complex units to
suit our new graded model. Alternative solutions to
this problem are also considered. If a satisfactory
solution can be found, the functional capabilities of
one-layer feedback and multi-layer feedforward mod-
els will be combined in the same artificial neural
network (ANN).

Biological plausibility

When discussing the biological relevance of present
neural network models one must bear in mind that
they should not be expected to reach anywhere near
higher nervous systems in terms of level and multi-
plicity of function. To do this we at least have to
design artificial neural systems (ANS) comprised of
many interacting ANNs. A complete ANS should
have sensory, motor and integrative sub-systems as
does the brain. We certainly have a long way to go
before reasonably competent systems of this sort could
be made reality. For the moment, our primary
objective is to design ANNs that are sufficiently
capable to serve as a module in such a construct.

Of course, all computational models today have to
go much beyond what can be verified by neurobiology
and can at best be considered as first approximations.
A reasonable minimal requirement is that the models
may not violate what is plausible from a neurobiolo-
gical point of view. The biological plausibility of
neural network models, in particular feedforward,
multilayer models, applying back-propagation has
recently been discussed by Crick.?!

The model proposed here is essentially one out of
may possible mathematical formulations of Hebb’s
theory of cell assemblies. One component in the
judgment of the biological plausibility of a model is

the input-output relation of its units. In fact, real
neurons show quite a bit of variability here. Often one
observes an initial period of transient high frequency
firing that levels off to a lower sustained firing rate.
The input-output relation of our model is likely to
serve the purpose of first approximation as well as any
sigmoid or linear function. The incorporation of
membrane dynamics brings the model fairly close to
those used in more realistic modeling work.!!>!”
In at least one respect we note an obvious deviation
from biology. This concerns the fact that the connec-
tions in our model change readily between being
excitatory and inhibitory. However, this is a contra-
diction only if we interpret a unit strictly as modeling
one neuron. If we modify our model slightly by
splitting up each unit into two as suggested in Fig. 7
the problem can be circumvented. Here, inhibition is
passed on via the inhibitory unit which inverts the
signal. This unit has a zero threshold and a linear
input-output relation. The excitatory connections
making contacts on this unit are modifiable according
to the Bayesian learning rule although with inverted
sign. Connections are assumed to disappear when they
are driven to negative values. Moreover, each unit in
Fig. 7 might in reality correspond to several neurons.
In other respects, the learning rule suggested here
is quite plausible from a physiological point of view.
Rules for synaptic modification are often discussed in
terms of correlations and conditional probabilities
with respect to pre- and postsynaptic activity.??

Fig. 7. The model set up with artificial neurons to avoid
connections that change freely between being excitatory and
inhibitory. Inhibitory neurons have a threshold of zero and
act merely by inverting the sign of the input. One model
unit consisting of two artificial neurons is surrounded by a
dotted rectangle. External stimulation to the unit driving
both types of neurons enters from below.




Finally, the assumption of full connectivity is not
very biological. It is also technically unfeasible when
large systems are considered. The learning rule
proposed here results in zero connections between
units having statistically independent activities. This
gives the possibility to remove such connections
without any degradation in performance, either be-
cause we know beforehand of such independencies or
because they are discovered during learning. We are
currently investigating the performance of our model
when connectivity is limited. Other essential exten-
sions of the functional capabilities relating, €.g., to
temporal association and short-term memory are also
considered.
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