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Abstract. We have developed a two-compartment, eight-variable model of a CA3 pyramidal cell
as a reduction of a complex 19-compartment cable model [Traub et al, 1991]. Our reduced model
segregates the fast currents for sodium spiking into a proximal, soma-like, compartment and the slower
calcium and calcium-mediated currents into a dendrite-like compartment. In each model periodic
bursting gives way to repetitive xoma spiking as somatic injected current increases. Steady dendritic
stimulation can produce periodic bursting of significantly higher frequency (8-20 Hz) than can steady
somatic input (<8 Hz). Bursting in our model occurs only for an intermediate range of electronic
coupling conductance. It depends on the segregation of channel types and on the coupling current
that flows back-and-forth between compartments. When the soma and dendrite are tightly coupled
electrically, our modei reduces to a single compartment and does not burst. Network simulations with
our model using excitatory AMPA and NMDA synapses (without inhibition) give results similar to
those obtained with the complex cable model [Traub et al, 1991; Traub et al, 1992]. Brief stimulation
of a single cell in a resting network produces multiple synchronized population bursts, with fast AMPA
Synapses providing the dominant synchronizing mechanism. The number of bursts increases with the
level of maximal NMDA conductance. For high enough maximal NMDA conductance synchronized
bursting repeats indefinitely. We find that two factors can cause the cells to desynchronize when
AMPA synapses are blocked: heterogeneity of properties amongst cells and intrinsically chaotic burst
dynamics. But even when cells are identical, they may synchronize only approximately rather than
exactly. Since our model has a limited number of parameters and variables, we have studied its
cellular and network dynamics computationally with relative ease and over wide parameter ranges.
Thereby, we identify some qualitative features that parallel or are distinguished from those of other
neuronal systems; e.g., we discuss how bursting here differs from that in some classical models.

1 Introduction

The CA3 regicn of the hippocampus generates
synchronized epileptiform bursts under a variety
of experimental situations in which inhibition
has been reduced. Mathematical models (Traub
and Miles, 1991, Traub et al., 1991, Traub et al.,
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MRB, NIDDK, 9190 Wisconsin Avel Suite 350, Beihesda,
MD 20814.

1993) of the intrinsic properties of CA3 neurons
and their synaptic interactions, in conjunction
with experimental slice studies (Chamberlin et
al,, 1990, Miles et al., 1988, Schwartzkroin and
Prince, 1977), have helped elucidate the basic
mechanism of bursting in individual cells, and in
networks with excitatory synaptic interactions.

Traub et al (1991) recently developed a 19-
compartment cable model of a guinea pig CA3
hippocampal pyramidal neuron. Each compart-
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ment contains up to six active ionic conduc-
tances that are controlled by ten channel-gating
variables. Kinetics for these variables were con-
structed using somatic voltage clamp data gen-
erated by a number of researchers including
Kay and Wong (1987), Sah et al (1988a, 1988b),
Lancaster and Adams (1986), and Numann et al
(1987) from CA3 and-other preparations. Con-
ductance densities for each compartment were
chosen so as to be consistent with current clamp
records from the soma and dendrites of whole
neurons, and from isolated apical dendrites (Ma-
sukawa and Prince, 1984).

The salient stimulus-response properties of
Traub’s model neuron include the following.
For steady somatic current injection (I,), weak
I, leads to low frequency (1 Hz) bursting and
the frequency increases modestly with I, (up to
about 8 Hz). For intermediate I, there is aperi-
odic behavior and for strong I, periodic spiking
occurs. For steady current injection (Ij) at a
dendritic location (mid-apical), a larger range
of bursting frequencies is attainable (from 1 to
20 Hz). Copies of this neuron model were used
to simulate the behavior of a mutually excita-
tory network with both AMPA (fast relaxing)
and NMDA (slowly relaxing) synaptic connec-
tions (Traub et al., 1991, 1993). The network
model exhibits multiple synchronized population
bursts in response to stimulating one cell briefly.
The maintenance of synchrony requires a mini-
mal level of AMPA-mediated synaptic coupling,
except at very high levels of maximai NMDA
conductance. The number of bursts in a finite
train can be titrated by increasing the maximal
NMDA conductance. At high levels of maxi-
mal NMDA conductance synchronized repetitive
bursting persists.

We view Traub’s CA3 system as a computa-
tional analog of an experimental preparation for
which all components are known and for which
a substantial amount of behavioral repertoire
has been described. We ask, what is a mini-
mal biophysical/mathematical description which
can account semi-quantitatively for the above
(and other) dynamical features of this model
system. Just as the Traub model represents the
biological CA3 system in an over-simplified but
valuable way, we find that this description can be

further idealized while still achieving some ac-
countability. Moreover, by reducing the model’s
complexity and computational demand we seek
to identify the dominant qualitative mechanisms
for certain aspects of the system’s behavior.

Our strategy for reduction is to retain the
same active currents and gating kinetics as in
Traub’s CA3 model but to reduce the number of
compartments per neuron to two and the num-
ber of currents per compartment. In the Traub
model the fast spiking currents (sodium and de-
layed rectifier) are restricted to the soma and
proximal (i.e., within 0.3X of the soma) dendritic
compartments while most (62%) of the calcium
channels are located in the distal dendritic com-
partments. Thus in our model we have segre-
gated the sodium and delayed rectifier currents
in a soma-like compartment and the calcium
and calcium modulated currents in a dendrite-
like compartment. Our reduced model, while
tractable enough to permit qualitative analysis,
replicates numerous features of the Traub model
as described above, including rather complex so-
matic burst patterns (e.g., Figs. 2 and 3). The
simulations described here also serve to illus-
trate the reproducibility (semi-quantitative) of
Traub’s computational experiments.

Because our neuron model has relatively few
variables and parameters, it requires only mod-
est computational resources, and this enables
one to explore rather thoroughly the depen-
dence on parameters. The coupling conduc-
tance g. between our two compartments is a
significant electrotonic parameter. We find that
bursting can occur only for a range of g, interme-
diate between the extremes of small g. (decou-
pled compartments) and large g. (an isopotential
cell for which a burst is replaced by a compos-
ite sodium-calcium spike). With the prescribed
currents, bursting depends on spatiotemporal in-
teractions between the proximal and distal com-
partments that are possible only with moderate
electrotonic coupling. The coupling current re-
verberates between the two compartments dur-
ing bursting and prolongs the soma depolar-
ization over that possible with either strong or
weak g.. In this system, a burst is always led
by a somatic sodium spike. With moderate cou-
pling, such soma spikes can partially repolarize
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thereby drawing current from the dendrite and
somewhat delaying the full

dendritic calcium spike; this combination con-
stitutes a burst. This and other features distin-
guish the bursting found here from that seen in
other excitable systems and attributed solely to
the combination of ionic currents in an isopo-
tential cell. ‘ "

Our network model of 100 reduced model
cells can also be integrated without computa-
tional difficulty. We have studied the effects
of different amounts of NMDA and AMPA
synapses on population bursting, essentially re-
producing some of Traub’s numerical resuits and
examining the synchronization phenomena in
more detail. saturates and synchronize the cells.
As in the Traub network, the synchronization of
population activity is not perfect but only ap-
proximate. One explanation for this lack of ex-
act synchrony is heterogeneity of cell properties.
We show and explain mathematically, however,
that even when the cells (and the coupling) are
identical, they do not burst precisely together.
We also analyze the rapid desynchronization ob-
served following AMPA blockade and demon-
strate that it is dependent on heterogeneity in
cell properties or on the intrinsic cell trajectories
being chaotic.

This is the first in a sequence of our papers
on this class of models. Here we present our
two-compartment reduction of the Traub model,
confirm that it replicates that model’s salient
features, and expiore how the electrotonic cou-
pling parameters effect the model’s behavioral
properties. In our second paper (Pinsky and
Rinzel, 1994) we utilize a phase-plane analysis
to gain an intuitive understanding of the math-
ematical mechanism for repetitive bursting and
spiking and to predict the effects of parameter
variations on the existence (and frequency) of
these solutions. Insights gained from the above
analysis allowed us to create an abstract model
of an excitatory neural network where each iso-
lated neuron has an intrinsic repetitive “burst-
ing” solution qualitatively similar to that of our
two- compartment model. A third paper (Pin-
sky, 1994) describes this abstract network and
presents analytic proofs of some results about
burst synchronization.
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2 The Model

Figure 1A shows a schematic representation of
our model displaying the applied, ionic and
synaptic currents for each compartment and the
coupling conductance between compartments.
The current balance equations for the two com-
partments are given below:

CnV, = —ILeak(Vs) — Ina(Vs, k) — Ix—DR(V:, 1)
+(9c/P)(Va—V3) + L /p

CnVyi = —ILeat(Va) — Ica(Va, 8) — Ix-anp(Va, 9)
—Ix-c(Va, Ca, c) - IS}'D/(]- -p)
+(g:/(1 = P))(Vs — Vo)
+1i/(1 - p) (1)

Here V,,Vy are the deviations of the somatic
and dendritic membrane potentials (mV) from
a reference potential of —60 mV, I, (1) is the
electrode current applied to the soma (dendrite)
divided by the total cell membrane area and p is
the proportion of cell area taken up by the soma.
Ca is the intracellular free calcium level in a
sub-membrane “shell” of the dendritic compart-
ment. Because the “effective” shell thickness
is indeterminate, there is some arbitrariness in
scaling Ca so this quantity is unitless (Traub et
al,, 1991). Currents and conductances are ex-
pressed as densities with units of uA/cm? and
mS/cm?, respectively. Capacitance (Cn) is in
units uF/cm®; the time unit is ms.

The kinetic equation for each of the gating
variables h,n,s,c and g takes the form

¥ = (Yo(U) — y)/7 (V). ®?

The argument U equals V, when y = h,n; Va
when y = s,¢; and Ca when y = ¢. These
equations are supplemented by an equation for
Ca handling in the dendritic compartment,

Ca’ = —0.131¢, — 0.075Ca )

We use the same volume/area ratio in our den-
drite as does Traub for each dendritic compart-
ment; as in Traub’s model, Ca does not diffuse
between compartments. : :
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Fig. 1A. Schematic of 2-compartment model showing applied currents and outward and inward active currents to soma and

dendrite compartments. Soma has sodium (Iy,) and potassium delayed- rectificr (Jx—pr) currents; dendrite has calcium (Ic, ),
Ca activated potassium (fx_c), potassium afterhyperpolarization (Ix-aup) and synaptic (Isy,) currents. Coupling strength

between soma and dendrite is governed by parameter g.. Aiwo refers to total cell membrane area; in the model it is normalized
to 1.

Ionic Currents. The soma-like compartment
has two voltage-dependent currents for gener-
ating rapid sodium spikes, an inward sodium
current Iy, and an outward delayed-rectifier
potassium current Jx_pr. The sodium current
activates instantaneously (m = m(V,)); inac-
tivation, h, of Iy, and activation, n, of Ix_pn
proceed rapidly with time constants of a few
milliseconds. Figure 5 illustrates the depen-
dence of frequency on current (f-I relation)
for the isolated soma. will As with the Traub
model, our soma compartment, as well as the
full model, needs a slight hyperpolarizing cur-
rent for a stable rest state to exist; the rheobase
is about I, = —0.175 pA/cm® (with p = 0.5).
The isolated soma shows a wide range of fre-
quencies for maintained I, from arbitrarily low
to a maximal rate around 300 Hz.

The dendritic compartment has three voltage-
dependent currents. The inward current Ig, is
carried by calcium and its activation, s, is fast.
There are two types of potassium currents. The

Ca-activated potassium current Ix_c is propor-
tional to a fast activation variable, c, times a
saturating function x(Ca). The current Ix_anp
has a slow activation variable g which is cal-
cium, instead of voltage, dependent. The time
constant for ¢ ranges from 1000 ms at low Ca
to 100 ms at high Ca. The fast activation vari-
ables s,c have time constants under 6 ms in
their effective range. During an active dendritic
voltage spike the calcium uptake may be fast,
going from near 0 to 300 units in 5 ms; calcium
decays with a time constant of 13 ms.

The uncoupled dendritic compartment with
no applied current has a stable rest potential
of 2 mV. A brief pulse of I; evokes a sin-
gle dendritic voltage spike (amplitude 110 mV,
172 width 7 ms). Maintained stimulation with
small to moderate currents gives rise to very low
frequency periodic spiking (Fig. 5).

We summarize the ionic currents below.
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Tea(V2) = gV, — V1)
Treac(Va) = go(Va— V1)
INa = Gam(Va)h(V, ~ Vi)
Ix-pR = gk-prn(V, — V)
Ica = Gcas® (Vi — Vea)
Ix_c = gx-cex(Ca)(Vy — Vk)
Tx-aup = Gx-amp ¢ (Va- W)

Electrotonic Coupling We describe neuronal
cable properties with a crudely lumped two-
compartment approximation. In compartmental
treatments, for which accurate cable behavior
is sought, one uses compartments of lengths
no greater than about 0.1\. The sections of
Traub’s neuron corresponding to our compart-
ments have lengths of 0.5\ or more. Thus
our soma and dendrite should be considered as
phenomenological compartments. Electrotonic
coupling is modeled using the two parameters
gc and p where g, represents the strength of
coupling and p represents the percentage of to-
tal area in the soma-like compartment. We do
not have an argument for deriving directly val-
ues of these lumped cable parameters from the
known passive continuous cable parameters of
Traub’s model.

Suppose we were to proceed naively to get
initial estimates. We might imagine the cell,
soma and equivalent cylinder dendrite, as a sin-
gle cable of length ! and radius ». Now divide
the cable into a proximal (soma-like) compart-
ment and a distal (dendrite- like) compartment
of lengths p and 1 - p respectively. The core
conductance between these two compartments
would be 272 /(R;l), where R; is the cytoplasmic
specific resistivity (ohm-cm). However, since we
scale the currents in each compartment by com-
partmental area, the coupling conductance gc
for equation (1) would be g, = r/(Ril?). Us-
ing the values from Traub et al. (1991) for
these constants, we get g. ~ 0.18 mS/cm?®. This
value leads to steady state attenuation proper-
ties similar to Traub’s cable, with attenuation at
mid-dendrite in response to subthreshold soma
stimulation of about 0.78; however, coupling at
this level is too weak to produce bursting.

As described in the Results section, the mech-
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anism for bursting involves a somatic spike ini-
tiating an active dendritic voltage spike and
thus requires an adequate coupling conductance.
This means we need to adjust our estimate to
account for attenuation of transients, and in
consideration of nonlinear conductances as well.
Thus we examine the dependence on g, of the
transient attenuation factor (TAF) in the den-
drite in response to a brief square voltage pulse
in the soma (Fig. 1B). When the soma’s clamped
voltage is high, this situation approximates the
attenuation of a sodium spike into the den-
drite. Attenuation values above 1 indicate an
active dendritic voltage spike in response to the
square pulse. The figure indicates that g. values
well above 0.18 are needed for an impulse from
the soma to cause an active dendritic voltage
spike. As g. — oo, TAF approaches 1 since
the somatic and dendritic voltages are equal at
infinite strength coupling. For most simulations
here we use g, = 2.1 mS/cm?. Again we stress
that values for our lumped cable parameters, g.
and p, are not yet directly derivable from geo-
metrical and passive electrical neuronal proper-
ties. In particular, g, is not estimated solely as
an axial resistance from R;,r, and 1.

Synaptic Interactions. We use the same form
for the AMPA and NMDA synapses as used by
Traub et al. (1992). AMPA conductance is fast
rising and fast decaying while NMDA receptor
binding is fast rising but slowly decaying, with a
time constant of 150 ms. .

The AMPA and NMDA receptors are located
in the dendrite compartment.

The NMDA current Iyypa in cell i is given
by the expression

gnvmpa Si(t)(1 + 0.28 exp(—0.062(V; — 60)))~?
x(Va — Vapm) 7
where gnmpa is a parameter measuring absolute

NMDA conductance. §; is determined by the
following differential equation:

Si=3 H(V.;—-10)~ 5/150 (4

where H(z) = 1 if z > 0 and 0 otherwise. The
sum is taken over all cells j which synapse onto
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Fig. 1B. Transient attenuation factor (TAF) of voltage from soma to dendrite for different values of gc. TAF is defined as
(Vamax — Vies)/ (Vtamp — Viota) Where Vetamp — Vhold is the magnitude of the square wave voltage clamp applied to the soma
(see inset). Vi, is the steady state dendritic voltage and Vjp. is the maximum dendritic voltage in response to the square
wave. Here square wave is of duration 3ms and V44 = —10 mV. TAF is maximal for intermediate values of g.. Inset shows
time courses of V, and V; corresponding to Vetamp = 60 mV and g. = 2.1 mS/cm? (asterisk). Scale bars: 70 mV and 10 ms.

and

cell ; V,; refers to V, in cell 5. As in Traub et
al. (1991) we use a saturation parameter Sp..
which determines the maximum allowable level
of 5(t); we take Spax = 125.

The AMPA current Isqpa is given as
gampra Wi(t)(Vy — Vgyn) where

Wi=3 H(V,; -20)-W:/2  (5)

The term Ly, in equation (1) is then the sum
of INMDA and IAMPA-

Because NMDA receptor occupancy decays
slowly its value inay be nearly constant, at Sgay,
after an initial population burst; note that con-
stancy of S does not mean that NMDA con-

ductance is constant since this latter is voltage
dependent. In our single cell analysis we ex-
amine the effect of constant NMDA activation
(i.e., S = 125) as well as the effect of current
injection into the soma and dendrite.

All simulations were performed using Fortran
on an IBM RS6000 RISC workstation. The dif-
ferential equations were solved using the classi-
cal 4th order Runge Kutta method with a time
step of 0.05 ms. Our single neuron model has 8
variables compared to 120 for Traub’s; the run
time ratio for the two models is 0.09. One sec-
ond of physiologic time for our 100 cell network
took 23 minutes of CPU time.

s R




The functions y. and 7, and the standard
parameter values for the model are listed in the
Appendix. At these standard values the sys-
tem has a stable rest state with V, = —4.6 mV,
Va = —4.5 mV (recall V, and V, are relative
to —60 mV). The corresponding values for the
other variables are h = 0.999, n = 0.001, s =
0.009, ¢ = 0.007, ¢ = 0.010 and Ca = 0.2.
These values are initial conditions for all simu-
lations unless stated otherwise.

3 Results

We divide this section into three parts. First we
show that our neuron model, with the standard
values of the coupling parameters g. and p,
behaves similarly to Traub’s model in response
to somatic and dendritic stimulation; also in this
subsection we analyze a typical burst waveform.
Second, we examine in detail the effect of the
electrotonic/geometric coupling parameters on
our model’s behavior; we show that bursting
is restricted to a limited range of the (9¢,p)
parameter space and that outside this range new
behaviors are observed. Finally, we describe the
network model and present simulation results
which show that our network exhibits the major
synchronization properties of Traub’s network.
We also explore in detail certain aspects of the
synchronization process.

3.1 Firing Properties of Two-Compartment Neu-
ron Model Match Those of Traub’s CA3 Model

The Traub neuron model exhibits three pro-
totypical repetitive behaviors in response to
tonic somatic or dendritic input— periodic so-
matic spiking, very low frequency bursting and
low frequency bursting (Traub et al, 1991). We
have found qualitatively similar behaviors in our
model under similar input regimes. Here we de-
scribe these prototypical behaviors in our model,
analyze the burst pattern in detail, and exam-
ine the transitions between these behaviors as
somatic or dendritic input is increased; in the
process, these findings are compared with those
of Traub.
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Repetitive Firing Patterns. As mentioned in
Section 2, both the soma and dendrite compart-
ments (when uncoupled) fire repetitively under
constant stimulation, although the dendrite volt-
age spike is considerably longer in duration (1/2
width 7 ms for V; and 2 ms for V,). When elec-
trotonically coupled, these two spike generators
give rise to complex spatio-temporal patterns
and bursting (burst 1/2 width ~12 ms). Such
repetitive, and in fact periodic, bursting can oc-
cur for low magnitude current injection to the
soma (Fig. 2A) or for steady (dendritic) exci-
tation by NMDA (Fig. 2B). By examining the
associated time courses of Ca and q (Fig. 2A,B —
right panels) we see that these two slower vari-
ables determine the length of the interburst in-
terval. For case A, g is decreasing throughout
this interval while Ca decreases to 0 early in
the interval and then remains constant. The
somatic spike marking the end of the interburst
period is triggered when g goes below a thresh-
old value; thus here the time scale of repetitive
bursting is determined by the ¢ dynamics. In
case B the interburst interval ends when Ca ap-
proaches 0. Here ¢ is relatively constant and
the sodium spike is triggered by Ca decreasing
below a threshold value; thus the time scale is
determined by Ca dynamics. In this case, but
not in A, the firing pattern would remain essen-
tially the same if we replaced g(t) with its mean
value. Traub also found two such qualitatively
different repetitive bursting solutions, one whose
time scale was dependent on ¢ and one whose
time scale was dependent on Ca decay. We
denote the first type of bursting, with frequency
less than 8 Hz, very-low frequency (VLF) burst-
ing and the second type, with frequency 8-20
Hz, low frequency (LF) bursting.

In both of the above cases the burst is initiated
by a sodium action potential in the soma which
then triggers a dendritic calcium spike. Below,
we examine in detail the burst process. Whether
a somatic action potential will trigger a burst,
however, depends on the balance between the
inward and outward currents in the dendrite.
The values of the lumped cable parameters will
affect the strength of the coupling current to the
dendrite during the somatic action potential;
increasing g., for example, will increase this
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A. somatic input

I - Ca q

=

B. dendritic input

=

C. strong somatic input

L

=

D. strong somatic input, tight coupling

WL

E. dendritic input, weak coupling

Fig. 2. Variety of firing patterns for different parameter
regimes; time courses of somatic voitage, V,, (left panels),
and dendritic variables Ca and g, activation of Ix_anp (right
panels). Cases A-E correspond to values of the parameter
triple (I,(uA/cm?), dnmpa(mS/em?), go(mS/cm?)). Very
low frequency bursting for somatic current injection in A
(0.75, 0.0, 2.1). Steady dendritic synaptic activation in B
(-0.5, 1.25, 2.1) causes low frequency bursting. I, in C (2.5,
0.0, 2.1) is stronger than in A, resulting in high frequency
somatic spiking. Conditions of C but with stronger coupling
in D (2.5, 0.0, 10.5) leads to soma-dendritic spiking. -Weak
coupling and dendritic stimulation in E (-0.5, 1.75, 1.425)
gives complex periodic orbit: repeating pattern of single
spike followed by burst. Standard values of other parameters
and standard initial conditions were used in all cases except
E where ¢(0) = 0.4. Vertical bar represents 40 mV, 200 Ca
units or 0.3 g units; horizontal (time) bar is 200 ms in B-E
and 400 ms in A. The horizontal long-dashed lines represent

0 voltage level or 0 Ca (and gq) level; the time axis starts
att=0.

current, all other things being equal. Direct
stimulation to the dendrite with either I or
Inmpa Will also increase the excitatory drive.
The hyperpolarizing currents Ix-c and Ik-amp
will depend on the levels of g and Ca; these in
turn are affected by the stimulation and coupling
parameters. Increased levels of g or Ca at the
time of the initial somatic action potential will
decrease the likelihood that this action potential
triggers a dendritic calcium spike.

Generally, high I, leads to periodic soma spik-
ing without active dendritic spiking as in Fig. 2C
where a somatic spike is followed by only a pas-
sive response in the dendrite. The hyperpolar-
izing effect of Ix_amp, as reflected in the high
level of g, precludes an active dendritic calcium
spike. Here, the g level (when the soma spikes)
is greater than that seen in case A where burst-
ing was observed. Although the corresponding
g level in B is higher, it is offset by the di-
rect dendritic stimulation present in B but not
here. The transient initial burst occurs because
of the low initial ¢ value. The passive dendritic
response is characterized by minimal calcium
conductance and hence minimal increase in Ca
and q per sodium spike (see Fig. 2C). The fre-
quency is high (30 Hz) and reflects mainly the
dynamics of the soma compartment. A similar
high frequency periodic somatic spiking solution
characterized by minimal dendritic Ca activity
was observed by Traub et al (1993).

Dissection of Burst Waveform.  The detailsof a
burst taken from Fig. 2A are displayed in Fig. 3.
Qualitatively, this burst is not merely sodium
action potentials riding on the longer duration
dendritic calcium spike.The electrotonic interac-
tion between soma and dendrite involves signifi-
cant coupling current that flows back and forth,
alternately providing depolarizing or hyperpolar-
izing current to each compartment. The result
is a complex depolarizing event with a duration
about twice that of an isolated dendritic spike.

In Fig. 3, we see that the burst sequence is
initiated by a somatic sodium spike. This is be-
cause Iy, is activated at lower voltages than is
Ica. Through electrotonic current spread, this
leading sodium action potential depolarizes the
dendrite. Then the soma repolarizes, but only
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Fig. 3. Time courses of somatic voltage, V,, dendritic voltage, Vj,
scale for Ca is different than in Fig. 2A). Burst is initiated by
Ca spike. This is followed by full Ca spike in the dendrite |
burst, is terminated by Ig-c current which turns on when Ca

partially. Still it causes V; to fall somewhat, be-
low the threshold for calcium spike generation,
thereby delaying the full dendritic spike. Dur-
ing this repolarization phase, significant coupling
current flows into the soma from the dendrite
which then initiates a second somatic spike. This
second somatic spike stops the drain of coupling
current from the dendrite, enabling the dendrite
to undergo a full Ic,-mediated voltage spike with
accompanying rapid increase in Ca. Note, that
the peak of V; is delayed until about halfway
into the burst event. The broad dendritic spike
provides an envelope of depolarization which
then drives the soma activity. The electrotonic
current flowing into the soma is so large, about
40 pA/cm’, that ‘the sodium spike generator
is over driven. With such strong stimulation
the soma would tend, with damped high fre-
quency spikirig, toward steady depolarization of

and Ca during a burst. Parameters were as in Fig. 2A (note
somatic action potential which triggers subthreshold dendritic
eading to somatic burst pattern. Dendritic spike, and hence
reaches appreciable levels.

30 mV or more (see below). This behavior
is seen here transiently during the regenera-
tive dendritic spike. Some of Traub’s (Traub
et al, 1991, Figs. 6, 7) simulated bursts show
this damped sodium spiking during a burst more
clearly. The dendritic calcium spike, and hence
the burst, is terminated by Ix_c. During V;’s
falling phase the coupling current still depolar-
izes the soma. The current is smaller however,
and thereby releases the soma from overdrive,
permitting a final partial sodium spike, and an
additional slight prolongation to the burst event.

Although Ix_c has relatively fast voltage ac-
tivation, it is also proportional to x(Ca). Thus,
calcium spike duration is primarily determined
by the amount of time required for Ca to build
up. The length of the silent phase is determined
by the slow variables ¢ and Ca mediating the
outward currents Ix_app and Ix_c. For low lev-
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Fig. 4. Soma and dendrite spike trains (raster plots) for steady somatic current injection, I,. Initial transients haye been
eliminated. At each I, level, upper circles represent threshold upcrossings of V, and lower circles represent threshold
upcrossings of Ca. Thresholds were V; = 35 mV, Ca = 100, I, starts at 0.25 uA/cm’ and increases by 0.25 until a maximum
of 2.75 pA/cmz. Periodic bursting and periodic soma spiking ranges in figure are 0.25 < I, < 1.25 and 2.25 < I, < 2.75

Tespectively; aperiodic behavior is seen for 1.5< I, < 2.0.

els of stimulation, both of these currents must
decrease before a somatic action potential can
be initiated, thus the time scale is that of the
slower g (very low frequency bursting). For high
stimulus levels, only Ix_c need decrease so the
time scale is that of Ca decay (low frequency
bursting). Of course, the fact that low threshold
sodium spiking initiates a burst also contributes
to determining burst frequency, making it faster
than pure dendritic spiking for, say, a given
dendritic input.

This burst mechanism is similar to that seen
in Traub’s model. A somatic voltage spike ini-
tiates the burst, regardless of whether the input
is to the soma or the dendrite. Interactions
between electrotonically separated sites where
either sodium or calcium spiking dominate lead
to prolonged soma depolarization.

Response to Steady Somatic Current Injection, I,.
As I, is increased there is a transition from rest-
ing to periodic VLF bursting to somatic spiking
(Fig. 4) to steady depolarization. The transitions
between bursting and spiking involves aperiodic
behavior and regular spiking doublets. These
are qualitatively the same transitions observed
in the Traub model.

The f — I, relationship is illustrated in Fig. S.
Here, only the leading spike of a burst is in-
cluded in the spike count; thus the ordinate
represents burst frequency for I, < 1.25 and fre-
quency of somatic spiking for I, > 2.25 pA/cm?.
Compare with Traub et al. (1991, Fig. 10).
The burst frequency increases from 0.3 Hz at
I, = —0.25 pA/cm® to a maximum of about
4 Hz at I, = 1.25 pA/cm®. There is roughly an
order of magnitude difference between frequen-
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Fig. 5. Frequency current (f — I) relation under various coupling regimes. Frequency is determined by the number of times
V, increases past 70 mV (except in the case of the isolated dendrite where we replace V, with V). Dashed curves show f—T
for the isolated soma and for the isolated dendrite; here the I on the abscissa indicates I, and I; respectively. Solid curves
show f — I for standard coupling parameter values (g = 2.1 mS/cm?, p = 0.5) in response to I, (as in Fig. 4) or I. Dotted
curve shows f —1I for g. = oo, p = 0.5; here the effect of I, is equivalent to that of I. Circles represent burst frequency while
triangles represent spike frequencies (somatic spike frequency for soma alone and for g. = 2.1, dendritic spike frequency for

dendrite alone, and soma-dendritic spike frequency for ge = 00). Squares correspond to solutions with mixures of bursts and
isolated (somatic) spikes; frequency here is combined rate of these events.

cies in the bursting and soma spiking range. In
the spiking range the frequency of the full sys-
tem is somewhat lower than that of the isolated
soma due to the current loss to the dendrite.
The rheobase however is slightly lower in the
full system (I, = —0.30 zA/cm?) than in the iso-
lated soma (I, = —0.175 pA/cm?) since at rest,
or just above, current flows from the dendrite to
the soma. Note the negative rheobase indicates
that, with no applied current, the neuron under-
goes periodic bursting, albeit with very low fre-
quency. For very. high I, (not shown) the ampli-
tude of the somatic spikes diminish until a stable
steady state of depolarization (V, = 33.3 mV) is

. achieved at I, = 22.5 pA/cm’.

We noted above the qualitative similarity be-
tween Traub’s model neuron and our’s with re-
spect to the transition from bursting to spiking
with increasing I,. In fact, we can approximately
reproduce the quantitative f — I, relationship of
the Traub model in both the bursting and spik-
ing regimes (Fig. 6). Here in our model we set
gc = 1.85 mS/cm® and p = 0.5. To calculate
I, in ;LA/cm2 for the Traub model we took the
absolute applied somatic current (in pA) given
in Traub et al. (1991) and divided by half the
neuron model’s total area.

Response to Steady Dendritic Input. For
increasing dendritic input (current injection-or
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Frequency (Hz)

¢ Traub model

¢ Burst frequency
A Spike frequency

1 1,

0
-0.5 0.5

1.5 25

Is (LAfcm’)

Fig. 6. Frequency versus steady somatic current injection for 2-compartment model (g. = 1.85 mS/cm?, p = 05) anq for
Traub model. Burst frequency is indicated with circles and somatic spike frequency with triangles. Both curves show transition
from bursting to spiking as I, is increased. For Traub model, burst and spike frequency data were taken from Traub et al.
(1991, Fig. 10); current in pA/cm? was determined by dividing absolute current by half the area of the Traub neuron.

synaptic excitation) there is a progression from
resting to VLF bursting, to LF bursting (in some
cases), to steady depolarization but, with the
standard coupling parameter values, no regime
of somatic spiking. In the stimulus range for
bursting, the frequency of dendritic calcium
spikes would decrease if the sodium spike gen-
erating currents were blocked because the latter
have lower activation thresholds and initiate the
calcium spikes associated with bursting.

With I, = 0 the rheobase for I; is about
—0.25 pA/em®. As I, is increased past rheobase
we see periodic VLF bursting with frequency
increasing up to 7.0 Hz at Iy = 2.0 pA/cm’
(Fig. 5). At about I; = 2.25 pA/cm’® regu-
lar bursting gives way to a chaotic or aperi-
odic pattern characterized by irregularly spaced
bursts with a varying number of spikes per
burst. Each burst is associated with a den-

dritic calcium spike. As seen in Fig. 5, the
full system has a higher dendritic spike fre-
quency and lower rheobase than does the den-
drite alone due to the higher excitability of the
soma. Somatic spiking (with or without den-
dritic spiking) is not observed for any Ij up to

I = 100.0 pA/cm?® where a stable rest state is

achieved (V, = 30.8 mV,V; = 40.9 mV).

In Fig. 5 the maximum frequency of periodic
bursting is about 6 Hz. However, if we give a
small hyperpolarizing current to the soma (i.e.,
I, = —0.5 pA/cm?®), then LF periodic bursting
of frequency up to 15 Hz is observed for high
I;. This LF burst pattern is similar to that seen
with NMDA excitation in Fig. 2B. VLF bursting
is still observed for low I; and there is a smooth
transition between the modes for intermediate
I; i.e., the burst pattern and regular periodicity
remain intact. Thus with a small hyperpolarizing
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somatic current the transition with I is similar
to that seen in the Traub model.

Although not shown here, the firing pat-
terns for increasing gnmpaS progress as those
described above. Periodic bursting smoothly
changes from VLF to LF as jnupa.S is increased.
At higher levels (gnupaS > 1.75 mS/cm?) burst-
ing becomes irregular or chaotic. Periodic so-
matic spiking was not observed for gumpa S be-
tween 0 and 12.5 mS/cm? at this latter value
a stable rest state exists with V, = 33 mV,
Vi=34 mV.

3.2 Dependence of Single Cell Behavior on Elec-
trotonic Parameters

The behaviors and transitions observed were ob-
tained with the standard values of the electro-
tonic (coupling) parameters. Here we examine
in detail the types of firing patterns seen over a
large range of coupling parameter values.

When the coupling strength is high, coinci-
dent soma-dendritic spiking is usually observed;
an example with g. = 10.5 mS/cm? is shown in
.Fig. 2D. The unitary event of this firing pattern
Is a composite voltage spike with a high ampli-
tude leading sodium component and a calcium-
mediated shoulder. Its duration (7 msec) is
that of a dendritic calcium spike and there is
appreciable calcium buildup during the dendritic
spike. The interburst interval here is similar to
that shown in Fig. 2B where the time scale is de-
termined by C'a dynamics. Not shown is another
pattern with soma-dendritic spiking where the
interburst interval is determined by ¢ dynamics;
this is analogous to the situation in Fig. 2A. In
either case, the frequency is much higher than
if In, and Ix_p, were blocked.

Another periodic firing pattern is character-
ized by one or more isolated somatic spikes pre-
ceding a burst (Fig. 2E); this pattern is observed

‘with g. less than the standard value. This is an

example of a complex periodic orbit (see below).

In analyzing behavior for different coupling
conditions it is useful to define various categories
of firing patterns. Each of the five patterns illus-
trated in Fig. 2 corresponds to a different one of
these categories. A (somatic) burst is a somatic
voltage pattern with V, elevated greater than
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10 mV and with at least 3 separate peaks. Peri-
odic bursting is a solution containing a somatic
burst followed by a silent phase (V, < 5mV). In
periodic dendritic spiking each Ca spike has a
maximum of over 100 and is followed by a silent
phase where Ca is below 50. Periodic somatic
spiking is defined similarly with a maximum V,
of at least 50 and minimum V, of below 5 mV.
Since we have not observed somatic bursting
without dendritic spiking, our definition of pe-
riodic bursting signifies somatic bursting plus
dendritic spiking (as in Figs. 2A,B). When pe-
riodic dendritic and somatic spiking coexist we
call this soma-dendritic spiking; somatic spiking
in the absence of dendritic spiking is denoted as
somatic spiking. Restating the definition from
Section 3.1, periodic bursting (or soma-dendritic
spiking) is very low frequency (VLF) if the rate
is less than 8 Hz and low frequency (LF) if the
rate is between 8 and 20 Hz. Finally, by com-
plex periodic behavior we mean a periodic orbit
which contains more than one depolarized inter-
val; i.e., more than one interval with V, > 5 mV
(an example is shown in Fig. 2E).

We now examine the stimulus-response prop-
erties of our neuron for different values of cou-
pling strength g.. Figure 7 summarizes the sys-
tem’s behavior on a two-parameter grid of I,
and g.. Bursting solutions exist only over an
intermediate range of g, values. For g. too low
(e.g. 1.35 mS/cm?) only periodic somatic spik-
ing is seen over the range of I, shown. At high
gc (e.g. 10.5 mS/cm? and above) we essentially
have a single compartment model. Here only
regular VLF or LF soma-dendritic spiking is ob-
served over the range of I, shown. As shown in
Fig. 5, the spike frequency for the effective sin-
gle compartment is intermediate between that of
the isolated soma and that of the isolated den-
drite; i.e., the system at g. = 0.0. The rheobase
for the single compartment is lower than that
of the isolated soma (or dendrite) however.

For g. slightly increased from our reference
level (e.g., gc = 3.0 mS/cm?®) we still see VLF
periodic bursting over a range of I, with the
threshold for bursting (from steady state behav-
ior) basically unchanged. However, for large
I,, LF periodic bursting is.observed  instead
of somatic spiking. For intermediate I, (3.75-
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Fig. 7. Firing patterns for a parameter grid of I, and g.. At each grid point (I,, gc) the type of periodic behavior observed
is indicated by the size and shading of the circle; aperiodic behavior is noted by an X. The small, medium and large size
circles represent 1, 2 and >3 somatic sgikes respectively per periodic orbit. Filled circles indjcate the presence of a dendritic
calcium spike. Values of g, (in mS/cm®) are 3.0 to 6.75 by .75 plus 1.35, 1.65, 2.1 and 10.5 mS/cmz; I, values (in uA/cmz)
are 0.0 to 2.5 by 0.5. At low g. only somatic spiking is observed while at high g. only soma-dendritic spiking is seen. At
intermediate g, responses depend on I, level.

6.75 pA/cm?) we see VLF to LF dendritic spik- most or all of the gnmpaS range is still observed
ing with V, showing a leading spike followed for g. increased moderately from the reference
by a single attenuated spike (not a burst by value. With stronger but limited coupling (i.e.,
our arbitrary definition which requires 3 somatic 4.5-7.5 mS/cm®) burst-like patterns containing
spikes). If we lower g, from our reference value only 2 somatic spikes dominate. Aperiodic and
to 1.65 pA/cm? the threshold I, values for the complex periodic bursting solutions are usually
end of periodic bursting and for the beginning of found in parameter regions that bound the re-
periodic soma spiking are decreased; the tran- gion for bursting. For gnmpaS = 1.5 mS/cm?
sitions and patterns are similar to those seen in and g. = 3.0 or 3.75 mS/cmz, V, repetitively
the reference case. alternates between a 3-spike and 2-spike burst
Figure 8 displays the firing patterns for a ma- pattern. The complex periodic bursting solution
trix of gnmpaS and g. values. As in the case illustrated in Fig. 2E, a repeating spike-burst
above, bursting is only observed for interme- pattern, corresponds to gnmpaS = 1.75 mS/cm’
diate g, values. For very high g. only soma- and g, = 1.425 mS/cm’.
dendritic spiking occurs. Pure somatic spiking We now hold g. constant at 2.1 mS/cm® and

is observed only for very low g.. Bursting over and examine how the transition with I, is af-
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Fig. 8. Firing patterns for a parameter grid of Gyypa and ge- Type of periodic behavior is indicated by the circles as in
Fig. 7; the large open square indicates complex periodic behavior. Value of g (in mS/cm?) are 3.0 to 6.75 by 0.75 plus 1.05,
1425, 2.1 and 10.5 mS/cm?; S gnmpa values (in mS/cm?) are 05 to 1.75 by 0.25. Here I, was set to —0.5 pA/cm?. As in
Fig. 7, only somatic spiking is observed for low g, and only soma-dendritic spiking is observed for high g.. At intermediate

ge levels response depends on magnitude of Gumpa.

fected by varying p. With p = 0.25 or p = 0.75
the transition is quite different from the ref-
erence case (p = 0.5). At p = 0.25 the den-
dritic influence dominates; the whole range of
I, from the steady state threshold to above
2.5 pA/cm?® (where, with p = 0.5, we have pe-
riodic soma spiking, cf, Fig. 4) gives rise to
periodic VLF bursting. The VLF bursting solu-
tion then smoothly changes into an LF bursting
solution which persists for an I, interval of about
0.5 pA/cm?; for higher I, complex periodic or
aperiodic behavior is observed. For p = 0.75 we
see rapid soma spiking from I, = 0.375 pA/cm?
through I, = 2.5 pA/cm? and beyond. For
very low I, we see VLF soma-dendritic spiking;
bursting is not seen for any I, when p is so

large. The transition between the two modes is
seen to be smooth and the maximum calcium
levels change only moderately, from 110 to 70
for I, = 0.0 and I, = 1.25 uA/cm?, respectively.

3.3 Network Behavior

Paralleling Traub et al (1991, 1993), we have for-
mulated an excitatory network of CA3 neurons
and have simulated population bursting. We
have studied specifically several factors which
contribute to the synchronization process, and
to the loss of synchrony when AMPA synapses
are blocked. Our network simulations were per-
formed with 100 two-compartment model neu-
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rons. Since we consider only the disinhibited
network, no inhibitory cells are included. Each
cell receives NMDA and AMPA synaptic exci-
tation from 20 randomly chosen cells; synaptic
weights of a given type are identical for all con-
nections and there are no conduction delays.
Hence our network has no spatial structure.
When cells are identical the network always has
a homogeneous rest or oscillating state, which
may or may not be stable (see below). To ex-
amine the role of heterogeneity, we introduced
for some simulations 10% variation among cells
in the parameter gc,. With our standard values
for intrinsic parameters, the network has a sta-
ble rest state at which S; = 0. Our simulated
population responses were initiated by inducing
a single cell to burst.

The slower NMDA synapses, in particular the
level of gnmpa, primarily determine the net-
work’s capacity for sustained bursting. Figure 9
shows synchronized bursting over a range of
dnmpa, With the number of population bursts
increasing with gnupa magnitude. For smaller
gnvpa the population response terminates af-
ter a finite number of bursts and the system
returns to rest (e.g., panels A, B); for large
enough gnmpa (panels C, D) synchronized burst-
ing is sustained (here, quasi-periodic). The time
course of S;(t) for a typical cell (dotted) shows
a noticeable dip preceding the terminal burst in
a finite train response; after this burst, S; de-
cays to 0 exponentially. In the case of sustained
bursting, S;(t) is nearly constant after the initial
population burst.

The simulations in Figs. 9A-C were run with a
heterogeneous (10% variability) network. Thus
it is not surprising to see some spread in the
cell firing times during a population burst, i.e.,
the network activity time course does not have
the square wave shape (all cells firing or no cells
firing) characteristic of a perfectly synchronized
homogeneous population. Whether or not cells
fire precisely together during, what is called,
synchronized population bursting depends on
a number of factors. Identical cell properties
and identical coupling (i.c., a homogeneous net-
work) however do not guarantee perfect syn-
chrony. Rerunning the case of Fig. 9C, but now
with a homogeneous network, does not yield

perfect synchrony (Fig. 9D). In fact, there is
little observable difference between the results
in Figs. 9C and 9D, even after many cycles.
The mathematical explanation for this is that
even though there is a homogeneous bursting
solution for the case of Fig. 9D, it is unsta-
ble. We observe instead a stable approximately
synchronous solution (Pinsky, 1994).

As Traub et al (1993) demonstrated, fast
AMPA excitation provides the primary biophys-
ical mechanism for burst synchronization. As
shown in Fig. 10A (using parameters values of
Fig. 9C), blocking gampa terminates the synchro-
nized population activity, even though the indi-
vidual cells continue to burst. In this desynchro-
nized state, S;(t) in each cell remains nearly con-
stant at Spax = 125 50 gnmpaS =~ 0.014 x 125 =
1.75 mS/cm®. Recall in Section 3.1 that the neu-
ron with this constant gnmpaS value followed a
chaotic trajectory. get We refer to the trajec-
tory with S;(t) = Smax and gampa = 0.0 as the
“NMDA-saturated cell trajectory”; note with S;
constant and no AMPA the cells behave as if
they are uncoupled.

Two factors contribute to this rapid desynchro-
nization of essentially uncoupled cells. One is
heterogeneity in cell properties, and the desyn-
chronization rate generally increases with the
degree of heterogeneity. However, in Fig. 10B,
where the network is homogeneous, complete
desynchronization is still achieved within about
300ms. This highlights the second factor impor-
tant for desynchronization, namely, the proper-
ties of the intrinsic, or in this case, the NMDA-
saturated cell trajectories. If these trajecto-
ries were periodic and all cells were identical
then we would not expect the cells to desyn-
chronize after AMPA was blocked; instead, the
phase differences between cells would be con-
stant in time. However, in the present case,
a cell’s NMDA-saturated orbit is not periodic
but chaotic. Chaotic orbits display sensitivity to
initial conditions (Reulle, 1989), i.e., trajectories
with even small differences in initial conditions
rapidly diverge. Thus the small differences in
the trajectories of each cell at the time AMPA
is first blocked are rapidly amplified, leading to
quick desynchronization.

We further tested this idea by doing analo-
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~ # Cells ™.

Bursting

Onmpa=0-014
(identical cells)

100 ms

Fig. 9. Population burst patterns for network of 100 cells for different values of gnmpa. The solid line represents the number
of cells with V, > 20mV, denoted as the number of cells bursting. The dotted line is the value of S(¢) from a typical cell
where Gampa S(2) is the voltage independent part of Inypa. Vertical bar represents 50 cells or 50 S units. With jampa fixed
at 0.0045 mS/cmz, the number of population bursts increases with jnmpa- Past a threshold gnmpa level, bursting continues
indefinitely. In panels A-C the heterogenous network (10% variation in gc,) was used while in D we used a homogeneous
network, ie., identical cells. In each case the system was initially at rest when a single cell was stimulated with a brief

excitatory input at t = 0; I, was set to —0.5 pA/cmz.

gous simulations in a different parameter regime
where the NMDA-saturated trajectory is strictly
periodic. Without variability in cell parame-
ters the network remained partially synchronized
when AMPA synapses were blocked (Fig. 10C);
with 10% variability in jc. however, the net-
work desynchronized rapidly with AMPA block-
ade (Fig. 10D).

If Gampa is initially set to 0 then we observe a
synchronized primary burst with subsequent loss
of synchrony. If gympa = 0-the system exhibits
a primary synchronized burst (if gampa is large

enough) with subsequent return to rest. Both
of the above properties were also observed in
the Traub network.

4 Discussion

Computational modeling offers the opportunity
to test hypotheses for how the intrinsic biophys-
ical characteristics of neurons and the coupling
properties between- cells contribute to'the be-
havior of neuronal ensembles. However, sim-
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Fig. 10. Desynchronization of population bursting upon AMPA blockade. Line types and axis scalings are as in Fig. 9. In
each panel, jampa is cut off at the arrow. Figures 10A, B show the same simulations as Figs. 9C, D up to the point of AMPA

blockade and, as such, correspond respectiv

ely to the heterogeneous and the homogeneous network. In 10C, D the network
was modified by decreasing the decay rate of S (NMDA receptor accupancy) to 1/1500; 9INMDA Was set to 0.009. Here 10C

represents the homogeneous network and 10D Tepresents the heterogeneous network. In 10A, B the “NMDA-saturated” cell
trajectories (i.., with S; = Sy, and gampa = 0) are chaotic while in 10C, D they are periodic.

ulating networks with models that incorporate
biophysically realistic elements (dendritic cable
properties and different intrinsic ionic currents
and synaptic currents with multiple time scales)
generally requires considerable computational
resources. Moreover, analyzing the model’s be-
havior may require identifying the key param-
eters and exploring solution dependence over
ranges of parameter values. One strives to show
trends in behavior for mechanistic interpreta-
tion and, occasionally, to reveal the underlying
mathematical structure. Inessential details bur-
den the simulations deemed necessary for such

in-depth studies. In view of such constraints,
some compromises should generally be made
about the level of detail to include in a model.
Which compromises, depend on the questions
under consideration. .

An appropriate minimal description contains
elements thought to be essential. The pathway
to this goal can be from the bottom up (by in-
cluding additional features when the model is
deemed too limited) or from the top down (by
hindsightful pruning). The latter may be difficult
unless enough parameters are adequately esti-
mated from experimental data a priori. In this
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paper we have studied a system which is com-
pletely specified biophysically. Viewing Traub’s
computational CA3 network as the given tissue,
we have all parameters in hand. Following the
bottom-up approach we developed a reduced
model, at an intermediate level of detail.

Using the same ionic currents and gating ki-
netics we reproduce with a two compartment
model several major stimulus-response proper-
ties of Traub’s CA3 neuron model. For exam-
ple, bursting is found for appropriate ranges of
either steady somatic or dendritic stimulation.
As I, increases there is a transition from low
frequency bursting to high frequency sodium
spiking (without dendritic calcium spikes). For
increasing dendritic stimulation the burst fre-
quency rises gradually to higher levels and so-
matic spiking is not obtainable. The initial event
of a burst is a somatic action potential. Then,
through a dynamic alternation of potentials and
coupling currents between compartments, an ac-
tive dendritic calcium spike is triggered which
produces a depolarization wave upon which so-
matic spikes ride. Burst frequency depends on
stimulus level, but is rate-limited by the two slow
recovery processes: the activation variable ¢ for
Ix_anp or intracellular calcium which activates
Ix-c. If either is too high at the time of the
initial somatic spike an active dendritic calcium
spike is precluded. One or the other of these
slow processes (in different parameter regimes)
can determine the interburst interval.

Bursting in these CA3 models depends on
having the lower threshold, fast, sodium spike-
generating currents and the higher threshold,
slower Ca and Ca-dependent currents in elec-
trically separated compartments and on the dy-
namic electrotonic current flows between these
compartments. No single compartment in
Traub’s neuron model, or in ours, can burst
if isolated. Increasing the strength of coupling
between soma and dendrite so that there is es-
sentially a single compartment abolishes bursting
in our model (Fig. 5) and leads to a combined
sodium-calcium spike. Figure 5 summarizes well
several of these points. An isolated soma spikes
at relatively high sustained rates, while an iso-
lated dendrite fires calcium- spikes only at low
rates. Very strong coupling yields frequencies
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between those of the isolated compartments, but
does not allow bursting. With intermediate cou-
pling the model shows two modes of behavior,
low frequency bursting and rapid sodium spik-
ing, in different stimulus regimes. For either
response mode the model’s firing frequency lies
between the frequencies of the correspondingly
stimulated uncoupled compartments. Calcium
spiking in a stimulated dendrite is accelerated
by sodium spikes originating in a soma compart-
ment. Conversely, Ca-mediated dendritic K+
currents slew the rate of pure somatic spiking.
Because of our model’s modest computational
overhead we could characterize thoroughly by
simulation the properties of bursting and other
response patterns and the ranges of coupling
strength where they occur. With ease, we could
match semi-quantitatively the frequency-current
relation of our model with Traub’s (Fig. 6).

Llinas (1975) was among the first to convinc-
ingly demonstrate the spike generating ability of
dendrites. Wong et al (1979) showed that slow
Ca spikes, as well as fast Na spikes, were pro-
duced in the dendrites of CA3 pyramidal cells.
Nonuniformity of channel densities, along with
spike generating ability in the dendrites, has
since been recognized and simulated as a mech-
anism for bursting in other CNS cells (Rhodes
and Gray, 1993, Upinder and Bower, 1993, Kim
and Connors, 1993). In these cases, as here,
the reverberating electrotonic current between
the soma, dense in sodium channels, and the
dendritic regions, which have most of the cal-
cium channels, leads to complex dynamic spike
patterning. This mechanism may be contrasted
with those involving fast and slow processes in
isopotential neuron models, such as the Aplysia
R-15 parabolic burster (e.g., Rinzel and Lee,
1987) or the thalamic relay neuron (e.g., Rush
and Rinzel, 1993). In these latter cases, blocking
the Na* current leaves an underlying siow wave
with essentially the same frequency as repetitive
bursting. In our case, blocking sodium spikes
generally lowers the slow wave frequency con-
siderably, and may eliminate calcium spiking.

Another distinguishing feature of this burst-
ing type is that the transition to continuous
spiking activity does not appear to involve a
gradual lengthening of the burst’s spiking phase,
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as happens in many single-compartment burst
mechanisms. Rather, we see in the transi-
tion regime rather complex time courses of
sequences of bursts and spikes, but not with
long duration bursts. As the stimulus inten-
sity increases the number of bursts decreases
until we see only somatic spiking. Finally, in
many known burst mechanisms the spike fre-
quency just beyond the transition into con-
tinuous spiking is comparable to that seen
within the burst. Here, the continuous sodium
spike rate is much lower than that during a
burst’s calcium spike. As noted in Section
3.1, this is because the dendritic spike tran-
siently supplies a strong depolarizing current
to the soma which drives it to fire at very
high rates.

Our observation that the leading somatic
sodium spikes of a burst have a considerable
enhancing effect on burst frequency suggests an
experiment (computational for Traub’s model, or
biological for hippocampal or cortical slice) for
neurons that exhibit such bursting. We would
predict that for dendritic input (e.g, steady gluta-
mate to activate NMDA synapses) the response
frequency would drop significantly if sodium
spikes were blocked. We have found with our
model however that it is important to eliminate
both Iy, and Ix_pr. Blocking only Iy, pre-
cludes repetitive calcium spiking for dendritic
input. Since Ix_pr is present in half of our
model neuron’s membrane, it provides a sub-
stantial hyperpolarizing effect that is not easily
overcome with our coupling parameters set to
their standard values.

Our model is minimal in that bursting is
achieved with only two compartments and with
complete segregation of the two classes of cur-
rents. Although combining the currents in a
single compartment (large g.) precludes bursting
per se each Na spike becomes the leading edge of
a prolonged Ca-mediated depolarization. This
could indeed lead to multiple axon spikes down-
stream and perhaps still drive network oscilla-
tions. On the other hand, this sodium-calcium
spike is briefer than the depolarization of a
burst mediated by the changing sign of the cou-
pling current. Moreover, this further reduction
to a single-compartment neuron eliminates only

one variable and disallows the exploration of
electrotonic effects.

As noted previously, if currents were not seg-
regated by intermediate coupling conductance
the neuron model could not switch firing modes
from bursting to pure somatic spiking in re-
sponse to a changing I,. Mode switching could
also be realized by adjusting the coupling con-
ductance. For example, bursting could give
way to continuous spiking if the distal com-
partment became more remote. A physiolog-
ical mechanism could involve modulators that
might, for instance, change a potassium leak-
age conductance and make the membrane more
leaky, effectively decreasing A. In our ideal-
ized model neuron, the simplest analog would
be a decrease in the phenomenological cou-
pling g.

The existence of bursting also requires an ad-
equate relative size (1 — p) of the dendrite-like
compartment. Our analysis showed that if it is
too small, say (1 — p) < 0.25, the cell did not
exhibit bursting, only fast spiking. This suggests
that if we decrease gc, (with p = 0.5) we would
also get a transition from bursting to spiking (at
an appropriate level of I,). Computed results
(not shown here) indicate that (with I, = 0.5)
bursting is observed for g, (mS/cm?) from 10.0
through 8.0 and somatic spiking is observed for
gca below 7.0; in between we see aperiodic be-
havior. Traub et al. (1993) found that decreas-
ing gca by 50% in his network model leads to
a high frequency series of action potentials in
all cells.

Our model has several time scales for intrinsic
recovery processes. The time constant of g is
between 100 and 1000 ms while the other gating
variables all have time constants of less than 6
ms (in their effective range). Ca decays with an
intermediate time constant (13 ms) while it in-
creases rapidly in the presence of Ic,. We have
developed a phase-plane approach for analyzing
this model which exploits these different time
scales (Pinsky and Rinzel, 1994). Because Ca
may increase rapidly, the standard approach of
considering the averaged vector field of (g,Ca)
must be modified. Our analysis has led to dis-
coveries of new model behaviors; for instance,
we saw that increasing the Ca removal rate can
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lead to bistability with coexistence of stable LF
bursting and somatic spiking.

Our CA3 network, even when homogeneous,
rapidly desynchronizes when AMPA is blocked.
We showed that this relates to the fact that the
NMDA-saturated cell trajectories are chaotic.

Hansel and Sompolinsky (1992) found that in .

large networks chaotic behavior can underlie
rapid desynchronization while noise (in the ab-
sence of chaos) is a relatively slow and inefficient
desynchronization mechanism; their findings are
related to the binding problem in the visual
cortex. These examples demonstrate that the
presence of chaos may have important physio-
logic consequences.

Our minimal model provides a framework for
exploring some general aspects of electrotonic
segregation of channel types in neurons and of
coupling interactions in excitatory networks, and
it is suitable for analysis and parameter variation
studies. Insights derived from this model have
helped us derive an abstract model of an exci-
tatory network for which we can prove some re-
sults on synchronization (Pinsky, 1994). Analysis
of this abstract model has led to the prediction
that “approximately synchronous” solutions may
exist even when the homogeneous solution is
unstable, precisely the situation described above
in our network results.
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Appendix

We list the functions oy, 8, below where yo, =
oy/(ay + B,) and 7, = 1/(ey, + B,).

0.32(13.1 - V;)

om = (31 = Vy/d) = 1)
5 = _ 028V, -40.0)
™ exp((V,— 40.1)/5) - 1)
o = 0016(35.1-V;)
" exp((35.1 = V,)/5)) — 1
Bn = 25 exp(.5 — .025V,)
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op, = 0.128 exp((17 - V,)/18)

~ 4
= T o (@ = V7))

1.6
% = TF exp(~0.072(V; - 63))
5, = —92Va-5L1)

exp((Va — 51.1)/5)) - 1
_ exp((Va — 10)/11) — exp((Va - 6.5)/27)
18.975

for V3 <50
ac = 2.exp((6.5 — V3)/27) for V3 > 50
Be = 2.exp((6.5 — V3)/27) -
for V3 <50
B. =0 for V3 > 50
a, = min((0.00002)Ca, 0.01)
B, = 0.001 (6)

The standard values of the parameters are
given below The maximal conductances (in
mS/cm)aregL=01 ane = 30, gk-pr = 15,
gca = 10, gx-anp = 0.8, gx—c = 15, gnvoa = 0.0
and gampa = 0.0. The reversal potentials (in
mV) are Vo = 120, Vg, = 140, ¥k = -15,

= 0 and Vs, = 60. The applied currents
(m p,A/cmz) are I, = —0.5 and I; = 0.0. The
couphng parameters are g. = 2. lmS/cm and

= 0.5. The capacitance, Cy, is 3p.F/cm
and x(Ca) = min(Ca/250,1). Values for these
parameters, and these function definitions, are
taken from Traub et al, 1991.
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Erratum

The following changes should be made to Paul F. Pinsky and John Rinzel’s paper, “Intrinsic and Network Rhyth-

mogenesis in a Reduced Traub Model for CA3 Neurons” which appeared in volume 1, numbers 1/2, of the Journal
of Computational Neuroscience.

Figure 2, caption: The values given for &numpa should be divided by 125.

Page 59: The expression, in Eq. 6, for a, (for V, < 50) should read:

_exp((Vy = 10)/11 — (V; — 6.5)/27)
Fe = 18.075

Page 59: The final right parenthesis in the expression for &, and that for 8,, in Eq. 6 should be deleted.

Some of the single-cell simulations were done using
difference has little effect on any of the stationary firing
mV leads to repetitive somatic spiking in contrast to th

VNa = 115 mV (not 120 mV, as stated). This parameter
patterns reported, except in Fig. 2E. There, using Vy, = 120
e complex periodic orbit that is shown for Ve = 115 mV.






