Exponential ergodicity and steady-state approximations for
a class of Markov processes under fast regime switching
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ABSTRACT. We study ergodic properties of a class of Markov-modulated general birth-death pro-
cesses under fast regime switching. The first set of results concerns the ergodic properties of the
properly scaled joint Markov process with a parameter that is taken large. Under very weak hy-
potheses, we show that if the averaged process is exponentially ergodic for large values of the
parameter, then the same applies to the original joint Markov process. The second set of results
concerns steady-state diffusion approximations, under the assumption that the ‘averaged’ fluid limit
exists. Here, we establish convergence rates for the moments of the approximating diffusion process
to those of the Markov modulated birth-death process. This is accomplished by comparing the
generator of the approximating diffusion and that of the joint Markov process. We also provide
several examples which demonstrate how the theory can be applied.

1. INTRODUCTION

There has been a considerable amount of research on Markov-modulated birth-death processes.
The rate control problem for Markov-modulated single server queue has been addressed in [10, 18,
24], while the scheduling control problem for Markov-modulated critically loaded multiclass many-
server queues has been considered in [4], in which exponential ergodicity under a static priority
rule is also studied. The papers [1,14] address functional limit theorems for Markov-modulated
Markovian infinite server queues. See also the work on the functional limit theorem for Markov-
modulated compound Poisson processes in [22]. We refer the readers to [15,25] for the study of
stability and instability for birth-death processes.

In this paper, we study a class of general birth-death processes with countable state space and
bounded jumps. Meanwhile, the transition rate functions of the birth-death process depend on
an underlying continuous time Markov process with finite state space. An asymptotic framework
is considered under which the Markov-modulated birth-death process is indexed by a scaling pa-
rameter n, with n getting large. The transition rate matrix of the underlying Markov process is
of order n®, a > 0, and the jump size of the birth-death process shrinks at a rate of n® with
B = max{l/2,1 —/2}. This scaling has been used in [1,4, 14] for some special birth-death queueing
processes.

In this asymptotic framework, we first provide a sufficient condition for the scaled Markov-
modulated process to be exponentially ergodic. We show that if the ‘averaged’ birth-death process
satisfies a Foster-Lyapunov criterion for a certain class of Lyapunov functions, then the original
Markov-modulated process also has the same property. Next, we study steady-state approximations
of the Markov-modulated process. We construct diffusion models, and show that their steady-state
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moments approximate those of the joint Markov process with a rate n~(/27%/2) " This problem is
motivated by [11], in which steady-state approximations for a general birth-death process have been
considered. However, the problem is quite challenging in this paper, since we need to consider the
variabilities of the underlying Markov process, and the martingale argument in the above referenced
work cannot be applied. We also present some examples from queueing systems and show that the
assumptions presented are easy to verify.

The aforementioned result of exponential ergodicity is stated in Theorem 2.1. We consider a
large class of scaled Markov-modulated general birth-death processes, whose transition rate func-
tions have a linear growth around some distinguished point. The state processes are also centered
at this point. The increments of the transition rate functions are assumed to have affine growth.
This assumption is relaxed in Corollary 2.1, in which a stronger Foster-Lyapunov criterion is re-
quired instead. The technique of proofs for this set of results is inspired by [16], which studies
stochastic differential equations with rapid Markovian switching. We construct a sequence of Lya-
punov functions via Poisson equations associated with the extended generator of the background
Markov process. The technique employed for our results is more involved, since a class of Markov
processes under weak hypotheses is considered, and the scaling parameter affects the state and
background processes at the same time. In the study of ergodicity of a Markov-modulated mul-
ticlass M /M /n + M queue under a static priory scheduling policy in [4, Theorem 4], the authors
observe an effect of ‘averaged’ Halfin-Whitt regime, and also use a technique similar in spirit to
the method in [16]. In this paper, we consider a more general model which includes the one in
[4, Theorem 4] as a special case. In Example 3.2, we also present that the result in [4, Theorem 4]
holds under some weaker condition, and its proof may be simplified a lot following the approach as
in Corollary 2.1. In Corollary 2.2 and Remark 2.4, we emphasize that the result in this part can be
applied in the study of uniformly exponential ergodicity of Markov-modulated multiclass M/M /n
queues with positive safety staffing.

The main result on steady-state approximations is stated in Theorem 2.2. Here, we first construct
‘averaged’ diffusion models, which capture the variabilities of the state process and the underlying
Markov process at the same time. In these diffusion models, the variabilities of the state process
are asymptotically negligible at a rate n'=2% when a < 1, while the variabilities of the underlying
process are asymptotically negligible at a rate n'~® when a > 1 (see Proposition A.1). The gap
between the moments of the steady state of the approximating diffusion models and those of the
joint Markov process shrinks at rate of n®/2A"2,

The result in Theorem 2.2 extends the results of [11] to Markov-modulated birth-death processes.
The proofs in [11] rely on the gradient estimates of solutions of a sequence of Poisson equations
associated with diffusions and a martingale argument. Under a uniformly exponential ergodicity
assumption for the diffusion models, the gradient estimates we used for the Poisson equation are
the same as those found in [11]. However, the martingale argument is difficult to apply in obtaining
Theorem 2.2. On the other hand, the proof of [4, Lemma 8] concerning the convergence of mean
empirical measures for Markov-modulated multiclass M /M /n + M queues uses a martingale argu-
ment, but considers only compactly supported smooth functions. The analogous argument cannot
be used in this paper, since we need to consider a class of general birth-death processes and the
Lyapunov functions are unbounded. So we develop a new approach by exploring the structural
relationship between the generator of the joint Markov process and that of the diffusion models
in Lemma 5.1. This is accomplished by matching the second order derivatives associated with the
covariance of the underlying Markov process using the solutions of Poisson equations which involve
the difference between the coefficients of the original state process and those of the ‘averaged’ dif-
fusion models. In Lemma 5.2, we also provide some crucial estimates for the residual terms arising
from the difference of the two generators.
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Stability of switching diffusions has been studied extensively. Exponential stability for nonlinear
Markovian switching diffusion processes has been studied in [19], while p-stability and asymptotic
stability for regime-switching diffusions have been addressed in [17]. For an underlying Markov
process with a countable state space, the stability of regime-switching diffusions has been considered
in [23]. In these studies, the state and background Markov processes are unscaled, and there is no
‘averaged’ system. Under fast regime switching, we observe an ‘averaged’ effect, and study how the
ergodic properties of the ‘averaged’ system are related to those of the original system.

1.1. Organization of the paper. The notation used in this paper is summarized in the next
subsection. In Section 2, we describe the model of Markov-modulated general birth-death processes.
We present the results of exponential ergodicity and steady-state approximations in Sections 2.1
and 2.2, respectively. Section 3 contains some examples from queueing systems. Section 4 is
devoted to the proofs of Theorem 2.1, and Corollaries 2.1 and 2.2. The proofs of Theorem 2.2
and Corollary 2.3 are given in Section 5. Proposition A.1 concerning the diffusion limit is given in
Appendix A.

1.2. Notation. We let IN and Z denote the set of natural numbers and the set of nonnegative
integers, respectively. Let R? denote the set of d-dimensional real vectors, for d € IN. The Euclidean
norm and inner product in R? are denoted by |- | and (-, -), respectively. If a = (ay, ..., a,) is an
ordered n-tuple, then |a| == (31, a?)/?. For z € R?, 27 denotes the transpose of x. We denote
the indicator function of a set A C R? by 14. The minimum (maximum) of a,b € R is denoted by
aAb(aVb), and a* =0V (£a). We let e denote the vector in R? with all entries equal to 1, and
e; denote the vector in R? with the i*" entry equal to 1 and other entries equal to 0. The closure
of a set A C R? is denoted by A. The open ball of radius r in R?, centered at 2 € R¢, is denoted
by By ().

For a domain D C R, the space C*(D) (C>(D)) denotes the class of functions whose partial
derivatives up to order k (of any order) exist and are continuous, and Cf(D) stands for the functions
in C*(D), whose partial derivatives up to order k are continuous and bounded. The space C*1(D)
is the class of functions whose partial derivatives up to order k are Lipschitz continuous. We let

[V f(2) = V2f(y)|

[fl2;p = sup
yED, vy |z —y]
for a domain D € R? and f € C?!'(D). For a nonnegative function f € C(R?), we use O(f)

to denote the space of function g € C(R?) such that sup,cpga % < oo. By a slight abuse of

notation, we also let O(f) denote a generic member of this space. Given any Polish space X, we
let P(X) denote the space of probability measures on X, endowed with the Prokhorov metric.
For yu € P(X) and a Borel measurable map f: X +— R, we often use the simplified notation

u(f) = [y fdp.

2. MODEL AND RESULTS

Let @ = [gij]i jex, with K == {1,...,k.}, be an irreducible stochastic rate matrix, and
mo={m,..., Tk} (2.1)

denote its (unique) invariant probability distribution. We fix a constant a > 0. For each n € N,
let J™ denote the finite-state irreducible continuous-time Markov chain with state space K and
transition rate matrix n®Q. In addition, for each n € IN and k € K, let X C R? be a countable set,
with no accumulation points in R, and R? = [rﬁ(m,y)]m yexn be a stochastic rate matrix which
gives rise to a nonexplosive, irreducible, continuous-time Markov chain.

The transition matrices { R} } satisfy the following structural assumptions.
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Hypothesis 2.1. There exist positive constants mg, Ny, and Cp, such that the following hold for
allz € X", ne NN, and k € K.

(a) Bounded jumps. It holds that r}!(x,x + z) = 0 for |z| > my.

(b) Finitely many jumps. The cardinality of the set 27 (z) = {z € R®: r?(z,x + z) > 0} does
not exceed Nj.

(¢) Incremental affine growth. It holds that
[ri(z,z + 2) — (2,2 + 2)| < Cy (na/2 + |z — ')
(d) There exists some distinguished element 27 € R such that
iz, x4 2) < Co(n'V? + |z —al)).
Hypothesis 2.1 is assumed throughout the paper without further mention. We refer the readers
to Examples 3.1 to 3.3 for examples of verification of the conditions in (c¢) and (d).

Remark 2.1. The element z7! € X" in part (d) plays an important role in the analysis. For queueing
models, 7 may be chosen as steady state of the ‘average’ fluid, referred to solutions of (2.20) later.

Consider the stochastic rate matrix S™ on X" x K whose elements are defined by
ri(@y) ifi=j,

sn((x,i),(y,j)) = { n%q; ife=y,
0 otherwise,

for x,y € X" and 4,j € K. This defines a nonexplosive, irreducible Markov chain (X", J"), where
J" is as described in the preceding paragraph.
In order to simplify some algebraic expressions, we often use the notation 7} (x, 2) = r(x, x + z).

Definition 2.1. Let § = max{l/2,1 — @/2} be fixed. With 27} as in Hypothesis 2.1 (d), we define
the scaled process
X" — 27

vn o .__
X" = 3

The state space of X" is given by
X = {2"(x): z € X"},
where & = 2"(x) = n~P(x — a7) for € R™.
Naturally, ()? " J") is a Markov process, and its extended generator is given by
Lrf(i, k) = Lpf(ak)+Q f(2,k), (&,k) € X" xK, (2.2)
for f € Cy(R? x K), where

RE@ k) = Y R+ al 2) (f(E+ 0P k) - f(2,F))

Z€Z"(x) (23)
Q" f(&,k) = > ne(f(&,0) — f(2,k)) = > nqref(d,0).
e LeK

It is clear that £" fand L} f are well defined for f € Cy(RY), by viewing f as a function on R x K
which is constant with respect to its second argument.
Throughout the paper, z and & are generic elements of X (or R%) and X", respectively.
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2.1. Exponential ergodicity. In this subsection, we provide a sufficient condition for the joint
process ()A( ™ J") to be exponentially ergodic. We refer the reader to [20] for the definition of expo-
nential ergodicity and the relevant Foster—-Lyapunov criteria. We introduce the following operator,
which corresponds to the generator of the ‘averaged’ process.

Definition 2.2. Let

™ (z,2) = Z T (T, 2)

ke
with 7 as in (2.1), and
We define £": Cy(R% x K) — Cy(R® x K) by
Lfk) = Y mmPa+al,2)(f@+n P2 k) — f(@.k), (i,k) € X" xK, (2.5)

zeZLn
and f € Cy(R? x K).

In the following theorem, we show that if L" satisfies a Foster—Lyapunov inequality with a
suitable Lyapunov function, then the original joint process ()? n J™) is exponential ergodic. The
proof is given in Section 4.

A function f: R? +— R, is called norm-like if f(x) — oo as |x| — oo; see, for example, [20, Section
1.3].

Theorem 2.1. Suppose that there exist a sequence of nonnegative norm-like functions {V" €
C(R%): n € N}, ng € N, and some positive constants o, C, C1, Ca, not depending on n such that

(1 +Ja]) Pz +y) = V()| < Clyl(1+V"(2))

) ’ (2.6)
L+ ]2?) Yz +y+2) = V@ +y) = V(@ +2) + V' (2)| < Clyllz(1+V"(2)),
for any y,z € Bo(eo) \ {0}, z € R? and n € N, and
L'V'3) < Cp —CaV(E)  VEeX™, Vn>ng. (2.7)

Then, there exist functions yn e C(R?%x K), and positive constants 61, 62, and ny € IN, such that,
for all n > nq, we have

1 ~ 1 ~

5 (V@) —1) < V() < ;vn(@) t5 V@R EXxK, (2.8)
and

LV (3,k) < Oy — CoV™a, k) V(3,k) € X" xK, Vn>n;. (2.9)

As a consequence, (X'”,J") 1s exponentially ergodic for all n > ny, and its invariant probability
distributions are tight.

Remark 2.2. 1t follows from the proof of Theorem 2.1 that C, can be selected arbitrarily close to
Cs, so the rates of convergence of the ‘averaged’ system and the Markov modulated one become
asymptotically close.

Remark 2.3. A sufficient condition for a function V" € C*1(R9) to satisfy (2.6) is

VYV (z)] < cw 14+ V"(x)

2ym n -
S and |[V2V"(z)| + [V ]271;36(:5) <ec e

VzeRY, (2.10)

for some fixed positive constants € and c.
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In the next corollary, we relax the incremental growth hypothesis in Hypothesis 2.1 (¢). Its proof
is contained in Section 4. In Example 3.2, we show that this result can be applied in the study of
exponential ergodicity for Markov-modulated M /M /n + M queues.

We replace Hypothesis 2.1 (¢) by the following weaker assumption.

Assumption 2.1. Suppose that Hypothesis 2.1 (a), (b) and (d) are satisfied, and 7}} can be de-
composed into

ez, z) = of(x, z) +i(x,2), ze€X", zeZi(x),
where ¢ (x,2) and ¢} (z, z), k € KC, are locally bounded functions on X" x Z". In addition, using
without loss of generality the same constant, there exist d1,d2 € [0, 1] such that

W (2, 2) — ¥R (y, 2)| < Co(n™? + |z —y|*) Vke K, Vo,yec X", Vze 2, (2.11)

and
Wi(x,2)] < Co(n'™ 4]z —2?2)  Vkek, V(r,z) € X" x 2", (2.12)

with 27 € R? as in Hypothesis 2.1 (d), and for n € IN.

Corollary 2.1. Grant Assumption 2.1. Let Gi': Cp(R% x K) — Cp(R4 x K) be defined by
Grf(a, k) = Y (¢p(Pa+al,2) + 9" (n°% +al,2)) (f(2 +n "2 k) — f(3,k)  (2.13)
ZEZM
for (&,k) € A" x K and f € Cy(R? x K), and with 7 as in Assumption 2.1, where ™ (x,2) =
> ke TRYL (, 2). Suppose that (2.6) holds with the second inequality replaced by
(L [2]2) P (@ +y+2) = Vi@ +y) =V (z+2) + V()] < Clyllz|(1+V"(2)

where 6o is as in Assumption 2.1, and there exist ng € IN and some positive constants C1 and Co
such that R

GV (z) < C1 — CV" () V(z,k) e X" x K, Vn>ng. (2.14)
Then, the results in (2.8) and (2.9) hold.

In the following corollary, we show that under some stronger assumptions on the transition rate
functions and the scaling parameters, (2.6) can be weakened. Its proof is given in Section 4.

Corollary 2.2. Grant parts (a) and (b) of Hypothesis 2.1, and suppose that ]} satisfies
Iri(z,z+2) —rp(2, 2’ + 2)] < Co(1+ |z —2a'|An), (2.15)
and
rp(al, a2l +2) < Con. (2.16)
If in the assumptions of Theorem 2.1 we replace (2.6) by
V' (z +y) = V(2)] < COlyl(1+V"(2)),
‘VH(I +y+ z) V' (z+y) - V'(r+2)+ V"(x)‘ < C]y||z](1 + V"(m)) ,
then, provided B and o« satisfy 28 + a > 2, the conclusions of the theorem still hold.

(2.17)

Note that (2.17) is satisfied for exponential functions.

Remark 2.4. The transition rates of multiclass M /M /n queues, that is, the model in Example 3.2
with no abandonment (;(k) = 0), satisfy (2.15) and (2.16). Uniform exponential ergodicity of this
model (with spare capacity, or equivalently, positive safety staffing) is established in [2] using expo-
nential Lyapunov functions. Thus, we may use exponential Lyapunov functions in (2.7), and take
advantage of the results in [2] to establish exponential ergodicity of Markov-modulated multiclass
M /M /n queues with positive safety staffing using the Lyapunov functions in [2]. We leave it to
the reader to verify that for a > 1, we can in fact establish uniform exponential ergodicity over all
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work-conserving scheduling policies. For e < 1 the discontinuity allowed in the policies need to be
restricted.
Extending this to the classes of multiclass multi-pool models studied in [12] is also possible.

2.2. Steady-state approximations. Here, we use a function *(x, k) for (z,z) € R x R? and
k € K which interpolates the transition rates in the sense that

E(x, k) =rp(z,x+2) fr,z+2eX".
Recall the definition of Z™ in (2.4). It is clear that for z ¢ Z" we may let £ = 0. Thus
" = {z € R%: 3z, k such that &2 (x, k) > 0}.
This of course also implies that
&z, k) =0 if |z| > mg (2.18)
by Hypothesis 2.1 (a).
We let 7 == {1,...,d}, and define

= (k) = Y 2E0 (),

zeLn

(k) = Y 2zl (x. k), ijeT,
zEZM

(2.19)

for (z,k) € R% x K.
We impose the following structural assumptions on the function £".
Assumption 2.2. The following hold.
(i) The cardinality of the set {z € R%: £*(z, k) > 0} does not exceed Np.
(ii) For each n € IN, there exists 27 € R? satisfying

> mEMal k) = 0. (2.20)
ke

(iii) The function &7 is uniformly Lipschitz continuous in its first argument, that is, there exists
some positive constant C' such that

&0 (2, k) — €2y, k)| < Cle—y| Vkek,Vz,yeR?, Vze2”, (2.21)
for all n € IN. In addition, using without loss of generality the same constant, we assume
that

max (2, k) < Cn VkeK,VnelN. (2.22)
z€R4

(iv) The matrix I'" (2}, k) is positive definite, and

LIl k) —— T, (2.23)

n—o0

where ['(k) is also a positive definite d x d matrix, for all k € K.

We note here that the nondegeneracy hypothesis in Assumption 2.2 (iv) is used in Lemma 5.3 to
derive gradient estimates of the solution of a Poisson equation.

Remark 2.5. Equation (2.21) is of course much stronger than Hypothesis 2.1 (c). This is needed
for the results in this section which rely on certain Schauder estimates for solutions of the Poisson
equation for the generator of an approximating diffusion equation.
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Let {AZ: z € Z™} be a family of independent unit rate Poisson processes, independent of J™,
and A7(t) := A7(t) — t. Then, the d-dimensional process X" (t) is governed by the equation

X™(t) = X"(0)+ Y ZAQ(/Otgg(X"(s),J"(s))ds)

zZELN

= X"(0) + M"(t) —|—/0 =" (X"(s), J™(s)) ds,

where

t
M™M(t) = > zA7 </ EH(X"(s), J"(s)) ds> :
ZEZLM 0
Note that M™(t) is a local martingale with respect to the filtration

~ t t
Fi o= G{X”(O),J”(S),Az (/ &H(X"(s), J"(s)) ds>,/ E(X"(s),J"(s))ds: z € 2", s < t} .
0 0
The locally predictable quadratic variation of M™ satisfies
¢
(M™)(#) = / (X" (s), J"(s)) ds, >0,
0

where the function I'"" = [I'7;]: R x K — R is given in (2.19).
By (2.21), it is evident that given 2™(0) € RY, there exists a unique solution z"(t) satisfying

z"(t) = «"(0) + Zﬂk/o =" (z"(s), k)ds.

We refer to this as the n'" ‘averaged’ fluid model.

In this section, the scaled process is defined as in Definition 2.1, with the exception that 27 € R?
is specified in Assumption 2.2. Note that in the extended generator in (2.2) and (2.3) we may
replace 7 (n’3 + 27, 2) by £2(nP# + 27, k). It is evident from (2.24), that X" satisfies

—~ t/\ A~
() = X7(0) + M(E) + / S0 (X7 (s), J"(s)) ds | (2.24)
0
where
—~ M" S En(nfi + a2 k)
M" = gl and =z, k) = 3 . (3, k)eRIx K. (2.25)

The locally predictable quadratic variation of M is given by
¢
(T)(¢) = / I (%7(s), J"(s)) ds, >0,
0
with )
["(&,k) = —z "2+ 2l k), (&,k) eRIx K. (2.26)
n
We next introduce a sequence of processes that approximate X", Let Y™ be the strong solution
to the It6 d-dimensional stochastic differential equation (SDE)
dY™(t) = b (Y™(t)) dt + oc™dW (1), (2.27)
with Y™(0) = yo, where W (t) is a d-dimensional standard Brownian motion,

() = mEr(Lk),  geER!, e,
ke
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with Z" defined in (2.25). The diffusion matrix o™ is characterized as follows. Let
T =M-Q) -1 (2.28)

denote the deviation matrix corresponding to the transition rate matrix @ [7]. Let ©" = [0}] be
defined by

= 22 Z x*;ﬁw@*’g) % Yke, 1,J€T, (2.29)
ek kel
and
a"(z) = [ap)(x) = > mI"(z,k), =eR”.
ke
Then, by Assumption 2.2 (iv), and using the spectral decomposition, o™ satisfies
X" = (0")Te" = a"(0) +O". (2.30)

The generator of Y™ denoted by A" is given by
= b(x)if(z Z S0 f(z), feC*RY). (2.31)
i€L ,]EI

We borrow the following definitions from [11]. We say that a function f € C?(R%) is sub-
exponential if f > 1 and there exists some positive constant ¢ such that

IVf(z)|+|V2f(z)| < ceclel Vz e RY,

and
sup flz+2)
<y f(@)

We also let B, denote the open ball around z € R? of radius (1 + |z|)~!, and define

<c VeeR?.

fllooan,y = suplf)+ sup TWZIEN p ¢ ooy

yEBy y,2€EB, |y - |

The following assumption concerning the ergodic properties of yn plays a crucial role in the
proofs for steady-state approximations.

Assumption 2.3. There exist a sub-exponential norm-like function V € C? (Rd), a positive con-
stant x, and an open ball B such that

A™W(z) < 1g(z) — kKV(x) Ve e RY, VneNN.

We continue with the main result of this section. Its proof is given in Section 5. Let v™ € P(R%)
denote the steady-state distribution of Y.

Theorem 2.2. Grant Assumptions 2.2 and 2.3. Assume that ()?”, J™) is ergodic, and its steady-
state distribution " € P(R? x K) satisfies

limsup/ V(2)(1 + |2])57"(dz, dk) < oo. (2.32)
RIXIC

n—oo

Then, for any f: R* — R such that || f||coa(s,) < V(z), and o > 0, we have

w0 =D = 0~z ) (2.53)
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Theorem 2.2 concerns the gap between the moments of the marginal distribution of the steady-
state X™ and those of ™. The order of the function in (2.32) is determined by the estimates in
Lemma 5.2, and the gradient estimates of the solutions to the Poisson equation in Lemma 5.3. In
the following corollary, we provide a sufficient condition for (2.32). We give its proof in Section 5.
In Section 3, we show that this sufficient condition holds in many examples.

Corollary 2.3. Grant Assumption 2.2. Let V and V be two sub-exponential functions in C%(RY)
satisfying Assumption 2.3 such that

V(z)(1+ |z)°) < V(z), (2.34)

and

1+ |z (IVV(@)] + |V*V(x)]) + (1 + |2} [V] < CV(z), (2.35)

2,18, 8 (@)
for some positive constant C' and any x € R, and with mq as in (2.18). Then (2.32) holds for V.
As a consequence, (2.33) holds.

3. EXAMPLES

In this section, we demonstrate how the results of Section 2 can be applied through examples.

Example 3.1 (Markov-modulated M/M /oo queue). We consider a process given by

t t
X"(t) = X™(0)+ AT (/ nA(J"(s)) ds> - A" </ w(J™(s)) X™(s) d5> ,
0 0
where A", and A} are mutually independent unit rate Poisson processes, independent of J", for

n € IN. We assume that A\(k) > 0 and pu(k) > 0, for k € K. We let

n o_ ZkeKj T A(K)
T, = Nes———— -
Zkelc (k)

Recall that X" = n=#(X™ — z"), and then xn = {2"(x): z € Zy}. Tt is evident that A(k) and
p(k)x satisfy Hypothesis 2.1 (c) and (d). Let A == >, - mA(k) and i == >, mep(k). By
Definition 2.2, we obtain

L'f(@) = nA (fa+n") = f(2)) + B (P2 +2l) (fa —nP) = f(2)) VaeX". (32
Let V(x) = |z|™, for = € R, with even integer m > 2. It is clear that
|z +n P — 2™ = £nPm(@)™ T + 0(n= )0 (|2 ?). (3.3)
Thus we obtain from (3.1) and (3.2) that
L'V(@) = nA(|2 +nP™ — 2™ — nPm|e[™Y) + @i (|7 —n P — |2™)
+ (|8 — =™ = @)™+ mn 2"
= A0(n'2)0(12["?) + G(—1|™ + 0(n=)o(|Z|™ ") + 0(n' )0 (12" ?))
<O — V(&) VieX",

(3.1)

for some positive constants C7 and Cy, where in the second equality we use (3.3), and in the last line

we apply Young’s inequality. It is straightforward to verify that V(x) satisfies (2.10). Therefore,

the assumptions in Theorem 2.1 hold, and ()? ™ J") is exponentially ergodic for all large enough n.
Next we verify the assumptions in Corollary 2.3. The equation in (2.20) becomes

S mEM @l k) = > mnAk) = > mpu(k)al = 0. (3.4)

kek kel kek
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Note that 7 in (3.1) is the unique solution to (3.4). Recall the representation of Y™ in (2.27). In
this example, it follows by (3.4) that

v (z) = n Pax” —nPamle +27) = —jx VereR,
and
a"(0) = n 2P (nh + az") = n'=2%2X.
Let V(z) = k + |z|™, with k > 1 for some integer m > 2. We choose some & > 1 such that
V(z) = &(1+ |2z)™) > V()1 + |z]°) VzeR.

Then, Assumptions 2.2 and 2.3 are satisfied. Indeed, by the discussion following Theorem 3.1 of
[11], if V € C3(R?) in Corollary 2.3, we may replace (2.35) by

1+ 2 (IVV@)] + [V2V(@)]) + (1 + 2| V3V(@)| < CV(z), (3.5)
for some positive constant C' and any = € R?, where V3 = W with a multi-index (11, ...,7q)
I

satisfying Zle 1n; = 3. Then, it is straightforward to check that V chosen above satisfies (3.5).
Thus, the result in Corollary 2.3 follows.

The following example concerns Markov-modulated multiclass M /M /N+M queues. Exponential
ergodicity for these queues under a static priority scheduling policy has been studied in [4, Theorem
4], which treats a special case of the model considered in this paper. Here we show that by using
the result in Corollary 2.1, the proof of [4, Theorem 4] is simplified a lot. We also extend the
results in [4, Theorem 4 and Lemma 3] to include a larger class of scheduling policies such that the
Markov-modulated queues have exponential ergodicity.

Example 3.2. [Markov-modulated multiclass M /M /N + M queues| We consider a d-dimensional
birth-death process {X"(t): t > 0}, with state space Z%, given by

XI(t) = XP(0) + A" < /0 Can (I (s) ds)
-t ([ ()= )+ () (X0 (6) — (e s)) s

for i € T == {1,...,d}, where {A7 A", :i € Z} are mutually independent unit rate Poisson
processes, independent of J”, and 2" is the static priority policy defined by
i—1 +
zi'(x) = xi/\(n—Zacj) Viel.
j=1
We assume that {\;(k), ui(k),vi(k): i € Z,k € K} are strictly positive, and the system is critically
loaded, that is, Y-, 7 p; = 1 with p; := Ai/g;. Equation (2.20) becomes

ST mER D E) = nki — st (@l) — Bl — oPE) = 0 VieT,
kel
which has a unique solution = = np with p = (p1, ..., pq)-
We first establish exponential ergodicity and verify Assumption 2.1. Let
Ve, (z,k) = nXi(k), Y=o (2, k) = npipi(k),
and
¢ e, (@, k) = pi(k)(2 (x) — npi) + (k) (2 — 2 (x))
fori € T and (x,k) € R?x K. Then, Y (z) = nA; and ¢, (%) = npifi; = nX;. It is evident that the
functions ¢y, and 9", satisfy (2.11) and (2.12). Note that 2j'(x) < z;, and thus Hypothesis 2.1 (d)
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is satisfied. Let Ve (z) = Yo7 Gilai|™ for 2 € RY, even integer m > 2, and a positive vector
¢ € R? to be chosen later. Recall G in (2.13). It is straightforward to verify that

GiVem(®) = 070> " =g, (n°% +np, kA2
€L
~2 N B (nPi G2
+n N (20 + ¢, (0P34 np, k) O(|2:™2)
i€

Since inf; p{ui(k),vi(k)} > 0, it follows by [3, Lemma 5.1] that there exist some positive vector A,
ng € IN, and positive constants C; and Cs such that

GVem(#) < CL = CoVem(®), (2,k) € X" x K, n>ng. (3.6)

Therefore, the result in Corollary 2.1 follows. We remark that the claim in Corollary 2.1 holds for
any work-conserving scheduling policy satisfying (3.6), since there is no continuity assumption on
¢" ... This extends the results of [4, Theorem 4 and Lemma 3]. Indeed the proofs of these results
can be simplified a lot following the approach above, since we only need to consider the constant
functions ¢, and ", in z.

Next we focus on steady-state approximations for this example. It is straightforward to verify
that the coefficients in (2.27) take the form

(@) = — L (epwle+at) — 2pal) - (i - (P 0Pr+al) - 2GD)), €T, (37)

1 - -
a;;(0) = W(n)\i + (@) + (2l = 2 (@) = n' T2k, VieT,

2 (2

and that a;;(0) = 0 for i # j. We let V¢ 1 (z) = £ + 3,7 Gilzi|™ for some positive vector ¢ € R,
an even integer m > 2, and k > 1. We choose £ > 1 such that

Vem(r) = &1+ Glal™™) > Vem(@)(1+]a)’) YaeRe
i€l

Repeating the calculation in [3, Lemma 5.1], it follows that there exist some positive vector ¢ € R?
and some positive constants ¢; and ¢y such that

0"(2), VVem(2)) < e1—cVem(z)  VaoeRe.
It follows directly by Young’s inequality that there exists some positive constant c3 such that

|V2Vem(2)] < 53— %ZVQM(Q:) VaeRY.

The same holds for T7¢7m. Thus, we have verified Assumption 2.3. Since 2 is Lipschitz continuous,
it is evident that Assumption 2.2 holds. An easy calculation shows that (3.5) holds. As a result,
Corollary 2.3 follows.

When d =1, (2.20) becomes

Zﬂ'k_ (27, k) = nA— (x /\n) "y(xf—n)Jr:O,
kel

which can be solved directly without the critically loaded assumption. It is straightforward to verify
that (3.7) becomes

V'(z) = —p((z+ n Py Ant=F — 7B A nlfﬁ) —3((z + n Pt —nt=AF —nBan — n)t).

Repeating the procedure as above, we establish Corollary 2.3.
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Example 3.3 (Markov-modulated M/PH/n+ M queues). We assume that all customers start ser-
vice in phase-1, and there are d phases. Given J" = k, the probability getting phase-j after finishing
service in phase-i is denoted by p;;(k). Let X7' denote the total number of customers including in
service and queue in phase-1, and X, for ¢ # 1, denotes the number of customers in service in
phase-i. We refer reader to [8] for a detailed description of the model without Markov modulation,
and to [26] for an application of Markov-modulated phase-type distributions in queueing. Then,
(2.19) becomes

=f (2. k) = nA(k) = pa (k) (21 = ((e,2) = n)") = y(k) ((e,x) = n)”
El(z, k) = —pi(k)x; + Zj;ﬁi,j;ﬁl pji(k) i (k)zj + pri(k)pa (k) (331 — ({e,x) — n)"') fori#1,
and (2.20) becomes
n\ — i (wfl — ((e,a?) —n)") —5((e,27) — n)+ =0,
R D o Py i (2 — ({e,2l) —n)T) =0 fori#1,
where 7 = >, mey(k), and Py = Yo mpij (k). Here, e’ =(1,...,1) as defined in Section 1.2.
Assume that A = 1. Note that {E: i € Z} are piecewise linear functions in their first argument. It

is straightforward to verify that Hypothesis 2.1 and Assumption 2.2 are satisfied. We get 7' = np,
where

]\_4_161
T M-ley’
with the identity matrix I and P := [p;;]. The coefficients in (2.27) satisfy

V' (z) = —Mz+ (M —)ei{e,z) ",

2(0) = n'=28 (1 + pip1), ifti=1,
" n'=2 (Ej;éi,jyél Pjikjpj + Hipi + ﬂlplﬁu) ; ifi#1,

and M = (I — P")diag(fi),

a

and

af;(0) = n' =% (pijiups + Pjilije;), i # -
By [5, Theorem 3.5] (see also [9, Theorem 3]), there exists a function V satisfying the assumption
in Corollary 2.3. In analogy to [5, Theorem 3.5], we can show that there exists a function V(x) =
(z, Rz)™?, for m > 2 and some positive definite matrix R, satisfying the conditions in Theorem 2.1.

4. PROOFS OF THEOREM 2.1 AND COROLLARIES 2.1 AND 2.2

The range of the transition matrix @ is the subspace A = {y € R : >, - my, = 0}. As
shown in [13, Theorem 3.5], if v and u are any vectors in R satisfying 7'v # 0 and u"e # 0, then
the matrix Q + vu" is nonsingular and
1

T=(Q+vu")" (4.1)
is a genmeralized inverse of @), that is, it satisfies Q7 Q = Q. This of course means that
QTy =y forallyeA. (4.2)

We also need the following definition.

Definition 4.1. Recall (2.3) and Definition 2.2. Let EZ = L" — L}. This operator takes the form

Crf(a k) =Y #li+al,2)(f@+nPzk) — f(@,k), (3.k)€X"xK,
zEZLM
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for f € Cp(R? x K), where
ro(z,z) = (x,2) — 7} (2, 2), (x,k) e X" x K.

Proof of Theorem 2.1. Let T = [Tie)kecxc be as defined in (4.1).

P k) = LVNE), (3,k)eX"xK. 4.3
(2, k) naé%;me()() (4.3)
Then,
QW (&,k) = LPV™(2) Y (&.k) € X" x K, (4.4)
by (4.2).
We define
V(& k) = V&) + V(@ k), (3,k) € X" x K. (4.5)
By Hypothesis 2.1 (¢) and (d), we have
(e + 2", z) < Con™V " +nPl2)) V(i k)eX"xK,Vze2", VneN, (4.6)

We choose Njp large enough so that mg < eoNlﬁ, with mg as defined in Hypothesis 2.1 (a). By
Hypothesis 2.1 (a) and (b), (2.6) and (4.6), we have

14 Vn(3)
nB(1+ |2])

for all n > Nj. Therefore, since a+ 5 —1 > @/2 for a > 0, it follows by (4.5)—(4.7) that there exists
ny € N, ny > Ny, such that (2.8) holds.
Recall the definitions in (2.2), (2.3), and (2.5). We have

L'V™(&) = LYV (&) + LIV (&) = LRV™(E) + Q"V™(&, k)
by (4.4). Therefore, since Q"V"(z) = 0, we obtain
LMV (&, k) = LPV™(&) + LPV" (3, k) + Q"V" (i, k)

|Lrv(2)] < NoCo(n'V/? +nP|2]) Cmg (4.7)

- g ) (4.8)
= LV"(2)+ LV (2, k) V(z,k)e X" x K.
We define the function
GR(#,2) = Fr (i +al, 2) V(@ +nPz) - V'(2)).
It is straightforward to verify, using (4.3), that
LpV™(a,k) = > F(nPi+al, h) (V@ +n Ph, k) — V(2. k))

hezm
1 ) A A ) (4.9)

=— Z P nPE + 2, h) Z Tre (G} (& + n"Ph,z) — G}(z, z)) .
n h,zeZm™ ek

On the other hand, it follows by Hypothesis 2.1 (c), and a triangle inequality, that
G} (& +nPh,2) — GR(#,2)| < 2Co(n*? + |h]) V(@ +n~Pz) — V(1)
+ ?Z(nﬂi+xf+h,z)‘ ‘V”(Lfc—i-n_ﬁz—l—n_ﬁh) (4.10)

— V& +n"Ph) = V(& +nPz) + V(D)

for all h,z € Z". As in (4.6), we have
# (0P +a” + h,2)| < Co(n™ ™ +nPl2|+|h|) V(& k)€X"XK, Vh,z€ 2", VneN. (4.11)
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By (2.6) and Hypothesis 2.1 (a), we have

(& 4" ns 1+ V(i
V(@ +nP2) - V(@) < Cmo ﬁ(1+‘(£|))7
T (412
V(@ + 1Pz 4 0 h) = V(@ 4+ nPh) — V(6 nP2) +V7(3)] < Cmi—r )
T aP)

for all h,z € By, & € X", and n € IN. Hence, using (4.9) together with the estimates in (4.6) and
(4.10)—(4.12), Hypothesis 2.1 (a) and (b), we obtain

V(3 < @ ~ 1+Vn z
LV"(z, k) < NoCoCmyg Z |77€€|<2(n /2 4 mg) (n! /2+n5|x|)na_~_6(l—£|;|)

S (4.13)

1+ V(@)
1Va/2 B4 1va/2 B4
+ NoComo(n'V™* +n°|&]) (0" + n ‘5’3|+m0)na+2ﬁ(1+|£l2)>.

Using the property 5 = max{l/2,1 — @/2}, we deduce from (4.13) that for any € > 0 there exists
some constant Cs(e) such that

LIV™(d, k) < Cole) +eV(E)  V(2,k) € X" x K, VYneN. (4.14)
Therefore, choosing € = £C5, and using (2.7), (2.8), (4.8), and (4.14), we obtain

L'V (&,k) < Cy 4 Cs(C2f2) + %62 - %@9"(.@«, k) V(@ E)eX"xK,Vn>n.

This completes the proof. O

Proof of Corollary 2.1. Recall G in (2.13), and let Q}: =Gy — L}}. Then, G,’; takes the form
GRf(ak) = Y di(n’e +al,2)(f(@ +n " zk) = f(@.F), (@k) X" xK,
ZEZ™
for f € Cy(R? x K), where
PP (z,2) = P"(z,2) — Uz, 2), kekK, (z,2)eX"xZ".

Compare it to Definition 4.1. We let

ym (4 — 1 AN IN [ A A ¥n

Vi@ k) = =0y T GV(E), (dk) € XM x K.

ek
As in (4.4), we have
QW (i, k) = GRVM(E),  (2,k)e X" x K.
In analogy to (4.8), we get
LVME, k) = GIVME) + LV (a, k), (&,k) € X" x K.

In obtaining an estimate for L’ZTJ” (Z, k), the proof is the same to that of Theorem 2.1 by replacing

" with ", and using (2.11) and (2.12). Applying (2.11) and (2.12) again, we may show (2.8).
Then, the claim in (2.9) follows by (2.14). O

Proof of Corollary 2.2. We only present some crucial estimates that are different from those in the
proof of Theorem 2.1. Indeed, it follows by (2.15) and (2.16) that

PnPi + a2, 2) < Co(l+n), MnPi+at,z) < Co(1+n), (4.15)

and
|1*2(n6(:i' +n7Ph) + 2", 2) — (0P + xf,z)‘ < Co(1+|h|An). (4.16)
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for some positive constant Cy. By Hypothesis 2.1 (a) and (b), (2.17) and (4.15), (4.7) becomes

ANYIN (A 14+ V"2
}Ekv (%) ng()

for all large n. Using (2.17) and (4.15)—(4.17), and together with Hypothesis 2.1 (a) and (b), (4.13)
becomes
nyM( 4 1+ V(2
LIV (&, k) < NoCoCmo |77€€‘<2(1+m0)(1+n)na+ﬂ()
Bk e (4.18)

14+ V" (i
+ NoCymo(1 +n)(1+n)j;a+2rgm)> :

< N()Co(l + TL) Cmyg (4.17)

Since v + 2 > 2 implies o + § > 1, then it follows by (4.18) that (4.14) holds for all large n. The
rest of the proof is the same to that of Theorem 2.1. O

5. PROOFS OF THEOREM 2.2 AND COROLLARY 2.3

We need to introduce some additional notation to facilitate the proofs. Recall the definitions of
=", ™, b7, and a@” in (2.25)-(2.27) and (2.30), respectively. For f € C2(RY) and n € NN, let

gl k) = (b (@) — (E(x, k) — 210, k))) i f (x)

i€

(5.1)
+ = Z ai(z) — T (x, k) 0y f(z) ,
’L]EI
and
B = iz 53 (S mel e + a2, )T
z hek ek (5'2)

~ennPo 4 a, kmh) S =@ h) Y 50 @),

jET i€
with T as defined in (2.28). It follows by the identity
> (Z m&l (n’x + 2, )i — L (0P + 2, k)Tkh> =0,
kel lek

that >, TGy [f](2, k) = 0. It is clear that ), ., mg7'[f](z, k) = 0. Recall the matrix 7 in (4.1)
and (4.2). We define

arilt 7277%91 i=1,2, (5.3)
tek
and thus
Qg [z, k) = gi'lf) (. k), i=1,2. (5.4)
For f € C*(RY) and n € IN, let
1
g5 [fl(w k) = —5 > D> (kb Thn 05 () (55)
hek jeT

Note that the function g[f] corresponds to the covariance of the background Markov process J".
We let ¢"[f] denote the sum of the above functions, that is,

9" k) = gy [f1(, k) + g5 [f(a. k) + g5 [f)(2. k), (2,k) €RT X K. (5.6)
To keep the algebraic expressions in the proofs manageable, we adopt the notation introduced
in the following definition.
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Definition 5.1. We define the operators [D?]° and [D”] Jj €I, by
D2 f(z) = fl@+n"2) = f(a) —n" Z 20; f (x) —n =% Z 22035 f ()
€T ijeT

(D2 f(x) = 0;f(x+nP2) — 0, f(x) —n P 20, f(x)

1€l

for f € C?(R%) and z € Z". In addition, we define
R R 3= 3 €00 +a2,1) [PV (@),

RE[f1(E) = 5 Z > me (T, k) — T35(0,k)) 03, £ (),

,J €T kel

REf) (&, k) = na% SO (Epar + a0 — (2l D) EF @l hm Y indi; f ()

1,j€L heK leX

RIf(3, k) = nMZZgZ (P2 + a7, k)T Y (T, h)[DL]}f(2),

z hek JET
Relfl(@, k) = Ly 91 [f1(2, k),
Relf1(@, k) = Lf g5 [f1(2, k).

The following lemma establishes a useful identity involving the generator of ()? noJ") in (2.2)
and that of Y in (2.31) and the operators R in Definition 5.1.

Lemma 5.1. Under Assumption 2.2 (ii), we have

6
Lrf(&)+ L g"[f)(@,k) = A"f(2) + Y RP[f)(@. k), (2.k)€X"x K, feC?*RY). (5.7)

=1
Proof. By (2.2) we have
3
L'g"[f)(@ k) = Y (LRarlf1(@. k) + QP (). k) | (5.8)

i=1
and L f (%) = L1 f(#) for any f € C?(RY).
We first show that
Lif (&) + Qg1 [f1(&, k) + Q" g5 [f1(%, k)
= SR@0S) + 5 Y aposf@) + RUAG K +REAG) . OO
i€ ijeT
Using (2.3) and (5.5), we obtain

a:*,h

Q"gy| =)D aw e Z f(@). (5.10)
hek tekl JEL
Since QY =II — I, where I denotes the identity matrix, it follows by (2.20) that

ZZQkZTEh—' J}*,h Zﬂh [E*,h (;U*ak) E’?($Zak)7 (511)

hek tek hek
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where in the second equality we use Assumption 2.2 (ii). Thus, by (5.10) and (5.11), we have

22 (2, k ~
Qg5 (@ k) = ) —](nﬁ) 0;f (&) = D —Z5(0,k) 0;f(). (5.12)

JET JET
By (2.3) and a standard identity, we obtain

@) = 3 b+t k(zn 20T () + 3 P niz0,f(3) + [D?]”f(@)

zZEZLN 1€T 1,J€EL (513)
= > = + Y TH(E, k)0 f(2) + RYF1(E, F) -
€L i,jELT

Thus (5.9) follows from (5.1), (5.4), (5.12), and (5.13).
Next, we show that

L g3f)(@, k) + Q" g3 5 3 005 F(@) + REAIGR) +RAAGE) . (514
JGI
We have
LI R) = iy S+ oK) S0 ST E W) T (9 +n72) — 03£(2))
z heK jeT

by (2.3). It is clear that
0;f(&+n"P2) =0, f(2) = n™"> 20 f(&) + DL} f(2),
€L
and
> 2l (e + al k) = EP (2l k) + (B] (2 + 0’2, k) — BF (a1, k) .

z
Therefore, (5.14) follows by combining these identities with (5.2) and (5.4).
Hence, we obtain (5.7) by adding (5.8), (5.9), and (5.14), and using the definitions of R}[f] for
i = 5,6. This completes the proof. ]

The following lemma provides needed estimates for Ry and Rg.

Lemma 5.2. Under Assumption 2.2 (i)—(ii1), there exists some positive constant C' such that

" . 1 . 1 . 1 .
REAE] < | (elél + s )@+ (il + s ) [V211)
]_ ~12 1 ~ A 75 A~
+ (na—ﬁ |2~ + | |x|> iré%ﬂVf(:c +n"z)— Vf(a;)|} (5.15)
+ i]a}\Q—i- ! || + . max| V2 f(& 4+ n~ By — V2f(2)
ne notB-1 not28-2 zezn ’

1 1
R3] < | (il + s ) [924(0)

L o
+ <n2a—1x| +W’Jf\ (5.16)

]. 2 ~
+n2a+25_3>£1é%)§‘Vf$+n )—Vf(l')

)

for any (&,k) € X x K.
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Proof. Recall the functions g} [f] and ¢4 [f] in (5.3). It follows by (2.21) and (2.22) that
€ (2, k)] < Cle —2f| +n), (5.17)
and
€2 (2 + 2t k) — €2l K| < Clal, (5.18)

for (z,k) € R? x K, z € 2" and n € N. By Assumption 2.2 (i), and applying (2.20) and (5.18), it
is straightforward to verify that

> miE"(@,k)| < CNomolz| Vi e RY. (5.19)
kek
Thus, by (5.18) and (5.19), we have
b7 (&) — (E"(2,k) — Z"(0,k))| < 2CNomol2| ¥ (3,k) € RTx K. (5.20)
Applying (5.17), we obtain
|a"(2) — (i, k)| < 2CNom3(n~ P2 +n'=%)  V(i,k) e RIx K, (5.21)
and
> me e+ 2l )Yy — 0P+ 2l k) Y| < Cr(nflE[+n) Vi eRY, (5.22)
lek
and all k,h € K and z € 2™, for some positive constant C7. We have
="(z" k)] < CNomon  VkeK, neN, (5.23)
by (2.22), and
&0 (P2 + 27, k)| < C(nPlE|+n)  V(ik)eR'xK, 2€2", neN, (5.24)
by (5.17). From (2.21), we obtain
‘i”(:ﬁ +n Pz, k) — i”(:ﬁ, k)‘ < n_Béﬁom(Q) , (5.25)
and .
IT™(2 + n Pz k) —I"(, k)| < n~2PCNom} (5.26)

for (2,k) € R* x K, z € Z", and n € N. Repeating similar calculations as in (4.10) and (4.13), and
applying (5.20), (5.21), and (5.24)—(5.26), we have

REL)(E). K] < CRomo 3 ma(aéﬁom MW( )
k, ek
+2C’N0mg|x|(|xH_mné%§{\Vf(:%+n62) —Vf@)|}

~vo s (0|2 +n)
+(7A%W%“ZEIZTAWV7 f(@)]

f(z
8|4 B
n=P|z| +nl= ) n?|z| + n) max{\fo-Fn )_Vf(:i")\}>,

ne zeZLN

T 26 Rm2

which establishes (5.15). The estimate for Rf in (5.16) obtained in a similar manner by applying
(2.21) and (5.22)—(5.24). This completes the proof. O

We borrow the following estimates for solutions to the Poisson equation for the operator A"
from [11, Theorem 4.1] and the discussion following this theorem. Recall that v™ is the steady-
state distribution of Y™ in (2.27).
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Lemma 5.3. Grant Assumption 2.2, and fir a function V in Assumption 2.3. Let f € C%'(RY)
be such that || fl|coa(p,) < V(z) and v"(f) = 0. Then, the function u’ € C%(RY) defined by

u'f(r) = /000 E, [f(f/n(s))] ds

is the unique (up to an additive constant) solution to the Poisson equation

Alu=—f. (5.27)
and satisfies
|Vu?(:v)| € O((l + |:B|)\7(:E)) , {VQU?(:L")‘ € O((l + |ZE|2)V(:L')) , (5.28)
and
[u?]Q,l;Bm(m) € 0((1+ |ac]3)\7(x)) . (5.29)

vn

In the following lemma, we consider the solution of the Poisson equation in (5.27), and establish
an estimate for the sum of terms R} [u?], i=1,...,6, given in Definition 5.1.

Lemma 5.4. Grant Assumption 2.2, and fix a function V in Assumption 2.3. Let f and u? be as
i Lemma 5.3. Then,

6
> R (@ k) = o<m>o((1 +2°P)V(E)  V(3k) e X" x K. (5.30)
j=1

Proof. Note that
(DI up (&) = n™27 " 220 (u} (@ + € ,) — uf(#))

ijeT
for e, € [Liez[i @i + n~Pz]. Applying (4.6) and (5.29), we obtain
1 ~
RY[uf](2,k) = m@((l +12MV(#)  V(3,k) € X" x K. (5.31)

By (5.18), we have
T2 (&, k) — D50, k)] < CNomgn™P|2| ¥ (&,k) € X" x K,

(5]
and thus it follows by (5.28) that
1

Ry[uf)(2) = n—ﬁ(‘)((l—k Z)V(2)) . (5.32)
Applying Definition 5.1, (5.18), (5.23), and (5.28), we obtain
. 1 . .

RE[uf](2,k) = WO((l +12*)V(&) VkeK. (5.33)

Repeating the above procedure, and using Definition 5.1, (5.17), (5.23), and (5.29), we obtain
n n ol ]' A A
It follows by Lemma 5.2, (5.28) and (5.29) that
n n ol 1 A A
and

Re[uFl(2, k) = o<n2a+1363>o((1 +12°)V(2)), (5.36)
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for all £k € K. On the other hand, Whena>1,62%,04—1—[3—1Zﬁand2a+3ﬂ—32ﬂ, and

when a <1, a+pf—-1=2a+38—-3=72/2and a+ 35 — 2 = 3. Then, by using (5.31)—(5.36), we
have shown (5.30). This completes the proof. O

Proof of Theorem 2.2. Without loss of generality, we assume that v"(f) = 0 (see [11, Remark 3.2]).
Recall the function g™ in (5.6). Applying Lemma 5.1, it follows that

B |} (X(T)) + " [uf](X™(T), J(T)) |

= B [uf (R7(0)) + ¢ Wf)(R7(0). 1 (0))]
6

+ En [ /0 ' A} (X7 (s)) ds] +) Em [ /0 ! RI[u})(X"(s), J"(s)) ds] :

J=1

(5.37)

By Lemma 5.4, we have

ZE [ R, ) s

< O m ) B | [ (v o)+ 126r) a| O

_ 1 - SIS AT (5
= O<W>T/Rdx’c(l+\7(m))(1+ &))" (dz, dk) .
Applying (5.6), (5.24), and (5.28), we obtain
9" (&, k)| < CL(1+ (1+|2P)V(@)  V(&,k) e X" x K, (5.39)

for some positive constant C; and all large enough n. Since ‘u?! € O(V) by the claim in (22) of
[11], then it follows by (5.39) that

e [ (R70) + LR D). )] < (14 [ v@+ e nan ) (540

dxKC
for some positive constant Cs. It follows by (5.27) that

E [ /0 " (R7(s)) ds] - B [ /0 " R) ds] — _T(f). (5.41)

Since 7" is the stationary distribution, the bound in (5.40) also holds for the first term on the r.h.s.
of (5.37). Thus, applying (5.37), (5.38), (5.40), and (5.41), we obtain

T|n"(f)| < 202<1+/R V(#)(1+ ]56\)37[”(dj:,dk:))

Dk (5.42)

+0 <rf‘/21“/2)T/RdX;c(1 + V() (1 + |2])°r"(d, k).

Therefore, dividing both sides of (5.42) by T" and taking 7" — oo, and applying (2.32), we obtain

1
I (f)] = O(W)

This completes the proof. O
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Proof of Corollary 2.3. We claim that for some positive constants Ci, 1, and ks, a ball B, and a
sequence €, — 0, as n — 0o, we have
6
LV(&) + L g"V)(&,k) = A"V(2) + Y RIV)(, k) 5.43)
i=1 :

rilg(®) — kaV(2) + CL+ V(&) V(3 k) e X" x K,

IN

Indeed the equality in (5.43) follows by Lemma 5.1. Following the calculation in the proof of
Lemma 5.4, and using (2.35), the inequality in (5.43) follows by Assumption 2.3 and Lemma 5.2.
By Assumption 2.2 and (2.35), we have

CoV(3) — O3 < V(&) + ¢"[V)(3, k) < Cs(V(#)+1)  V(&,k) € X" x K, (5.44)
for some positive constants C and C3. Combining (5.43) and (5.44), we see that V(Z,k) =
V(z)+g"[V](Z, k) satisfies LV (2, k) < k3lg () —kaV (2, k) for some positive constants 3 and x4,

and a ball B’. This together with (5.44) and the hypothesis in (2.34) implies (2.32), and completes
the proof. O

APPENDIX A. THE DIFFUSION LIMIT

Proposition A.1 which follows, shows that under suitable assumptions, the processes X" in (2.24)
and Y™ in (2.27) have the same diffusion limit. This proposition is interesting in its own right.
Let (D%, J1) denote the space of R%valued cadlag functions endowed with the J; topology (see,

e.g., [6]).
Proposition A.1. Grant Assumption 2.2. In addition, suppose that X’"(O) = Yo,
E0(a + P2, k) — €2 (a, k)

nbs n—00

E(2, k) V(kz) e x2™, (A.1)

uniformly on compact sets in RY, Mn is a square integrable martingale, and
=" (2}, k)
n n—oo

Then, X" and Y™ have the same diffusion limit X in (D4, 71), and X is the strong solution of the
SDE

Z(k) e R?  Vkek. (A.2)

~

dX(t) = b(X(t)) dt + aadW(t),

b(2) = Zﬂkzzgz(i»k)a

with X (0) = yo, where

keK z
S rer kL (k) fora>1,
(0a) o0 = Yowex TRl'(k) + 6O, fora=1,
o, fora <1,

and © = [0;;] is defined by

Oij =2 Ei(k)E;(OmThe, 45T
k,tek
Proof. Recall that - mE" (2}, k) = 0 and 27(0,k) = n~PZ"(2", k). Recall the representation
of X" in (2.24). By [21, Lemma 5.8], M™ is stochastically bounded; see also the proof of [4, Theorem
2.1 (i)]. Since =" is Lipschitz continuous by (2.21), it follows by the same argument in the proof
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[21, Lemma 5.5] that X" is stochastically bounded. Thus, applying [21, Lemma 5.9], n=1X"
converges to the zero process in (D¢, 7;). We write X" as

X"(t) = X™(0) + Z/O (EM(X"(s), k) — (0, k)11 (J"(s)) ds + M"(t)
(A.3)

Let S™(t) and R™(t) be d-dimensional processes denoting the second and fourth terms on the
right-hand side of (A.3). It follows by [1, Proposition 3.2] and (2.23) that

. Wgr fora <1
R" = ’ = 7 in (D4 7)), A4

{0, fora > 1, ( 1 (A.4)
as n — oo, where Wg is a d-dimensional Wiener process with the covariance matrix ©. On the
other hand, we have

It follows by the convergence of n~'X" to the zero process that n ="/ 2X" also converges to the
zero process uniformly on compact sets in probability. Note that, for some constant C, we have
|E27(X"(s), k) — E"(0,k)| < C|X™(s)| for all s > 0 by (2.21). It then follows by [1, Proposition
3.2] and [14, Theorem 5.2] that the first term on the right-hand side of (A.5) converges to the zero
process uniformly on compact sets in probability, as n — oco. See also the proofs of Lemma 4.4 in
[14] and Lemma 4.1 in [4]. It is clear by (A.1) that

W) = Y me(EM(E k) —EM0,k) — > e D zE(i, k) (A.6)
kel kel z
uniformly on compact sets in R%. Note that the function A" is Lipschitz continuous by (2.21). By
[21, Theorem 4.1] (see also [14, Lemma 4.1]), the integral mapping 2" = ¥"(z"): D¢ — D? defined
by

2" (t) = 2"(t) —I—/O h™(z"(s))ds VneNN,

is continuous in (D9, 71). Thus, applying the continuous mapping theorem and using (A.3)—(A.6),
we obtain
X" = X in (D47).

Recall the definitions of ['™ and ©" in (2.25) and (2.29), respectively. As n — oo, we have that
™(0,k) — (k) when a > 1, and I'™(0, k) — 0 when a < 1 by (2.23). Since 8 = max{1—a/2,1/2}, it
then follows by (A.2) that ©” — O when o < 1, and ©" — 0 when « > 1. It is then straightforward
to verify that Y = X in (D4, 1), as n — oo. Therefore, X" and Y™ have the same diffusion
limit. O
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