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Abstract. We study the large deviation behaviors of a stochastic fluid queue with an input being
a generalized Riemann-Liouville (R-L) fractional Brownian motion (FBM), referred to as GFBM.
The GFBM is a continuous mean-zero Gaussian process with non-stationary increments, extending
the standard FBM with stationary increments. We first derive the large deviation principle for the
GFBM by using the weak convergence approach. We then obtain the large deviation principle for
the stochastic fluid queue with the GFBM as the input process as well as for an associated running
maximum process. Finally, we study the long time behavior of these two processes, in particular,
we show that a steady state distribution exists and derive the exact tail asymptotics using the
aforementioned large deviation principle together with some maximal inequality and modulus of
continuity estimates for the GFBM.

1. Introduction

Stochastic fluid queues have been used to model communication networks, in particular, the flow
of data through the network as a “fluid” continuously over time. The input of such fluid queues
is assumed to be an exogenous random process while the output is a constant rate. The fluid
queue, which is often viewed as the fluid workload process, is then modeled via the one-dimensional
reflection. See, for example, an overview of the stochastic fluid queues in [33, Chapter 5] (and an
overview of scheduling of stochastic fluid networks in [7, Chapter 12]). Such models are also used
to model the dynamics in storage or dams [30].

Although the input can be of any general continuous-time stochastic process, in the telecom-
munication literature, Gaussian processes with self-similarity and long-range dependence, such
as fractional Brownian motion (FBM), are often used to model the traffic flow into the system
[22, 23, 25, 26, 28, 34]. However, the existing studies using FBM only model stationary inputs that
have these self-similarity and long-range dependent properties. Many internet and communication
input flows exhibit nonstationarity (see, e.g., [5, 19, 31]). Therefore it is desirable to use a process
to capture all these characteristics.

Recently, Pang and Taqqu [27] have introduced a generalized fractional Brownian motion (GFBM)
as the scaling limit of power-law shot noise processes extending [29, Chapter 3.4] and [21]. The
GFBM loses the stationary increments property of the standard FBM, while exhibiting self-similarity
and long range dependence. In this paper we use a special case of GFBM, which is the generalized
Riemann-Liouville (R-L) FBM, see Equation (2.1), as the input process for fluid queues.

We particularly focus on the large deviation principles (LDPs) of the fluid queues with the GFBM
input. Large deviations of fluid queues have been well studied, see an overview in [13]. Our paper
is of similar flavor as Chang et al. [6], which studies the large deviations and moderate deviations
properties of fluid queues with an input process that can be regarded as an extension of the R-L
FBM. Specifically, the Brownian motion in the R-L FBM is replaced by a process of stationary
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2 LARGE DEVIATIONS OF FLUID QUEUES WITH GFBM INPUT

increments that satisfies a large deviations or a moderate deviations principle. That construction
obviously differs from the GFBM. One distinction is that the mapping in that construction is
continuous from the process of stationary increments to the input process, and thus, the contraction
principle can be applied to establish the LDP for the input process. However, that is not the case for
the GFBM. We explain in detail why the contraction principle cannot be directly used to establish
the LDP for the GBM from that of the driving BM in Section 2.2.2.

Therefore we establish an LDP for the GFBM ({Xε}ε>0 as defined in (2.8)) using a different
approach i.e., the weak convergence approach, see Section 2.2.3 for a brief description. This ap-
proach is commonly used in proving LDPs of processes that can be expressed as a measurable map
of a Brownian motion (Xε is clearly an example). We establish the LDP for {Xε}ε>0 by proving
Lemmas 3.1, 3.2 and Lemma 3.3 (following the procedure for LDPs according to Theorem 2.1).
The advantage of this approach lies in the fact that the LDP for {Xε}ε>0 is simply equivalent
to tightness of processes {Xε,vε}ε>0 (defined in (3.2)), for an appropriate pre-compact family of
processes {vε}ε>0 and uniqueness of solutions to equation (3.2), for an appropriately specified pro-
cess v. The aforementioned tightness (which is required to prove Lemma 3.1) is derived under
the assumption that the set of parameters (α, γ) for the GFBM in (2.1) satisfying (2.6) (noting
that the Hurst parameter H can take values in (0, 1) in this range unlike the standard FBM BH

with H ∈ (1/2, 1) when γ = 0). On the other hand, the rate function obtained using the weak
convergence approach is given in the form of an optimization problem (see (3.1)). In fact, even
for standard FBM, the rate function using the contraction principal in [6] is also implicitly given
via the integral mapping. Here we present an expression of the rate function for the GFBM using
Laplace transform in Lemma 3.4.

We then move on to prove the LDP for the workload process V (·) of a stochastic fluid queue
with the GFBM as input and with a constant service rate and the corresponding running maximum
process M(·). See (4.1) and (4.2). It is clear that the sample path LDP for V (·) and M(·) can be
easily obtained by applying the contraction principle by the continuity of the reflection mapping
in the Skorohod topology. However, by adapting the method in [6, Section 4 & 5], using the LDP
result for the GFBM, we obtain the LDP for V (·) and M(·) at a fixed time, in which the rate
function is explicitly provided (see Theorem 2.2 and Lemma 4.1).

Finally, we analyze the long time behavior of these processes in Section 5. As it is well-known,
if the input process as stationary increments, the study of V (t) and M(t) is equivalent (see (4.3)).
Since the GFBM has non-stationary increments, the usual approach with stationary input to derive
the steady state of the queueing process does not apply (see, e.g, tail asymptotics of fluid queues
with the R-L FBM in [9, 10, 12, 14, 15] and the reference therein).

To study the long time behavior we first establish that the laws of V (t) and M(t) have a weak
limit point as t → ∞ (in fact, we show that M(t) converges almost surely as t → ∞). We first
derive an alternative representation of the GFBM in Lemma 5.1 by using Itô product formula for
which we have to use an approximation approach to avoid an ill-defined issue around time zero.
We then derive a new maximal inequality for the scaled GFBM (see Lemma 5.3), in particular,
the tail asymptotics for maxδ0≤s≤t

{
s−HX(s)

}
, for some δ0 > 0 and a modulus of continuity type

estimates for X(t), when t is around 0. Moreover, by using this new maximal inequality, we can
show that the tail of laws of V (t) and M(t) at fixed t is sub-exponential (Theorems 5.1 and 5.3),
from which we conclude that the laws of V (t) have a weak limit point as t→∞. In addition, this
sub-exponential tail behavior also implies that expectation of the M(t) is uniformly bounded in
time, and thus conclude that M(t) converges almost surely.

Now that the existence of a steady state distribution is proved, we next study the tail asymptotics
of these steady state distributions. Due to the non-stationarity of the processes, the steady state
distribution of this process is not necessarily equal to the steady state of the queuing process
mentioned above. We derive tail asymptotics for the steady states in Theorem 5.2 and 5.4. For this
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purpose, we derive a maximal inequality (see Lemma 5.3) and a modulus of continuity estimates
(see Lemma 5.2 and 5.4) for the GFBM.

We also provide alternative proofs for certain results in Sections 4 and 5 using well known results
on the extremes of Gaussian processes. Specifically, we give proofs for Theorem 4.1 and Lemma 4.1
in Section 4.1 using Landau-Marcus-Shepp asymptotics [24, Equation (1.1)], and discuss how it
is used to prove Lemma 5.4 in Remark 5.5. We also give an alternative proof for Theorem 5.2 in
Section 5.1 using results on the tail asymptotics for locally stationary self-similar Gaussian processes
by Hüsler and Piterbarg [16]. For this we show that the GFBM is locally stationary, despite its
non-stationary increments (see Lemma A.2).

1.1. Notation. Let (Ω,F , {Ft}t≥0,P) be the filtered probability space with Ft satisfying the usual
conditions. E denotes the expectation with respect to P. For T > 0, let CT be the space of
continuous real-valued functions f on [0, T ] such that f(0) = 0 and equipped with the uniform
topology (‖ · ‖∞ denotes the corresponding norm). When there is no ambiguity, we write CT as
C. L2([0, T ]) denotes the space of square integrable Lebesgue measurable functions on [0, T ]. PZ
denotes the law of the random variable Z.

1.2. Organization of the paper. In Section 2, we introduce the GFBM process and give its basic
properties. In Section 2.2, we give the definitions and necessary results from the general theory
of large deviations. As mentioned already we use the approach of weak convergence in this work,
we introduce and compare this approach to other well-known approaches proving large deviation
principle. We also state important results used in this approach. In Section 3, we prove that the
GFBM process defined in (2.8) satisfies a large deviation principle. In Section 4, we establish a
large deviation principle for the workload process and the running maximum process of a stochastic
fluid queue with constant service rate and scaled GFBM as the arrival process. Finally, in Section 5
we study the long time behavior of the the running maximum process and the queuing process.

2. Preliminaries

2.1. Generalized Riemann-Liouville FBM. The generalized Riemann-Liouville (R-L) FBM
{X(t) : t ≥ 0} is introduced in [27, Remark 5.1] and further studied in [17, Section 2.2]. The
process X(t) is defined by

X(t) = c

∫ t

0
(t− u)αu−γ/2dB(u) , t ≥ 0 , (2.1)

where B(t) is a standard Brownian motion and c ∈ R,

γ ∈ [0, 1), α ∈
(
− 1

2
+
γ

2
,

1

2
+
γ

2

)
.

The normalization constant c is such that E[X(t)2] = t2H (it can be explicitly given as in Lemma
2.1 of [17]). The process X(t) is a continuous self-similar Gaussian process with Hurst parameter

H = α− γ

2
+

1

2
∈ (0, 1).

It has non-stationary increments, in particular, the second moment for its increments is

E
[
(X(t)−X(s))2

]
= c2

∫ t

s
(t− u)2αu−γdu+ c2

∫ s

0
((t− u)α − (s− u)α)2u−γdu , (2.2)

for any 0 ≤ s < t. It has mean zero and covariance function

Cov(X(t), X(s)) = E[X(s)X(t)] = c2

∫ s

0
(t− u)α(s− u)αu−γdu, (2.3)

for 0 ≤ s ≤ t. For simplicity, we refer to this process as GFBM.
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When γ = 0, the process X(t) becomes the standard R-L FBM

BH(t) = c

∫ t

0
(t− u)αB(du), t ≥ 0 . (2.4)

which has

E
[
(BH(s)−BH(t))2

]
= c2|t− s|2H ,

and the covariance function

Cov(X(t), X(s)) = E
[
BH(s)BH(t)

]
=

1

2
c2
(
t2H + s2H − |t− s|2H

)
. (2.5)

It is clear that the GFBM X loses the stationary increment property that the standard FBM BH

possess.
Some sample path properties of the GFBM X have been studied. It is shown in [27, Propo-

sition 5.1] and [17, Theorems 3.1 and 4.1] that X has continuous sample paths almost surely,
and moreover, is Hölder continuous with parameter H − ε for ε > 0; and the paths of X is
non-differentiable if γ ∈ (0, 1) and (γ − 1)/2 < α ≤ 1/2, and differentiable if γ ∈ (0, 1) and
1/2 < α ≤ (1 +γ)/2, almost surely. In [32], the additional properties of the exact uniform modulus
of continuity are studied.

For standard FBM, the Hurst parameter H not only indicates the self-similarity property, but
also dictates the short and long range dependences, that is, H ∈ (0, 1/2) and H ∈ (1/2, 1) for
short and long range dependences, respectively. The usual definition of long range dependence is
through the autocovariance functions, namely, letting γs = Cov(Z(t), Z(t + s)) be the covariance
function of a stationary process Z(t) (noting that γs is independent of t due to stationary incre-
ments), one says the process has long range dependence if

∑∞
s=−∞ γs =∞. However, for processes

with non-stationary increments this definition does not apply. In [18], a concept of long-range
dependence for self-similar processes (not necessarily stationary) is introduced via the associated
Lamperti transform (which turns the nonstationary process into a stationary one). Specifically,

for a self-similar process Z(t) with Hurst parameter H and Z(0) = 0, the Lamperti transform Z̃

is defined by Z̃(t) = e−HtZ(et) for t ∈ R, which is strictly stationary with covariance function

γ̃s = E[Z̃(t)Z̃(t+ s)] for any t, s ∈ R. We then say that the process Z has a long range dependence
if limt→∞

1
t log |γ̃t|+H > 0. For standard FBM, it can be checked that this condition is equivalent

to 2H − 1 > 0, that is, H > 1/2. It is shown in [18, Proposition 6] that the GFBM has long range
dependence in that sense if and only if α > 0. As a special case, when γ = 0, the FBM BH is long
range dependent if H = α+ 1/2 > 1/2. Observe that, for the GFBM, when

γ ∈ (0, 1), 0 < α < (1 + γ)/2, (2.6)

the value of the Hurst parameter H = α− γ/2 + 1/2 can take any value in (0, 1). Specifically, for
0 < α < γ/2, H ∈ (0, 1/2) while for γ/2 < α < (1 + γ)/2, H ∈ (1/2, 1). Our results below in the
large deviation of the GFBM and the fluid queue with the GFBM input assume this parameter
range in (2.6).

2.2. Large deviation principle for functionals of BM. Suppose (S,B(S)) is a Polish space
with B(S) being the Borel σ-algebra of S. Consider a family of S-valued random variables {Xε}ε>0,
whose corresponding family of probability measures is denoted by µε.

Definition 2.1. The family of S-valued random variables {Xε}ε>0 (or the family of probability
measures {µε}ε>0) is said to satisfy a large deviation principle (LDP), if there is a lower semicon-
tinuous function I : S → [0,∞] and the following is satisfied:

(1) For every A ∈ B(S),

− inf
x∈A◦

I(x) ≤ lim inf
ε→0

ε logµε(A) ≤ lim sup
ε→0

ε logµε(A) ≤ − inf
x∈Ā

I(x),



Large Deviations of Fluid Queues with GFBM Input 5

where A◦ and Ā denote the interior and closure of the measurable set A.
(2) For l ≥ 0, {x : I(x) ≤ l} is a compact set in S.

We refer to I as the rate function and ε as the rate.

It is well known that an equivalent way of defining the LDP is given by the result below (see [4,
Theorem 1.5 and 1.8]).

Theorem 2.1. A family of probability measures {µε}ε>0 satisfies an LDP with rate function I and
rate ε if and only if for every bounded continuous function Φ : S → R,

lim
ε→0
−ε log

∫
S

exp

(
−1

ε
Φ(x)

)
µε(dx) = inf

x∈S
[I(x) + Φ(x)] . (2.7)

and for every l ≥ 0, {x ∈ S : I(x) ≤ l} is compact in B(S).

The following result is used often in the sections that follow [4, Theorem 1.16].

Theorem 2.2 (Contraction principle). Suppose (S′,B(S′)) is another Polish space and F : (S,B(S))→
(S′,B(S′)) be a continuous map. If the family {µε}ε>0 satisfies LDP with rate function I and rate
ε, then the family {νε .= µε ◦F−1}ε>0 also satisfies LDP on S′ with the rate ε and the rate function
I ′ given by

I ′(y) = inf
x∈S:F (y)=x

I(x).

One of the main goals of this work is to prove that

Xε .= εX (2.8)

satisfies the LDP with appropriate rate and rate function for the GFBM X in (2.1). From the
existing literature, three common approaches can be used to arrive at the desired result. We briefly
describe these approaches and point out the difficulties or lack thereof in adopting these approaches
to our case.

2.2.1. Using Gartner-Ellis Theorem [11, Section 4.5.3]. In this approach, we study the logarithm
of moment generating function of finite dimensional distribution of Xε and its limiting behavior
as ε → 0. It is also required to prove the exponential tightness (See [11, Page 8]) of the process.
In contrast, using the weak convergence approach described briefly below, we are only required to
show tightness of some appropriate family of processes.

2.2.2. Using LDP of {εB}ε>0 and Theorem 2.2. It is well known that the family of C- valued random
variables {εB}ε>0 satisfies LDP [11, Theorem 5.2.3 ] with rate ε2 and rate function IB : C → [0,∞]
given by

IB(ξ)
.
=

{
1
2

∫ T
0 ξ̇(s)2ds, whenever ξ is absolutely continuous and ξ(0) = 0,

∞, otherwise.

Remark 2.1. Fix b(ε) such that
√
ε

b(ε)
→ 0 and b(ε)→ 0, as ε→ 0.

Suppose an S-valued process A on [0, T ] such that {εA(ε−1·)}ε>0 satisfies an LDP with rate function
I and rate ε and {

√
εA(ε−1·)}ε>0 is weakly convergent to a non-trivial distribution. Then it is of

interest to study the asymptotic behavior {b(ε)
√
εA(ε−1·)}ε>0 which is in some sense, in-between

the above behaviors. The process {b(ε)
√
εA(ε−1·)}ε>0 is said to satisfy a moderate deviations

principle if it satisfies an LDP with some rate function Ī and rate b(ε)2.
Clearly, both the families {

√
εB}ε>0 and {b(ε)B}ε>0 satisfy LDP with same rate function IB

and rates ε and b(ε)2, respectively. But the LDP of {b(ε)B} can be framed as the MDP by
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noting that the laws of {b(ε)
√
εB(·ε−1)} and {b(ε)B} are equal. In other words, the rate functions

corresponding to LDP and MDP are the same. It is just the rates that change accordingly. Since
GFBM X as defined in (2.1) is a linear function of Brownian motion B, similar comments can be
made for X. Hence, without loss of generality, we just consider the large deviation behavior as the
driving noise in our case is a Brownian motion.

Suppose a C-valued process defined by Y ε .
= F (εB), for a continuous function F : C → C.

Using Theorem 2.2, we can conclude that {Y ε}ε>0 satisfies LDP with rate ε2 and rate function
IY : C → [0,∞] given by

IY (η) =
1

2
inf

ξ∈C:η=F (ξ)

∫ T

0
ξ̇(s)2ds.

This approach was used in [6, Theorem 3.1] to prove the LDP of the standard FBM:

Y ε(t) = F (εB)(t)
.
= ε

∫ t

0
(t− s)H−

1
2dB(s), for H >

1

2
. (2.9)

It can be checked that F as defined above is a continuous map from C to C. (In fact, a more general
class of processes are considered in [6] where the Brownian motion B is replaced by any process
with stationary increments satisfying an LDP.) Unfortunately, we cannot adopt this method to our
case as the map defined by

G(ξ)(t)
.
=

∫ t

0
(t− s)αs−

γ
2 dξ(s)

fails to be continuous from C to C. This is mainly due to the presence of the term s−
γ
2 in the

integral and without having strong decaying behavior of ξ(s) as s → 0, the above integral may
not be well-defined. Indeed, we consider the following: Fix γ ∈ (0, 1) and choose ξ ∈ C such that
ξ(s) = sβ on [0, δ1], with 0 < δ1 < t and 0 < β < γ

2 . This choice is sufficient to illustrate the effect

of s−
γ
2 , although ξ with a more general form can also be considered. With the above choice of ξ,

we have for any 0 < δ < δ1 < t,∫ t

0
(t− s)αs−

γ
2 ξ(ds) ≥ β

∫ δ1

δ
(t− s)αs−

γ
2 sβ−1ds

≥ β(t− δ1)α
∫ δ1

δ
s−

γ
2 sβ−1ds

=
β(t− δ)α

−γ
2 + β

(
δ
− γ

2
+β

1 − δ−
γ
2

+β
)

↑ ∞, as δ → 0.

It is easy to see that the set of all functions ξ ∈ C satisfying the above property form an open set in
C. Therefore, we can conclude that the map G is not well defined on at least an open set of C. In
other words, we cannot use Theorem 2.2 on the map G. However, we note that the rate function
corresponding to Y ε is obtained from the rate function corresponding to Xε by directly evaluating
it as γ = 0. Compare [6, Theorem 3.1] and Theorem 3.1.

2.2.3. Using weak convergence approach [4, Section 3.2]. This approach can be used to study the
large deviation behavior of any C-valued family of random variables defined as {Zε .= R(εB)}, where
R : C → C is Borel measurable. The key tool used in this approach is the following variational
representation of exponential functionals of Brownian motion B.

Theorem 2.3. [3, Theorem 3.1] For a bounded Borel measurable functional Ψ : C → R,

− logE

[
exp

(
−Ψ(B)

)]
= inf

v∈A
E
[

1

2

∫ T

0
v(s)2ds+ Ψ

(
B +

∫ ·
0
v(s)ds

)]
. (2.10)
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Here, A is the set of Ft- progressively measurable processes v(·) such that

E
[∫ T

0
v(s)2ds

]
<∞.

In what follows, we sometimes refer to elements of A as controls. Using the above result, we are
set to prove the LDP of Zε = R(εB) in the following way.

For ε > 0 and any bounded continuous function Φ : C → R, we first rewrite (2.10) by choosing
Ψ(B) = ε−2Φ ◦R(εB) = ε−2Φ(Zε) and defining Zε,v

.
= R(εB +

∫ ·
0 v(s)ds):

−ε2 logE
[
exp

(
− 1

ε2
Φ(Zε)

)]
= −ε2 logE

[
exp

(
−ε−2Φ ◦R(εB)

)]
(2.11)

= ε2 inf
v∈A

E
[

1

2

∫ T

0
v(s)2ds+ ε−2Φ ◦R(εB + ε

∫ ·
0
v(s)ds)

]
= inf

v∈A
E
[
ε2

2

∫ T

0
v(s)2ds+ Φ(Zε,v)

]
= inf

v∈A
E
[

1

2

∫ T

0
v(s)2ds+ Φ(Zε,v)

]
. (2.12)

To get the final equality, we re-defined εv as v. Note that this does not change the right hand side.
To prove the LDP for {Zε}ε>0, we now work with the expression on the left hand side above. Note
that this resembles the left hand side of (2.7) without the limit.

Using Theorem 2.1, to conclude that {Zε}ε>0 satisfies LDP, it remains to show that

(1) the expression in (2.11) has a limit;
(2) this limit is equal to

inf
x∈C

[I(x) + Φ(x)] ,

for some lower semi-continuous function I : C → [0,∞] with compact level sets.

To this end, we require the following lemma [4, Page 62] which states that there are nearly
optimal controls of the right hand side in (2.11) which are almost surely finite in L2([0, T ]) norm.

Lemma 2.1. For every δ > 0, there is M <∞ such that

−ε2 logE
[
exp

(
− 1

ε2
Φ(Zε)

)]
≥ inf

v∈Ab,M
E
[

1

2

∫ T

0
v(s)2ds+ Φ(Zε,v)

]
− δ,

for every δ > 0. Here, Ab,M is a subset of A that contains v ∈ A such that
∫ T

0 v(s)2ds ≤M, P−
a.s.

In the above, the maps F and R are chosen to be C-valued for simplicity. They are allowed to
take values in any Polish space.

3. LDP for the Generalized R-L FBM

In this section, we prove the LDP result of the process {Xε}ε>0 in (2.8).

Theorem 3.1. Assuming that (α, γ) satisfy (2.6), {Xε}ε>0 satisfies an LDP with rate ε2 and rate
function IX : C → [0,∞] given by

IX(ξ)
.
=

{
infv∈Sξ

1
2

∫ T
0 v(s)2ds,

∞, whenever Sξ = ∅.
(3.1)

Here Sξ, for ξ ∈ C, is the collection of all v ∈ L2([0, T ]) such that

ξ(t) = c

∫ t

0
(t− s)αs−

γ
2 v(s)ds.
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Remark 3.1. This result for the case where γ = 0 can be obtained as a special case of [6, Theorem
3.1]. In the above theorem, we get the rate function in an implicit form. This is not a consequence

of the s−
γ
2 term in the definition of X(·), but because of the (t − s)α term. To see this, one can

take α = 0 and proceed with the same proof. The rate function in this case turns out to be

IX(ξ) =
1

2

∫ T

0
sγ ξ̇(s)2ds,

whenever ξ is absolutely continuous on [0, T ] and ∞, otherwise. Note that the hypothesis of the
above theorem assumes α > 0, but this will not be an issue in adopting the same proof.

Remark 3.2. This result is used repeatedly in the sections that follow. The techniques of the proof
break down as γ → 1. This is mainly because the process∫ t

0
(t− s)αs−

1
2dB(s)

is not well defined, P− a.s.

Define

Xε,v(t)
.
= ε

∫ t

0
(t− s)αs−

γ
2 dB(s) + c

∫ t

0
(t− s)αs−

γ
2 v(s)ds . (3.2)

This process will be used in the following two lemmas.

Lemma 3.1. For any bounded continuous function Φ : C → R,

lim inf
ε→0

−ε2 logE
[
exp

(
− 1

ε2
Φ(Xε)

)]
≥ inf

x∈C
[IX(x) + Φ(x)] ,

with IX as defined in the statement of Theorem 3.1.

Proof. Fix δ > 0. From Lemma 2.1, we have

−ε2 logE
[
exp

(
− 1

ε2
Φ(Xε)

)]
≥ inf

v∈Ab,M
E
[

1

2

∫ T

0
v(s)2ds+ Φ(Xε,v)

]
− δ,

for every δ > 0. Recall that Ab,M is a subset of A that contains v ∈ A such that
∫ T

0 v(s)2ds ≤
M, P− a.s.

Now consider a δ-optimal control vε ∈ Ab,M to the above infimum, that is, vε satisfies

−ε2 logE
[
exp

(
− 1

ε2
Φ(Xε)

)]
≥ E

[
1

2

∫ T

0
vε(s)2ds+ Φ(Xε,vε)

]
− 2δ.

Since
∫ T

0 vε(s)2ds ≤M , {vε}ε>0 is weakly compact in L2([0, T ]), i.e., there exists a subsequence εn

and a v ∈ L2([0, T ]) such that
∫ T

0 vεn(s)u(s)ds→
∫ T

0 v(s)u(s)ds, for every u ∈ L2([0, T ]).

For now, let us assume that the family of C ×L2([0, T ]) - valued random variables {(Xε,vε , vε)}ε
is tight. Let εn be the converging subsequence with (X̄v, v) as the corresponding weak limit and
write (Xεn,vεn , vεn) as (Xn, vn) when there is no ambiguity. From the Skorohod representation
theorem, we have a probability space (Ω∗,F∗,P∗) in which

(Xn, vn)→
(
X̄v, v

)
, P∗ − a.s.

and the distributions of B, {Xn}, {vn}, X̄v and v remain the same under P∗ and P. We have

lim inf
εn→0

−ε2
n logE

[
exp

(
− 1

ε2
n

Φ(Xεn)

)]
≥ lim inf

n→∞
E
[

1

2

∫ T

0
vn(s)2ds+ Φ(Xn)

]
− 2δ

≥ E
[

1

2

∫ T

0
v(s)2ds+ Φ(X̄v)

]
− 2δ
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≥ E
[

inf
v∈SX̄v

1

2

∫ T

0
v(s)2ds+ Φ(X̄v)

]
− 2δ

≥ inf
x∈C

[IX(x) + Φ(x)]− 2δ.

Here the second inequality follows from Fatou’s lemma. From the arbitrariness of δ, we have the
result. The construction of (Ω∗,F∗,P∗) is necessary to characterize the limit points (X̄v, v).

It now remains to show that {(Xε,vε , vε)}ε>0 is in fact tight in C × L2([0, T ]). To that end,
{vε}ε>0 is precompact in L2([0, T ]) under weak∗ topology. Indeed, since any closed ball is compact

in L2([0, T ]) under weak∗ topology and
∫ T

0 vε(s)2ds ≤ M . Let εn (denoted simply by n) be the
converging subsequence and v be the corresponding limit. Note that we have only concluded that
the laws of vn converge weakly to the law of v. From the Skorohod representation theorem, we can
infer that

vn → v, P∗ − a.s.

Finally, we show that Xεn,vεn (written as Xn) converges almost surely in C and also characterize
the limit. Note that

εnB → 0 in C, P∗ − a.s.

Recall that

Xn(t) = εnc

∫ t

0
(t− s)αs−

γ
2B(ds) + c

∫ t

0
(t− s)αs−

γ
2 vn(s)ds.

.
= Xn

1 (t) +Xn
2 (t)

and from the P∗− a.s. convergence of {vn}, we know that for any u ∈ L2([0, T ]),∫ T

0
u(s)vεn(s)ds→

∫ T

0
u(s)v(s)ds, P∗ − a.s.

And since (t− s)αs−
γ
2 ∈ L2([0, T ]), for every t ∈ [0, T ], we have∫ T

0
1s∈[0,t](t− s)αs−

γ
2 vεn(s)ds→

∫ T

0
1s∈[0,t](t− s)αs−

γ
2 v(s)ds.

Consider the following: for 1 > h > 0, P∗− a.s., we have

|Xn
2 (t+ h)−Xn

2 (t)|

≤ c
∣∣∣∣∫ t+h

t
(t+ h− s)αs−

γ
2 vn(s)ds

∣∣∣∣+ c

∣∣∣∣∫ t

0
[(t+ h− s)α − (t− s)α] s−

γ
2 vn(s)ds

∣∣∣∣
≤ chα

∣∣∣∣∫ t+h

t
s−

γ
2 vn(s)ds

∣∣∣∣+ c max
0≤s≤t

{|(t+ h− s)α − (t− s)α|}
∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
≤ chα

√∫ t+h

t
s−γds

√∫ T

0
|vn(s)|2ds+ c max

0≤s≤t
{|(s+ h)α − sα|}

∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
≤ chα

√
1

1− γ
((t+ h)1−γ − t1−γ)

√∫ T

0
|vn(s)|2ds+ chα

∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
≤ chα

√
1

1− γ
h1−γ

√∫ T

0
|vn(s)|2ds+ chα

∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
≤ chα−

γ−1
2

√
M

1− γ
+ chα

∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
≤ cK max

{
hα, hα−

γ−1
2

}
(3.3)
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≤ cKhα,

where

K
.
= sup

n∈N
sup

0≤t≤T

{√
M

1− γ
+

∣∣∣∣∫ t

0
s−

γ
2 vn(s)ds

∣∣∣∣
}

and the last inequality follows since α > 0 and 0 ≤ γ < 1. In the above, we have used the fact that∣∣∣∣∫ t

0
s−

γ
2 vεn(s)ds

∣∣∣∣ and

√∫ T

0
|vεn(s)|2ds

are uniformly bounded in n. To summarize, we have proved that Xn
2 is α-Hölder continuous , P∗−

a.s. Xn
2 is clearly uniformly bounded in n. Indeed, from (3.3) (note that this is valid for every

0 ≤ h ≤ T ) with t = 0,

sup
0≤h≤T

|Xn
2 (h)| ≤ K max

{
Tα, Tα−

γ−1
2

}
.

Since {Xn
2 } is uniformly bounded and equicontinuous in C, P∗− a.s., the Arzelà-Ascoli theorem

gives us the precompactness of {Xn
2 }, P∗− a.s.

We now show that any limit point of {Xn
2 } is given by

X̄v
2 (t)

.
= c

∫ t

0
(t− s)αs−

γ
2 v(s)ds.

In other words, {Xn
2 } is convergent in C, P∗− a.s. To show this, for t ∈ [0, T ], we have

|Xn
2 (t)− X̄v

2 (t)| = c

∣∣∣∣∫ t

0
(t− s)αs−

γ
2 (vεn(s)− v(s))ds

∣∣∣∣
→ 0, as n→∞,

since vn → v, P∗− a.s.
We now shift our focus on to Xn

1 . Note that from [2, Theorem 1.6], for every δ > 0, there is a
compact set Kδ ⊂ C such that P(X ∈ Kδ) > 1− δ. For every n,

1− δ < P(εnX ∈ εK) ≤ P(εnX ∈ K).

To understand the second inequality, note that for every compact set K ⊂ C, from the Arzelà-Ascoli
theorem, there are two parameters that correspond to K: C, the uniform bound in n of the ‖.‖∞
norm and ρ(·), the modulus of continuity of the elements in K. Checking the following parameters
for {εnX}, we can clearly see that C and ρ(·) can be used to conclude the uniform boundedness
and equicontinuity of {εnX}. Hence, {εnX ∈ εnK} ⊂ {εnX ∈ K}. Therefore, {εnX} is tight in C.
This completes the proof of the lemma. �

Lemma 3.2. For any bounded continuous function Φ : C → R,

lim sup
ε→0

−ε2 logE
[
exp

(
− 1

ε2
Φ(Xε)

)]
≤ inf

x∈C
[IX(x) + Φ(x)] , (3.4)

where IX is as defined in the statement of Theorem 3.1.

Proof. Choose a δ-optimal x∗ ∈ C of the right hand side of (3.4), i.e.,

IX(x∗) + Φ(x∗) ≤ inf
x∈C

[IX(x) + Φ(x)] + δ

and also choose a δ-optimal v∗ ∈ Sx∗ , i.e.,

1

2

∫ T

0
v∗(s)2ds ≤ inf

v∈Sx∗

1

2

∫ T

0
v(s)2ds+ δ.
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We note here that v∗ is non-random, from the definition of S∗x, as x∗ is non-random. Now by (2.12),
we obtain

lim sup
ε→0

−ε logE
[
exp

(
−1

ε
Φ(Xε)

)]
= lim sup

ε→0
inf
v∈A

E
[

1

2

∫ T

0
v(s)2ds+ Φ(Xε,v))

]
≤ lim sup

ε→0
E
[

1

2

∫ T

0
v∗(s)2ds+ Φ(Xε,v∗))

]
≤ 1

2

∫ T

0
v∗(s)2ds+ lim sup

ε→0
E
[
Φ(Xε,v∗)

]
. (3.5)

To proceed further, recall the fact from the proof of Lemma 3.1 that Xε,v∗(·) converges weakly to

X0,v∗(t)
.
=

∫ t

0
(t− s)αs−

γ
2 v∗(s)ds,

which is non-random. Since v∗ ∈ Sx∗ ,

x∗(t) =

∫ t

0
(t− s)αs−

γ
2 v∗(s)ds = X0,v∗(t).

Thus we obtain

lim sup
ε→0

−ε logE
[
exp

(
−1

ε
Φ(Xε)

)]
≤ 1

2

∫ T

0
v∗(s)2ds+ lim sup

ε→0
E
[
Φ(X0,v∗)

]
≤ 1

2

∫ T

0
v∗(s)2ds+ Φ(X0,v∗)

≤ IX(x∗) + δ + Φ(x∗) + δ

≤ inf
x∈C

[IX(x) + Φ(x)] + 2δ .

Here the first inequality follows from the last display in (3.5) by applying the continuous mapping
theorem and the weak convergence of Xε,v∗(·) to X0,v∗(·), and the second inequality follows since
X0,v∗ is non-random. From the arbitrariness of δ, we have the result. �

Lemma 3.3. For every l ≥ 0, {x ∈ C : IX(x) ≤ l} is compact in C.

Proof. Fix l ≥ 0 and consider a sequence {ξn}n∈N ⊂ {ξ : IX(ξ) ≤ l}. Now, for every n ∈ N, there
exists vn ∈ Sξn such that

1

2

∫ T

0
vn(s)2ds ≤ IX(ξn) +

1

n
≤ l +

1

n
.

Therefore, {vn}n∈N is precompact in L2([0, T ]) under weak∗ topology. Denote the converging
subsequence again by n and the limit by v̄.

Consider

ξn(t) = c

∫ t

0
(t− s)αs−

γ
2 vn(s)ds .

From the proof of Lemma 3.1, it is clear that {ξn}n∈N is precompact in C. Let ξ̄ be a sequential
limit of {ξn} along a subsequence, which we again denote by n. Also, we have

ξ̄(t) = c

∫ t

0
(t− s)αs−

γ
2 v̄(s)ds.

Clearly, v̄ ∈ Sξ̄ and IX(ξ̄) ≤ 1
2

∫ T
0 v̄(s)2ds ≤ l. Hence, ξ̄ ∈ {ξ : IX(ξ) ≤ l}. This proves the desired

result. �
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Proof of Theorem 3.1. Combining Lemma 3.1, Lemma 3.2 and Lemma 3.3, it is clear that from
Theorem 2.1, we have the LDP of {Xε}ε>0. �

The following result gives the expression for the rate function IX at ξ explicitly in terms of ξ,
rather than as an optimal value to an optimization problem.

Lemma 3.4. Suppose L[f ] denotes the Laplace transform of f , whenever it is defined. Then,

IX(ξ) =
Γ(α+ 1)2

2

∫ T

0
sγ
(
L−1[pα+1L[ξ̄](p)](s)

)2
ds, (3.6)

whenever ξ is absolutely continuous on [0, T ].

Proof. To begin with, we consider ū ∈ L2([0,∞)) such that s−
γ
2 ū ∈ L2([0,∞)). Now define a

continuous function ξ̄ on [0,∞) in the following way:

ξ̄(t) =

∫ t

0
(t− s)αs−

γ
2 ū(s)ds .

Recall that the Laplace transform of a function f on [0,∞) is defined as

L[f ](p)
.
=

∫ ∞
0

e−ptf(t)ds,

whenever the integral is finite. Since |ξ̄(t)| ≤ Ct1+α, for some C > 0, then L[ξ̄] is well defined. We
are now in a position to consider the Laplace transform of ξ̄. We have

L[ξ̄](p) = L[

∫ t

0
(t− s)αs−

γ
2 ū(s)ds](p)

= L[tα](p)L[t−
γ
2 ū(t)](p)

=
Γ(α+ 1)

pα+1
L[t−

γ
2 ū(t)](p) .

Therefore,

L[t−
γ
2 ū(t)](p) =

1

Γ(α+ 1)
pα+1L[ξ̄](p) .

Now, suppose the inverse Laplace transform L−1 of the right hand side above exists. Then,

ū(t) = Γ(α+ 1)s
γ
2L−1[pα+1L[ξ̄](p)](t),

where L−1[F (p)](t) is defined (see [8, Page 42]) as

L−1[F (p)](t) =
1

2πi

∫ c+i∞

c−i∞
F (p)eptdp, for c > η, (3.7)

whenever F (p) is analytic for <(p) > η. Since |ξ̄(t)| < Ct1+α, we have the following:

|L[ξ̄](p)| ≤ C
∫ ∞

0
e−pttα+1dt <∞, for some C1 > 0 and every p > 0.

From [8, Section 2.1], L[ξ̄](p) is analytic for <(p) > 0. Therefore, |pα+1L[ξ̄](p)| ≤ C1|p|α and
pα+1L[ξ̄](p) is analytic for <(p) > 0. Hence, taking c > 0 in (3.7) gives a convergent integral. In
other words, the definition in (3.7) is well defined for c > 0 and the inverse Laplace transform of
pα+1L[ξ̄](p) exists. To summarize, we have our desired result in (3.6). �
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4. LDP for fluid queues with GFBM input

The main content of this section is the study of LDPs in the context of a stochastic fluid queue
with GFBM input. In particular, we focus our attention on two processes: workload process and
running maximum process which will be defined below.

We consider a stochastic fluid queue with the GFBM X in (2.1) as the arrival process, and a
deterministic service rate k > 0. In particular, the workload process V (t) (assuming that V (0) = 0)
is given by

V (t)
.
= sup

0≤s≤t
(X(t)−X(s)− k(t− s))

= X(t)− kt− inf
0≤s≤t

(X(s)− ks) .
= F (X)(t) . (4.1)

We also define another process that is closely related to V (t) viz., the running maximum process

M(t)
.
= max

0≤s≤t
(X(s)− ks) . (4.2)

Recall that for a stationary input process X (stationary increments), the workload process V (t) in
(4.1) has the same distribution as the following:

V (t)
d
= max

0≤s≤t
(−X(−s)− ks) . (4.3)

This equivalent-in-distribution expression is often used to derive the stationary distribution of V (t)
as t → ∞ (we defer the analysis of steady state of V (t) to Section 5). It can be shown that for
an input process with stationary increments, it is also equivalent in distribution to the running
maximum process M(t). However, this approach does not apply to the queueing process with
GFBM input, since it has nonstationary increments.

In [6], as a special case of [6, Theorem 4.1], the authors have studied the LDP for the workload
process V (t) with the FBM process Y in (2.9) as the input, and proved that F (εY )(T ) satisfies an
LDP with rate ε2 and an appropriate rate function. (In fact, their result applies to a more general
process for Y in (2.9) with the Brownian motion B being replaced by a stationary process satisfying
an LDP.) It is well known that the map F : C → C (reflection mapping) is continuous (see, e.g.,
[7, Chapter 6], [33, Chapter 13.5]). Therefore, we can apply the contraction principle and obtain
the sample path LDP for the process {F (εX)(t) : t ≥ 0}. In the following, we study the LDP of
F (εX)(T ) at a fixed time T , for which the rate function can be characterized explicitly.

Let

V ε .= V ε(T ) = F (εX)(T ).

Theorem 4.1. Assume that (α, γ) satisfy (2.6). {V ε} satisfies an LDP with rate ε2 and rate
function IV : R+ → [0,∞],

IV (x) = inf
ξ∈C:F (ξ)(T )=x

IX(ξ) . (4.4)

Moreover, for λ ≥ 0, we have

lim
ε→0
−ε2 logP (V ε ≥ λ) = − inf

0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)
, (4.5)

where

v1(T, s)
.
= c

∫ s

0
[(T − τ)α − (s− τ)α]2 τ−γdτ, (4.6)

and

v2(T, s)
.
= c

∫ T

s
(T − τ)2ατ−γdτ. (4.7)
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Proof. From the continuity of the map F : C → C and Theorem 2.2, we know that V ε satisfies the
LDP with rate ε2 and rate function IV : R+ → [0,∞] given in (4.4).

The proof for the result in (4.5) follows exactly along the lines of the proof of [6, Theorem 4.1].
We adapt that proof for our process. From the LDP of {V ε} and Theorem 2.1, we know that for
any Borel set A ⊂ R+,

− inf
x∈A◦

IV (x) ≤ lim inf
ε→0

ε2 logP (V ε ∈ A) ≤ lim sup
ε→0

ε2 logP (V ε ∈ A) ≤ − inf
x∈Ā

IV (x).

For λ ≥ 0, taking A = [λ,∞), we have

− inf
x∈(λ,∞)

IV (x) ≤ lim inf
ε→0

ε2 logP (V ε ≥ λ) ≤ lim sup
ε→0

ε2 logP (V ε ≥ λ) ≤ − inf
x∈[λ,∞)

IV (x).

To prove (4.5), it suffices to show that

inf
x∈[λ,∞)

ITV (x) = inf
x∈(λ,∞)

ITV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)
.

Since

inf
0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)

is continuous in λ, proving that

inf
x∈[λ,∞)

ITV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)
(4.8)

automatically implies that

inf
x∈(λ,∞)

ITV (x) = inf
0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)
.

Therefore, we only show (4.8).
The left hand side of (4.8) can be rewritten as

inf
x∈[λ,∞)

ITV (x) = inf
u∈Rλ

1

2

∫ T

0
u(s)2ds,

where,

Rλ
.
=

{
u ∈ L2[0, T ] : sup

0≤s≤T

(
c

∫ T

0
(T − τ)ατ−

γ
2 u(τ)dτ − c

∫ s

0
(s− τ)ατ−

γ
2 u(τ)dτ − k(T − s)

)
≥ λ

}
.

Clearly,

Rλ = ∪0≤s≤TRλ(s)

with

Rλ(s)
.
=

{
u ∈ L2[0, T ] : c

∫ T

0
(T − τ)ατ−

γ
2 u(τ)dτ − c

∫ s

0
(s− τ)ατ−

γ
2 u(τ)dτ − k(T − s) ≥ λ

}
=

{
u ∈ L2[0, T ] : c

∫ s

0
[(T − τ)α − (s− τ)α] τ−

γ
2 u(τ)dτ

− c
∫ T

s
(T − τ)ατ−

γ
2 u(τ)dτ ≥ λ+ k(T − s)

}
.

Then,

inf
u∈Rλ

1

2

∫ T

0
u(s)2ds = inf

0≤s≤T
inf

u∈Rλ(s)

1

2

∫ T

0
u(s)2ds.
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The infimum inside can be solved explicitly using [6, Lemma 3.3 (ii)]. We then get

inf
u∈Rλ(s)

1

2

∫ T

0
u(s)2ds =

(k(T − s) + λ)2

v1(T, s) + v2(T, s)
,

and the minimizer is given as follows:

u(τ) =

{
c k(T−s)+λ
v1(T,s)+v2(T,s) [(T − τ)α − (s− τ)α] τ−

γ
2 , τ ∈ [0, s),

c k(T−s)+λ
v1(T,s)+v2(T,s)(T − τ)ατ−

γ
2 , τ ∈ [s, T ].

This proves the result. �

We now prove an LDP for the running maximum process M(·). Define M ε by

M ε = M ε(T ) = J(εX)(T )
.
= sup

0≤s≤T
(εX(s)− ks) .

Lemma 4.1. Assume that (α, γ) satisfy (2.6). {M ε} satisfies an LDP with rate ε2 and rate function
IM : R+ → [0,∞] given by

IM (x) = inf
ξ∈C:J(ξ)(T )=x

IX(ξ).

Moreover, we have

lim
ε→0
−ε2 logP(M ε ≥ λ) = χ(λ, T ), (4.9)

where

χ(λ, T ) =

{
(λ+kT )2

2T 2H , T < λH
k(1−H) ,

k2H

2H2H(1−H)2(1−H)λ
2(1−H), otherwise.

(4.10)

Proof. The proof for the result in (4.9) follows exactly along the lines of the proof of [6, Corollary
3.4]. We adapt that proof for our process. From the LDP of {M ε} and Theorem 2.1, we know that
for any Borel set A ⊂ R+,

− inf
x∈A◦

IM (x) ≤ lim inf
ε→0

ε2 logP (M ε ∈ A) ≤ lim sup
ε→0

ε2 logP (M ε ∈ A) ≤ − inf
x∈Ā

IM (x).

For λ ≥ 0, taking A = [λ,∞), we have

− inf
x∈(λ,∞)

IM (x) ≤ lim inf
ε→0

ε2 logP (M ε ≥ λ) ≤ lim sup
ε→0

ε2 logP (M ε ≥ λ) ≤ − inf
x∈[λ,∞)

IM (x).

To prove (4.9), it suffices to show that

inf
x∈[λ,∞)

ITM (x) = inf
x∈(λ,∞)

ITM (x) = inf
0≤s≤T

(λ+ ks)2

s2H
= χ(λ, T ).

Since

inf
0≤s≤T

(λ+ ks)2

s2H

is continuous in λ, proving that

inf
x∈[λ,∞)

ITM (x) = inf
0≤s≤T

(λ+ ks)2

s2H
(4.11)

automatically implies that

inf
x∈(λ,∞)

ITM (x) = inf
0≤s≤T

(λ+ ks)2

s2H
.

Therefore, we only show (4.11).
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The left hand side of (4.11) can be rewritten as

inf
x∈[λ,∞)

ITM (x) = inf
u∈Qλ

1

2

∫ T

0
u(s)2ds,

where

Qλ
.
=

{
u ∈ L2[0, T ] : sup

0≤s≤T

(
c

∫ s

0
(s− τ)ατ−

γ
2 u(τ)dτ − ks

)
≥ λ

}
.

Clearly,

Qλ = ∪0≤s≤TQλ(s)

with

Qλ(s)
.
=

{
u ∈ L2[0, T ] : c

∫ s

0
(s− τ)ατ−

γ
2 u(τ)dτ − ks ≥ λ

}
=

{
u ∈ L2[0, T ] : c

∫ s

0
(s− τ)ατ−

γ
2 u(τ)dτ ≥ λ+ ks

}
.

Then,

inf
u∈Qλ

1

2

∫ T

0
u(s)2ds = inf

0≤s≤T
inf

u∈Qλ(s)

1

2

∫ T

0
u(s)2ds.

The infimum inside on the right hand side can be solved explicitly using [6, Lemma 3.3 (i)]. We
then get

inf
u∈Qλ(s)

1

2

∫ T

0
u(s)2ds =

λ+ ks

2c2
∫ s

0 (s− τ)2ατ−γdτ
=

(λ+ ks)2

2s2H

and the minimizer is given as follows:

u(τ) =
λ+ ks

c2
∫ s

0 (s− τ)2ατ−γdτ
(s− τ)ατ−

γ
2 , for τ ∈ [0, s].

Therefore,

inf
x∈[λ,∞)

ITM (x) = inf
0≤s≤T

(λ+ ks)2

2s2H
=

{
(λ+kT )2

2T 2H , T < λH
k(1−H) ,

k2H

2H2H(1−H)2(1−H)λ
2(1−H), otherwise.

This proves the result. �

4.1. Alternative proofs of Theorem 4.1 and Lemma 4.1 using Landau-Marcus-Shepp
Asymptotics. In the proofs of Theorem 4.1 and Lemma 4.1, we have used the large deviation
asymptotics of Xε = εX in Theorem 3.1. Alternatively, these proofs can also be given by using
a straightforward application of the well-known Landau-Marcus-Shepp asymptotics [24, Equation
(1.1)] which is given as follows. For T > 0, suppose {Gt : 0 ≤ t ≤ T} is a centered Gaussian
process. Then we have

lim
ε→0
−ε2 logP

(
sup

0≤s≤T
Gs > ε−1

)
=

1

2σ2
, (4.12)

where σ2 .
= sup0≤s≤T E[G2

s].
To apply (4.12) in Theorem 4.1 and Lemma 4.1 (below, we only illustrate this to prove (4.1)

using (4.12) as the other case follows exactly along the same lines), we make the following obser-
vation:

P
(

sup
0≤s≤T

(
εX(T )− εX(s)− k(T − s)

)
> λ

)
= P

(
sup

0≤s≤T

X(T )−X(s)

λ+ k(T − s)
> ε−1

)
.
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Since X(T )−X(s)
λ+k(T−s) is a centered Gaussian process, from (4.12), we have

lim
ε→0
−ε2 logP

(
sup

0≤s≤T

(
εX(T )− εX(s)− k(T − s)

)
> λ

)
=

1

2σ2 ,

where

σ2 .
= sup

0≤s≤T
E
[(
X(T )−X(s)

)2(
λ+ k(T − s)

)2 ] =

(
inf

0≤s≤T

(k(T − s) + λ)2

v1(T, s) + v2(T, s)

)−1

.

In the last equality, we have used (2.2), and v1 and v2 are defined in (4.6), (4.7). This gives (4.5).
Even though using (4.12) gives us a shorter proof of Theorem 4.1 and Lemma 4.1, we believe

that using the LDP (Theorem 3.1) of {εX}ε>0 is a general and robust approach. To see this, we
note that (4.12) can be obtained as a consequence of LDP of a general Gaussian process (see [1,
Pages 53 and 57]).

5. Long time behavior of M(·) and V (·)

In this section, we first study the existence of the steady state for the processes M and V . Upon
showing the existence, we derive the tail asymptotics of the steady state M∗ and V ∗ of M(t) and
V (t), respectively.

We now briefly describe the method that is adopted.

(1) We first derive a certain type of maximal inequalities and modulus of continuity estimates
for the GFBM process X(t) in Lemma 5.3 and 5.4. Using these and exploiting the self-
similarity of X (Lemma 5.5), we establish (uniform in time) sub-exponential tail bounds of
M(t) and V (t) for each fixed t > 0.

(2) We next prove the existence of a weak limit of the laws of V (t) as t→∞, and the almost
sure convergence of M(t) as t → ∞. Then using the LDPs of {M ε}ε>0 and {V ε}ε>0, we
derive the tail asymptotics of M∗ and V ∗ (a weak limit point of {V (t)}t∈R+).

Remark 5.1. In this section, for any analysis related to M(t), we assume that (α, γ) satisfy (2.6)
and for any analysis related to V (t) we assume a stronger assumption: α > γ

2 , in which case, the
Hurst parameter H ∈ (1/2, 1).

Remark 5.2. Throughout the section, δ0 is always the positive constant in Corollary A.1. We still
occasionally remind the reader of this.

We first give an alternate expression for X that is easily amenable for analysis.

Lemma 5.1. Assume that (α, γ) satisfy (2.6). Then, for t ≥ 0, P− a.s., the GFBM X in (2.1)
can be equivalently represented as

X(t) = αc

∫ t

0
B(u)(t− u)α−1u−

γ
2 du+

γc

2

∫ t

0
(t− u)αu−

γ
2
−1B(u)du. (5.1)

Proof. We begin by recalling Itô’s product rule: for semi-martingales Z1 and Z2, for 0 ≤ s ≤ t,

Z1(t)Z2(t) = Z1(s)Z2(s) +

∫ t

s
Z1(u)dZ2(u) +

∫ t

s
Z2(u)dZ1(u) +

1

2

∫ t

s
d[Z1, Z2](u),

where [Z1, Z2](·) is the cross quadratic variation of the corresponding martingale component.
Let

Xρ(t) = c

∫ t

ρ
(t− u)αu−

γ
2 dB(u).

Define
Z1(u) = c(t− u)αu−

γ
2 , and Z2(u) = B(u).
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Even though Z1(u) depends on t, we drop this dependence, because t is fixed throughout. Also
observing that Z1(t) = 0. Moreover, [Z1, Z2](·) ≡ 0. Note that we cannot apply the Itô’s product
rule with s = 0 since Z1(0) is ill-defined for γ > 0. To overcome this issue, we set s = ρ and then
take ρ→ 0, and therefore define the process Xρ(t) above. Thus applying the Itô’s product rule, we
obtain

(t− ρ)αρ−
γ
2B(ρ) +Xρ(t)− αc

∫ t

ρ
B(u)(t− u)α−1u−

γ
2 du− cγ

2

∫ t

ρ
(t− u)αu−

γ
2
−1B(u)du = 0.

(5.2)

Now, we take ρ→ 0 (or along a subsequence). First of all, we have

lim
ρ→0

ρ−
γ
2B(ρ) = 0.

This follows from the property of Brownian motion: lim supρ→0
B(ρ)√

ρ log log(ρ−1)
=
√

2, P− a.s., see,

e.g., [20, Theorem 2.9.23]. We then have

I1
ρ
.
=

∫ t

ρ
(t− u)αu−

γ
2
−1B(u)du

ρ→0−−−→ I1 .
=

∫ t

0
(t− u)αu−

γ
2
−1B(u)du, P− a.s.

Indeed,

E
[
|I1
ρ − I1|

]
≤ E

[∫ ρ

0
(t− u)αu−

γ
2
−1|B(u)|du

]
≤
∫ ρ

0
(t− u)αu−

γ
2
−1E[|B(u)|]du

≤ tα
∫ ρ

0
u−

γ
2
−1+ 1

2du

≤ tαρ−
γ
2

+ 1
2

ρ→0−−−→ 0, as 0 ≤ γ < 1,

where the second inequality follows from Tonelli’s theorem. Similarly, one can show that

I2
ρ
.
=

∫ t

ρ
(t− u)α−1u−

γ
2B(u)du

ρ→0−−−→ I2 .
=

∫ t

0
(t− u)α−1u−

γ
2B(u)du, in L1([0, T ]).

Using Ito’s isometry along with similar analysis as above, we can also show that

E
[
|Xρ(t)−X(t)|2

]
→ 0, as ρ→ 0.

Therefore, we can find a subsequence ρn → 0 along which we will have

I1
ρ → I1, I2

ρ → I2, Xρ(t)→ X(t) and ρ−
γ
2B(ρ)→ 0, P− a.s.

From these and (5.2), we obtain the expression of X(t) in (5.1). �

As mentioned earlier we require a maximal inequality for X which is the content of Lemma 5.4
below. For our purposes, we only estimate the maximal inequality over 0 ≤ s ≤ 1. In the following,
without loss in generality, we assume δ0 in Corollary A.1 is less than one. In the following, B(x1, x2)
denotes the Beta function with parameters x1, x2 > 0. We also use the inequality given below, often
in what follows. For 0 < x < 1, √

log (1/x) ≤ Kηx
−η, (5.3)

for some Kη, depending on η > 0.
In the next two lemmas, we study the the behavior of X(t) in two subintervals,0 ≤ t ≤ δ0 and

δ0 < t ≤ 1. These results are used in Theorem 5.1 to ensure that if we condition that maximum
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of X(t)− kt over [0, T ] is appropriately large, then the maximizer is almost surely attained in the
complement of [0, δ0].

Lemma 5.2. Assume that (α, γ) satisfy (2.6) and 1−γ
2 > η > 0. Then,

X(t) ≤ CtH−η, P− a.s.,

for 0 ≤ t ≤ δ0 and

C
.
= 2(1 + ρ)Kη

(
αcB(

3

2
− γ − η, α) +

γc

2
B(

1

2
− γ

2
− η, α+ 1)

)
.

Here, δ0 is as in Corollary A.1.

Proof. Fix ρ > 0 and choose δ0 from the Corollary A.1 corresponding to ρ > 0. Then, from
Corollary A.1,

B(s) ≤ (1 + ρ)
√

2s log(s−1), for s ≤ δ0, P− a.s.

Using this, for t ≤ δ0, we have

X(t) = αctα−
γ
2

∫ 1

0
B(vt)(1− v)α−1v−

γ
2 dv +

γc

2
tα+ γ

2

∫ 1

0
(1− v)αv−

γ
2
−1B(vt)dv

≤
√

2(1 + ρ)αctα−
γ
2

∫ 1

0

√
(vt) log((vt)−1)(1− v)α−1v−

γ
2 dv

+

√
2(1 + ρ)γc

2
tα−

γ
2

∫ 1

0
(1− v)αv−

γ
2
−1
√

(vt) log((vt)−1)dv

≤
√

2(1 + ρ)Kηαct
α− γ

2
+ 1

2
−η
∫ 1

0
(1− v)α−1v−

γ
2

+ 1
2
−ηdv

+

√
2(1 + ρ)Kηγc

2
tα−

γ
2

+ 1
2
−η
∫ 1

0
(1− v)αv−

γ
2
− 1

2
−ηdv

≤ 2(1 + ρ)Kηt
H−η

(
αcB(

3

2
− γ − η, α) +

γc

2
B(

1

2
− γ

2
− η, α+ 1)

)
.

In the above, we chose 1−γ
2 > η > 0 and used the fact in (5.3). This completes the proof. �

Lemma 5.3. Assume that (α, γ) satisfy (2.6) and 1−γ
2 > η > 0. For δ0 < t ≤ 1 and K > 0,

P
(

max
δ0≤s≤t

X(s)

sH
≥ K

)
≤ exp

(
−1

2

(
Kt−η −∆

Λ

)2

t2η

)
, (5.4)

where

Λ
.
= Λ(δ0, α, γ, η, c) = αcB(1− γ

2
, α) +

γc

2δ
1
2
−η

0

B(
3

2
− γ

2
− η, α+ 1), (5.5)

and

∆
.
= ∆(δ0, γ, η, c, ρ,Kη) =

γc
√

2(1 + ρ)Kη

2
δ0
− γ

2
+ 1

2
−η. (5.6)

Here, δ0 is as in Corollary A.1.

Remark 5.3. Since{
ω : max

δ0≤s≤t

X(s)(ω)

sH
≤ K

}
⊂
{
ω : max

δ0≤s≤t
X(s)(ω) ≤ K

}
, for t ≤ 1,

we have

P
(

max
δ0≤s≤t

X(s) ≥ K
)
≤ P

(
max
δ0≤s≤t

X(s)

sH
≥ K

)
≤ exp

(
−1

2

(
Kt−η −∆

Λ

)2

t2η

)
.
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Proof. Fix t > δ0. From Lemma 5.1, using the expression of X(t) in (5.1), we have P− a.s.

X(t) ≤ αc max
0≤s≤t

B(s)

∫ t

0
(t− u)α−1u−

γ
2 du+

γc

2

∫ t

0
(t− u)αu−

γ
2
−1B(u)du

≤ αctα−
γ
2 max

0≤s≤t
B(s)

∫ 1

0
(1− v)α−1v−

γ
2 dv +

γc

2
tα−

γ
2

∫ 1

0
(1− v)αv−

γ
2
−1B(vt)dv

≤ tα−
γ
2αc max

0≤s≤t
B(s)B(1− γ

2
, α) +

γc

2
tα−

γ
2

∫ 1

0
(1− v)αv−

γ
2
−1B(vt)dv, (5.7)

where we have used change of variables from u to vt in the integral terms to obtain the second
inequality.

We now focus on the integral in (5.7). We observe that we cannot directly pull max0≤s≤tB(s)

out of the integral as
∫ 1

0 (1−v)αv−
γ
2
−1dv is not well-defined. So fixing some 1−γ

2 > η > 0, we obtain∫ 1

0
(1− v)αv−

γ
2
−1B(vt)dv

=

∫ 1

δ0
t

(1− v)αv−
γ
2
−1(vt)

1
2
−η B(vt)

(vt)
1
2
−η
dv +

∫ δ0
t

0
(1− v)αv−

γ
2
−1B(vt)dv

≤ max
δ0≤s≤t

B(s)

s
1
2
−η

∫ 1

δ0
t

(1− v)αv−
γ
2

+ 1
2
−ηdv +

√
2(1 + ρ)

∫ δ0
t

0
(1− v)αv−

γ
2
−1

√
v log(

1

v
) dv

≤ max
δ0≤s≤t

B(s)

s
1
2
−η

∫ 1

δ0
t

(1− v)αv−
γ
2

+ 1
2
−ηdv +

√
2(1 + ρ)Kη

∫ δ0
t

0
(1− v)αv−

γ
2
− 1

2
−ηdv . (5.8)

Here the first inequality follows from Corollary A.1 and the second inequality uses (5.3).
Thus, by (5.7) and (5.8), we obtain for t > δ0,

X(t) ≤ αctα−
γ
2 max

0≤s≤t
B(s)B(1− γ

2
, α)

+
γc

2
tα−

γ
2

(
max
δ0≤s≤t

B(s)

s
1
2
−η

∫ 1

δ0
t

(1− v)αv−
γ
2

+ 1
2
−ηdv +

√
2(1 + ρ)Kη

∫ δ0
t

0
(1− v)αv−

γ
2
− 1

2
−ηdv

)
≤ αctα−

γ
2 max

0≤s≤t
B(s)B(1− γ

2
, α)

+
γc

2
tα−

γ
2

(
1

δ
1
2
−η

0

max
δ0≤s≤t

B(s)

∫ 1

δ0
t

(1− v)αv−
γ
2

+ 1
2
−ηdv

+
√

2(1 + ρ)Kη

∫ δ0
t

0
(1− v)αv−

γ
2
− 1

2
−ηdv

)
.

Consider the following event:

A(K, η)
.
=

{
ω : sup

0<s≤t
B(s)(ω) ≤ Kt

1
2

+η

}
. (5.9)

On this event,

X(t) ≤ αcKtH+η B(1− γ

2
, α)

+
γc

2
tH+η

 1

δ
1
2
−η

0

K

∫ 1

δ0
t

(1− v)αv−
γ
2

+ 1
2
−ηdv +

√
2(1 + ρ)t−

1
2
−ηKη

∫ δ0
t

0
(1− v)αv−

γ
2
− 1

2
−ηdv
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≤ tH+η

(
αcKB(1− γ

2
, α) +

γc

2

( K

δ
1
2
−η

0

B(
3

2
− γ

2
− η, α+ 1)

+
√

2(1 + ρ)Kη(δ0
− γ

2
+ 1

2
−ηt−

γ
2

+1+η)
))

≤ tH+η
(
KΛ + ∆

)
. (5.10)

In the above, we used the fact that∫ δ0
t

0
(1− v)αv−

γ
2
− 1

2
−ηdv ≤

∫ δ0
t

0
v−

γ
2
− 1

2
−ηdv ≤ δ0

− γ
2

+ 1
2
−ηt

γ
2
− 1

2
+η.

The quantities Λ and ∆ are as given in (5.5) and (5.6), and in the last inequality, we bound the
terms involving t (inside the parenthesis) by 1 to make the quantity inside, uniform in t.

From the above inequality, we have

max
δ0≤s≤t

X(s)

sH
≤ tη (ΛK + ∆) .

Therefore,

P
(

max
δ0≤s≤t

X(s)

sH
> tη(KΛ + ∆)

)
≤ P

({
ω : max

0≤s≤t
B(s)(ω) > Kt

1
2

+η
})

≤ P
(

sup
0<s≤t

B(s) > Kt
1
2

+η

)
≤ exp

(
−1

2
K2t2η

)
,

where the second inequality uses (5.9) and the last uses the maximal inequality of Brownian motion,

i.e., P
(
sup0≤s≤tB(s) > λ

)
≤ exp

(
−λ2

2t

)
. Therefore, the inequality in (5.4) holds. �

Remark 5.4. In Lemma 5.2 and equation (5.10) in the proof of Lemma 5.3, the exponents are H−η
and H + η are the consequence of behavior of Brownian motion near t = 0 (see Theorem A.1) and
away from zero (the maximal inequality of Brownian motion).

The following modulus of continuity type estimate is used in establishing the uniform in t subex-
ponential tail bounds of V (t).

Lemma 5.4. Assume that α > γ
2 . Then, we have the following:

P

(
sup

1−δ0≤s≤1

|X(1)−X(s)|
|1− s|α−

γ
2

≥ C(K)

)
≤ e−

K2

2 , (5.11)

for some C = C(K) > 0 such that C(K) ↑ ∞ as K →∞.

Proof. Consider the event:

A(K) =

{
ω : sup

0≤v≤1
B(v)(ω) ≤ K

}
.

We consider the following on A(K). For 1− δ0 ≤ s ≤ 1, by (5.1),

X(1)−X(s) = αc

∫ 1

0
(1− v)α−1v−

γ
2

(
B(v)− sα−

γ
2B(vs)

)
dv

+
γc

2

∫ 1

0
(1− v)αv−

γ
2
−1
(
B(v)− sα−

γ
2B(vs)

)
dv .
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We estimate the first integral using Theorem A.1 and Corollary A.1. Choose η < γ
2 + 1

2−α = 1−H.
We have ∫ 1

0
(1− v)α−1v−

γ
2

(
B(v)− sα−

γ
2B(vs)

)
dv

=
(

1− sα−
γ
2

)∫ 1

0
(1− v)α−1v−

γ
2B(v)dv

+ sα−
γ
2

∫ 1

0
(1− v)α−1v−

γ
2 (B(v)−B(vs)) dv

≤
(

1− sα−
γ
2

)
K

∫ 1

0
(1− v)α−1v−

γ
2 dv

+
√

2(1 + ρ)sα−
γ
2 (1− s

1
2
−η)

∫ 1

0
(1− v)α−1v−

γ
2

+ 1
2
−ηdv (5.12)

≤ (KC1 + C2)(1− s)α−
γ
2 ,

for some C1, C2 > 0. To get (5.12), we applied Remark A.2 to uniformly bound |B(v) − B(vs)|.
Finally, we estimate the second term in the similar way:∫ 1

0
(1− v)αv−

γ
2
−1
(
B(v)− sα−

γ
2B(vs)

)
dv

=
(

1− sα−
γ
2

)∫ 1

0
(1− v)αv−

γ
2
−1B(v)dv

+ sα−
γ
2

∫ 1

0
(1− v)αv−

γ
2
−1 (B(v)−B(vs)) dv, from Remark A.2

≤
(

1− sα−
γ
2

)∫ 1

0
(1− v)αv−

γ
2
−1B(v)dv

+
√

2(1 + ρ)sα−
γ
2 (1− s

1
2
−η)

∫ 1

0
(1− v)αv−

γ
2
− 1

2
−ηdv

≤ (KC3 + C4)(1− s)α−
γ
2 ,

In the above, to arrive at the final inequality, we bounded the first integral using (5.8), noting
that sup0≤v≤1B(v)(ω) ≤ K on the event A(K) and used the fact that η < γ

2 + 1
2 − α. C3 and

C4 are appropriate constants that are independent of K and s. Defining C(K)
.
= max{αc(KC1 +

C2), γc2 (KC3 + C4)} gives the result. �

Remark 5.5. In the following, we observe that

X̃
.
=
X(1)−X(s)

(1− s)α−
γ
2

is a centered Gaussian process and hence, symmetric (i.e., X̃ and −X̃ have the same distribution).
Therefore,

P
(

sup
1−δ0≤s≤1

|X̃(s)| ≥ K
)

= RKP
(

sup
1−δ0≤s≤1

X̃(s) ≥ K
)
.

Here,

RK
.
= 2−

P
({

sup1−δ0≤s≤1 X̃(s) ≥ K
}
∩
{

inf1−δ0≤s≤1 X̃(s) ≤ −K
})

P
(

sup1−δ0≤s≤1 X̃(s) ≥ K
)
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and the ratio of probabilities is simply the conditional probability of the event
{

inf1−δ0≤s≤1 X̃(s) ≤
−K

}
conditioned on the occurrence of the event

{
sup1−δ0≤s≤1 X̃(s) ≥ K

}
. Since the paths of X̃

are almost surely continuous, this probability approaches 0 as K → ∞. Therefore, RK → 2 as
K →∞.

Now by a similar argument in Section 4.1, we obtain the following:

lim
K→∞

− 1

K2
logP

(
sup

1−δ0≤s≤1
X̃(s) ≥ K

)
=

1

2σ̃2
,

where

σ̃2 .
= sup

δ0≤s≤1
E[X̃2(s)] = sup

δ0≤s≤1

E[(X(1)−X(s))2]

(1− s)α−
γ
2

= sup
δ0≤s≤1

v1(1, s) + v2(1, s)

(1− s)α−
γ
2

.

Again in the last equality, we have used (2.2), with the definitions of v1 and v2 in (4.6) and (4.7).
From the above, we can conclude that for every δ > 0, there is K0 > 0 such that

P
(

sup
1−δ0≤s≤1

X̃(s) ≥ K
)
≤ e−

K2

2σ2 , for K > K0. (5.13)

We remark that Lemma 5.4 is only used in the proof of Theorem 5.3. Even though the alternative
estimate in (5.13) is different from that in (5.11), it is still sufficient for the proof of Theorem 5.3.
Note that (5.11) is used in equations (5.22) and (5.23) in the proof of Theorem 5.3. Now following
the same arguments of the proof with (5.13) instead of (5.11) gives us the similar result to (5.21)
with appropriately different constants. We do not give the exact modified version of (5.21) as this
estimate is only used to prove tightness of {V (t)}t≥0 in Corollary 5.1 and this estimate is sufficient.

In the following, we exploit the self-similarity of X and show that the random variables M(t) and
V (t) at fixed time t > 0, are equal in laws to respective random variables which involve C([0, 1],R)-
valued processes Z̄ and Z which have the same law as that of X when it is defined on [0, 1]. That
is, for T = 1, Z̄ and Z are C([0, 1],R) such that

Z̄
d
= Z

d
= X.

Lemma 5.5. For any fixed t > 0, we have

M(t)
d
= max

0≤v≤1
(tHZ̄(v)− kvt) (5.14)

V (t)
d
= max

0≤v≤1

(
tHZ(1)− tHZ(v)− kt(1− v)

)
. (5.15)

Proof. Fix t > 0. Using self-similarity of X and Lemma A.1, the following holds:

PX(t−HA) = PX ◦ Jt(A),

where PX is the law of X and Jt is as defined in (A.1). Then the equal in law relationships in
(5.14) and (5.15) follow directly. �

Remark 5.6. We stress that the statement of the above lemma only states that for every given
t > 0, the laws of M(t) and V (t) are expressed as above. To study the sample path of M and V ,
more detailed analysis is needed, which we do not pursue in this paper.

Theorem 5.1. Assume that (α, γ) satisfy (2.6). There exist t0
.
= t0(δ0, k,H, η, C) and Q

.
=

Q(δ0, H,C, η, k) such that the following holds:

P (M(t) > ρ) ≤ exp

(
− 1

2

(
∆̂ρ1−H −∆

Λ

)2)
,

for t > t0 and ρ > Q. Here,

∆̂ = ∆̂(δ0, H)
.
=

δH0
(1−H)1−HHH

.
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Proof. We fix t throughout the proof after choosing it large enough. In the rest of the proof, we
suppress the dependence on ω for all the random processes that follow. The method of the proof
goes as follows: We prove that the maximum

max
0≤v≤δ0

(tHZ̄(v)− kvt)

is almost surely less than a positive constant Q (uniformly in large t). This implies that the
maximizers for

max
0≤v≤1

(tHZ̄(v)− kvt)

conditioned on the event {
ω : max

0≤v≤1
(tHZ̄(v)− kvt) > Q

}
are greater than δ0, P− a.s. Indeed, if the maximum satisfies

max
0≤v≤1

(tHZ̄(v)− kvt) > Q,

then from the hypothesis,

max
0≤v≤δ0

(tHZ̄(v)− kvt) ≤ Q < max
0≤v≤1

(tHZ̄(v)− kvt).

This implies that the maximizers on [0, 1] are strictly greater than δ0.
To that end, we recall from Lemma 5.2 that P− a.s.,

Z̄(v) ≤ CvH−η,

for 0 ≤ v ≤ δ0 with 0 < η < 1−γ
2 . Thus, P− a.s.,

tHZ̄(v)− kvt ≤ CvH−ηtH − kvt, for 0 ≤ v ≤ δ0 .

The maximum of the right hand side is attained at v = min{δ0,
(
kt
CtH

) 1
1+η−H }. For

t > t0
.
=

(
δ1+η−H

0 C

k

) 1
1−H

,

(this ensures that maximum is attained at δ0), we have

max
0≤v≤δ0

(tHZ̄(v)− kvt) ≤ CδH−η0 tH − kδ0t

≤ (1−H)H
H

1−H
(
CδH−η0

) 1
1−H

(kδ0)
H
H−1

.
= Q . (5.16)

It is thus clear that for
max

0≤v≤1

(
tHZ̄(v)− kvt

)
> ρ > Q,

the maximizer cannot be in [0, δ0]. Therefore, for ρ > Q and t > t0,

P
(

max
0≤v≤1

(
tHZ̄(v)− kvt

)
> ρ

)
≤ P

(
tH max

δ0≤v≤1
Z̄(v)− ktδ0 > ρ

)
≤ P

(
max
δ0≤v≤1

Z̄(v) >
ρ+ kδ0t

tH

)
≤ P

(
max
δ0≤v≤1

Z̄(v) > min
t>0

{
ρ+ kδ0t

tH

})
= P

(
max
δ0≤v≤1

Z̄(v) >
ρ1−HδH0

(1−H)1−HHH

)
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≤ exp

(
− 1

2

(ρ1−H∆̂−∆

Λ

)2
)
,

where the last inequality follows from Remark 5.3 and ∆̂ is as in the hypothesis. In the first
inequality, we used the following: For ρ > Q, t > t0 and v ∈ [0, 1], from the inequality in (5.16)
and the definition of Q,

Q < ρ < max
0≤v≤1

(tHZ̄(v)− kvt) = max
δ0≤v≤1

(tHZ̄(v)− ktv)

≤ tH max
δ0≤v≤1

Z̄(v)− ktδ0.

�

Lemma 5.6. Assume that (α, γ) satisfy (2.6). Then,

M(∞)
.
= lim

t→∞
M(t) exists P− a.s.

Proof. Since M(t) is nondecreasing and is a submartingale with respect to its own filtration, if

sup
t>0

E[M(t)] <∞ , (5.17)

then from the submartingale convergence theorem ([20, Theorem 1.3.15]), we know that M(∞)
.
=

limt→∞M(t) exists P− a.s. From Theorem 5.1, it is easy to see that sub-exponential tail behavior
of M(t) ensures that (5.17) holds. �

We will next study the tail behavior of M∗
.
= M(∞).

Theorem 5.2. Assume that (α, γ) satisfy (2.6). Then,

lim
x→∞

1

x2(1−H)
logP(M∗ > x) = −θ∗, (5.18)

where

θ∗
.
=

k2H

2H2H(1−H)2(1−H)
. (5.19)

Proof. We first prove the lower bound. For λ > 0,

lim inf
x→∞

1

x2(1−H)
logP (M∗ > x) = lim inf

ε→0

ε2(1−H)

λ2(1−H)
logP

(
M∗ > λε−1

)
≥ lim inf

ε→0

ε2(1−H)

λ2(1−H)
logP

(
X(ε−1)− kε−1 > λε−1

)
≥ lim inf

ε→0

ε2(1−H)

λ2(1−H)
logP

(
εX(ε−1)− k > λ

)
≥ lim inf

ε→0

ε2(1−H)

λ2(1−H)
logP

(
X(1) > εH−1(λ+ k)

)
.

In the above, we used the fact that X(ε−1)
d
= ε−HX(1). Since X(1) is a Gaussian random variable

with zero mean and unit variance (recall that the choice of c ensures this), we have

1

λ2(1−H)
lim inf
ε→0

ε2(1−H) logP
(
X(1) > εH−1(λ+ k)

)
≥ − (λ+ k)2

2λ2(1−H)
, for every λ > 0,

=⇒ lim inf
x→∞

1

x2(1−H)
logP (M∗ > x) ≥ − inf

λ>0

(λ+ k)2

2λ2(1−H)
= −θ∗.

A simple computation gives us that the above infimum is θ∗ and attained at λ = 1−H
H k.
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To prove the upper bound, we again write for λ > 0,

lim sup
x→∞

1

x2(1−H)
logP (M∗ > x) = lim sup

ε→0
ε2(1−H) logP

(
M∗ > ε−1

)
.

Choose T0 >
H

k(1−H) . Clearly, for any ε > 0,

P
[
M∗ > ε−1

]
= P

(
sup

0≤s≤T0ε−1

(X(s)− ks) > ε−1

)
+ P

(
sup

0≤s≤T0ε−1

(X(s)− ks) ≤ ε−1, sup
s>T0ε−1

(X(s)− ks) > ε−1

)
.

We now compute the above terms individually,

P

(
sup

0≤s≤T0ε−1

(X(s)− ks) > ε−1

)
= P

(
sup

0≤s≤T0

(ε1−HX(s)− ks) > 1

)
, from self-similarity of X.

and as earlier in Lemma 4.1,

lim sup
ε→0

ε2(1−H) logP
(

sup
0≤s≤1

(ε1−HX(s)− ks) > 1

)
≤ − k2H

2H2H(1−H)2(1−H)
= −θ∗.

In the above, we applied Lemma 4.1, for T = T0 and λ = 1.
We now estimate

P

(
sup

0≤s≤T0ε−1

(X(s)− ks) ≤ ε−1, sup
s>T0ε−1

(X(s)− ks) > ε−1

)

≤ P

(
sup

s>T0ε−1

(X(s)− ks) > ε−1

)

≤ P

(
sup

s>bT0ε−1c
(X(s)− ks) > ε−1

)

= P
(
∪n>bT0ε−1c

{
sup

n−1<s≤n
(X(s)− ks) > ε−1

})
≤

∞∑
n=bT0ε−1c+1

P
(

sup
n−1<s≤n

(X(s)− ks) > ε−1

)
.

In the fourth line above, we partitioned (bT0ε
−1c,∞) into sets of the form (n − 1, n], for integer

n > bT0ε
−1c.

In the following, we bound the individual terms. To that end, define

U(t)
.
= sup

t−1<s≤t
(X(s)− ks).

We have

lim sup
ε→0

ε2(1−H) logP
(
εU(ε−1) > λ

)
= lim sup

ε→0
ε2(1−H) logP

(
sup

1−ε<s≤1
(ε1−HX(s)− ks) > λ

)
≤ lim sup

ε→0
ε2(1−H) logP

(
sup

1−δ≤s≤1
(ε1−HX(s)− ks) > λ

)

≤ − inf
1−δ≤s≤1

(λ+ ks)2

2s2H
, (5.20)
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where 0 < δ < 1. In the first equality, we used the following:

U(ε−1) = sup
ε−1−1<s<ε−1

(X(s)− ks)

d
= sup

1−ε<s<1
(ε1−HX(s)− ks),

where we have changed s to ε−1s and applied Corollary A.1. The inequality 5.20 is obtained in the
similar way as it was done in the proof of Lemma 4.1. Taking δ ↓ 0, we have

lim sup
ε→0

ε2(1−H) logP
(
εU(ε−1) > λ

)
= −(λ+ k)2 .

Therefore, for δ > 0, there exists ε0 > 0 such that for every ε < ε0,
∞∑

n=bT0ε−1c

P
(

sup
n<s≤n+1

(X(s)− ks) > ε−1

)

≤
∞∑

n=bT0ε−1c

P
(
n−1 sup

n<s≤n+1
(X(s)− ks) > 0

)

≤
∞∑

n=bT0ε−1c

exp
(
−n2(1−H)(k2 + δ)

)

≤ exp
(
−bT0ε

−1c2(1−H)(k2 + δ)
) ∞∑
n=bT0ε−1c

exp
(
−(n2(1−H) − bT0ε

−1c2(1−H))(k2 + δ)
)

≤ exp
(
−bT0ε

−1c2(1−H)(k2 + δ)
)
C,

for some constant C > 0. This gives us

lim sup
ε→0

ε2(1−H) log

( ∞∑
n=bT0ε−1c

P
(

sup
n<s≤n+1

(X(s)− ks) > ε−1

))
≤ −T 2(1−H)

0 (k2 + δ) .

Putting all the terms together, we have

lim sup
x→∞

1

x2(1−H)
logP (M∗ > x)

= lim sup
ε→0

ε2(1−H) logP
(
M∗ > ε−1

)
≤ max

{
lim sup
ε→0

ε2(1−H) logP
(

sup
0≤s≤1

(ε1−HX(s)− ks) > 1

)
,

lim sup
ε→0

ε2(1−H) log

( ∞∑
n=bT0ε−1c

P
(

sup
n<s≤n+1

(X(s)− ks) > ε−1

))}
≤ max

{
− θ∗,−T 2(1−H)

0 (k2 + δ)
}
.

Now, we take T0 ↑ ∞ (the second term goes to −∞), to get the result. �

We now study the tail asymptotics and long time behavior of {V (t)}t∈R+ .

Theorem 5.3. Assume that α > γ
2 . For every K > 0, there exist t0 = t0(K, δ0, k, α, γ) and

Q = Q(K, δ0, k, α, γ) such that the following holds.

P (V (t) > ρ) ≤ exp

(
− 1

2

( 1
2ρ

1−H∆̂−∆

Λ

)2)
+ e−

K2

2 , (5.21)
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for t > t0 and ρ > Q. Here, ∆̂ is as given in Theorem 5.1.

Proof. Consider the following set:

S = S(K, δ0) =

{
ω : sup

1−δ0≤s≤1

|X(1)(ω)−X(s)(ω)|
|1− s|α−

γ
2

≤ C(K)

}
. (5.22)

Here, C(K) is the same constant that appears in Lemma 5.4. On the event S, we consider the
following: We follow a similar argument as in the proof of Theorem 5.1. We fix t throughout the
proof after choosing it large enough. In the rest of the proof, we suppress the dependence on ω for
all the random processes that follow. We now show that on S,

max
1−δ0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v))

is less than a positive constant Q (uniformly in large t). This implies that the maximizers for

max
0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v))

conditioned on the event{
ω : max

0≤v≤1
(tHZ(1)− tHZ(v)− kt(1− v)) > Q

}
∩ S

are less than 1− δ0. Indeed, if

max
0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v)) > Q,

then from the hypothesis,

max
1−δ0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v)) ≤ Q < max
0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v)).

This implies that the maximizers are strictly less than 1 − δ0. To that end, we recall that on the
event S,

Z(1)− Z(v) ≤ C(1− v)α−
γ
2 , (5.23)

for 1− δ0 ≤ v ≤ 1. Hence, on S,

(tHZ(1)− tHZ(v)− kt(1− v)) ≤ C(1− v)α−
γ
2 tH − k(1− v)t, for 1− δ0 ≤ v ≤ 1 .

The maximum of the right hand side is attained at

v = 1−min

{
δ0,

(
kt

CtH

) 1
1+

γ
2−α

}
.

For

t > t0
.
=

(
δ

1+ γ
2
−α

0 C

k

) 1
1−H

(this ensures that maximum is attained at 1− δ0), we have

max
1−δ0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v)) ≤ Cδα−
γ
2

0 tH − kδ0t

≤ (1−H)H
H

1−H
(
Cδ

α− γ
2

0

) 1
1−H

(kδ0)
H
H−1

.
= Q .

It is thus clear that for

max
0≤v≤1

(tHZ(1)− tHZ(v)− kt(1− v)) > ρ > Q,

the maximizer cannot be in [1− δ0, 1].
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Therefore, for ρ > Q and t > t0,

P (V (t) > ρ) = P
(

max
0≤v≤1

(
tHZ(1)− tHZ(v)− kt(1− v)

)
> ρ

)
= P

({
max

0≤v≤1

(
tHZ(1)− tHZ(v)− kt(1− v)

)
> ρ
}
∩ S
)

+ P
({

max
0≤v≤1

(
tHZ(1)− tHZ(v)− kt(1− v)

)
> ρ
}
∩ Sc

)
≤ P

(
tH max

0≤v≤1−δ0
(Z(1)− Z(v))− ktδ0 > ρ

)
+ P(Sc) (5.24)

≤ P
(

max
0≤v≤1−δ0

(Z(1)− Z(v)) >
ρ+ kδ0t

tH

)
+ P(Sc)

≤ P
(

max
0≤v≤1−δ0

(Z(1)− Z(v)) > min
t>0

{
ρ+ kv0t

tH

})
+ P(Sc)

= P
(

max
0≤v≤1−δ0

(Z(1)− Z(v)) >
ρ1−HδH0

(1−H)1−HHH

)
+ P(Sc)

≤ P
(

max
0≤v≤1−δ0

Z(v) >
ρ1−HδH0

2(1−H)1−HHH

)
+ P(Sc) (5.25)

≤ exp

(
− 1

2

( 1
2ρ

1−H∆̂−∆

Λ

)2)
+ exp

(
− K2

2

)
. (5.26)

Above, ∆̂ is as in hypothesis of Theorem 5.1. To get (5.24), we used the following: For t > t0 and
ρ > Q, from the above analysis

P
({

max
0≤v≤1

(
tHZ(1)− tHZ(v)− kt(1− v)

)
> ρ
}
∩ S
)

= P
({

max
0≤v≤1−δ0

(
tHZ(1)− tHZ(v)− kt(1− v)

)
> ρ
}
∩ S
)
.

To get (5.25), we used

max
0≤v≤1−δ0

(Z(1)− Z(v)) ≤ 2 max
0≤v≤1−δ0

Z(v).

Finally, to get (5.26), we applied Lemmas 5.3 and 5.4. �

Corollary 5.1. The laws of R+ valued random variables {V (t)} have a weak limit point as t→∞.

Proof. From Theorem 5.3, it is clear that for any ε > 0, there exists ρ0 and such that for t > t0,
for some t0 such that the upper bound in (5.21) is less than ε. From this and Prohorov’s theorem,
we have the existence of weak limit point of the law of V (t) as t→∞. �

In the following, without loss of generality, we assume that V (t) converges to along every subse-
quence, almost surely to respective limit points.

Theorem 5.4. Let V ∗ be a weak limit point of {V (t)}t∈R+ as t→∞. Then,

lim
ε→0

ε2(1−H) logP
(
V ∗ > ε−1

)
= − inf

0≤s≤1

(k(1− s) + 1)2

v1(1, s) + v2(1, s)
.

Proof. We have already seen from Lemma 5.5 that for t > 0,

V (t)
d
= t max

0≤v≤1

(
tH−1Z(1)− tH−1Z(v)− k(1− v)

) .
= V̄ (t).
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Now we consider a sequence tn ↑ ∞ such that V (tn) converges weakly to V ∗. From the above
equality of laws, V̄ (tn) also converges weakly to V ∗. From Skorohod representation theorem, we
can without loss of generality, assume that

V̄ (tn) converges to V ∗, P− a.s.

Therefore, we have

V ∗ = lim
t→∞

V̄ (t) = lim
t→∞

t max
0≤v≤1

(
tH−1Z(1)− tH−1Z(v)− k(1− v)

)
, P− a.s.

Now we replace t in V̄ (t) by ε−1 and treat t→∞ as ε→ 0. In other words, we have

V ∗ = lim
εn→0

V̄ (ε−1
n ) = lim

εn→0
ε−1
n max

0≤v≤1

(
ε1−H
n Z(1)− ε1−H

n Z(v)− k(1− v)
)
, P− a.s. (5.27)

From Theorem 4.1, we know that εV̄ (ε−1) satisfies an LDP. From (5.27), we also know that

|V ∗ − V̄ (ε−1
n )| = f(εn),

where f is a deterministic positive function such that f(x)→ 0, as x→ 0, P− a.s. Then, we have
|εnV ∗ − εnV̄ (ε−1

n )| = εnf(εn).
Now we are in a position to derive the tail behavior of V ∗:

lim sup
εn→0

ε2(1−H)
n logP (εnV

∗ > 1) ≤ lim sup
εn→0

ε2(1−H)
n logP

(
εnV̄ (ε−1

n ) > 1− εnf(εn)
)
.

Similarly,

lim inf
εn→0

ε2(1−H)
n logP

(
εnV̄ (ε−1

n ) > 1
)
≤ lim inf

εn→0
ε2(1−H)
n logP (εnV

∗ > 1− εnf(εn)) .

From Theorem 4.1, we have

lim
εn→0

ε2(1−H)
n logP (εnV

∗ > 1) = lim
εn→0

ε2(1−H)
n logP

(
εnV̄ (ε−1

n ) > 1
)

= − inf
0≤s≤1

(k(1− s) + 1)2

v1(1, s) + v2(1, s)
.

Since the right hand side of the above equation is independent of the sequence εn → 0, we can
replace εn in the above equation with ε. This gives us

lim
ε→0

ε2(1−H) logP
(
V ∗ > ε−1

)
= − inf

0≤s≤1

(k(1− s) + 1)2

v1(1, s) + v2(1, s)
.

This completes the proof. �

5.1. Alternative proof of Theorem 5.2 using the results of Hüsler and Piterbarg [16].
The proof of Theorem 5.2 uses the large deviation asymptotics of the processes {M ε}ε>0 (Lemma 4.1)
and {V ε}ε>0 (Theorem 4.1). But to use these results, it was necessary in the proofs to establish
the existence of the limit points of {M(t)}t>0 and {V (t)}t>0 which was the content of Theorem 5.1
and 5.3, respectively. Alternatively, the proof can be given as a direct application of a result by
Hüsler and Piterbarg [16]. Before we state the result in [16], we recall the following definition: A
centered self-similar Gaussian process (with Hurst parameter 0 < H < 1) with continuous sample
paths {Z(t)}t>0 is called locally stationary self-similar if for some positive K and 0 < η ≤ 2,

lim
t1→t
t2→t

E
[(
Z(t1)t−H1 − Z(t2)t−H2

)2]
|t1 − t2|η

= Kt−2H . (5.28)

Theorem 5.5. [16, Theorem 1] Suppose that {Z(t)}t>0 is a locally stationary self-similar Gaussian
process. Then, as λ→∞,

P
(

sup
t≥0

(
Z(t)− kt

)
> λ

)
∼ Cη(A)

1
H
− 1

2λHΨ(Aλ1−H).
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Here, Cη is a positive constant (its explicit form is given in [16]) and

A
.
=

kH

HH(1−H)(1−H)

and Ψ is the tail distribution function of standard normal random variable.

In Lemma A.2, we show that the GFBM X(·) is locally stationary. Hence, from Theorem 5.5,

we have the following: In this case, with A =
√

2θ∗,

lim
λ→∞

1

λ2(1−H)
logP

(
sup
t>0

(
Z(t)− kt

)
> λ

)
= lim

λ→∞

1

λ2(1−H)
log Ψ(

√
2θ∗λ1−H) = −θ∗. (5.29)

In the last equality, we used the tail behavior of a standard normal random variable (Ψ is its tail
distribution function). This shows that [16, Theorem 1] can be applied to prove Theorem 5.2.
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Appendix A. Auxiliary results

In the following, we present a few results that used in the Section 5. Define a following continuous
map from CT to C1:

JT : ξ(·) 7→ ξ(T ·). (A.1)

Lemma A.1. For the GFBM X in (2.1), and for any T > 0,

PX ◦ J−1
T (·) = PX(T−H ·),

where PX is the law of X.

Proof. For a given n ∈ N, consider 0 < u1 < u2 < u3 < . . . < un < 1. Now from the self-similarity
of X [27, Proposition 5.1], it is clear that for n = 1,

Z(Tu1)
d
= THZ(u1).

In other words,
PX ◦ J−1

T (ξ(u1) ∈ ·) = PX(ξ(u1) ∈ T−H ·) .
For n > 1, assume that

((Z(Tu1), Z(Tu2), . . . , Z(Tun−1)) ∈ A)
d
=
(
(Z(u1), Z(u2), . . . , Z(un−1)) ∈ T−HA

)
, (A.2)

for any A ⊂ B(Rn−1). Now consider the Borel set B ∈ B(R). Then, we have

((Z(Tu1), Z(Tu2), . . . , Z(Tun, Z(Tun))) ∈ A×B)

d
=
(
(Z(u1), Z(u2), . . . , Z(un−1)) ∈ T−HA× T−HB

)
.

Since the sets of the form A×B generate all the Borel sets of Rn, the self-similarity property (A.2)
holds for n and therefore by induction, all finite dimensional distributions. It is trivial to see
that the finite dimensional distributions of PX ◦ J−1

T and PX are consistent families of measures.
Therefore, using the Kolmogorov consistency theorem, we get the desired result. �

Remark A.1. The above statement and proof can be generalized to processes with RCLL (right
continuous with left limits) paths. Indeed, we construct a similar map JT on DT to D1 (here, DT
is space of functions that right continuous with left limits equipped with the Skorohod topology).
We can then proceed exactly as above.



32 LARGE DEVIATIONS OF FLUID QUEUES WITH GFBM INPUT

Theorem A.1. [20, Theorem 9.25] For a standard Brownian motion B on [0, 1],

P

lim sup
δ↓0

1√
2δ log(1

δ )
max

0≤s≤t≤1

t−s≤δ

|B(t)−B(s)| = 1

 = 1.

Remark A.2. Clearly, for every ρ > 0, there is 1 > δ0 > 0 such that for every δ < δ0, we have

max
0≤s≤r≤1

r−s≤δ

|B(r)−B(s)| ≤ (1 + ρ)

√
2δ log(

1

δ
), P− a.s.

Corollary A.1. For ρ > 0, there is 1 > δ0 = δ0(ρ) > 0 such that whenever t > δ0,

sup
0<s≤t

B(s)√
s log(1

s )
≤ max

√2(1 + ρ),
1√

δ0 log( 1
δ0

)
sup

0≤s≤t
B(s)

 , P− a.s.

Otherwise,

sup
0<s≤t

B(s)√
s log(1

s )
≤
√

2(1 + ρ), P− a.s.

Proof. From Theorem A.1, as seen already for every ρ > 0, there is a 1 > δ0 > 0, such that for
every δ < δ0, we have

max
0≤s≤r≤1

r−s≤δ

|B(r)−B(s)| ≤ (1 + ρ)

√
2δ log(

1

δ
), P− a.s.

In particular,

B(r)−B(0) = B(r) ≤ (1 + ρ)

√
2δ log(

1

δ
), for every r ≤ δ, P− a.s.

This implies that we have

B(r) ≤ (1 + ρ)

√
2δ log(

1

δ
), for every r = δ ≤ δ0, P− a.s

Assuming that t > δ0, we have

sup
0<s≤t

B(s)√
s log(1

s )
≤ max

√2(1 + ρ),
1√

δ0 log( 1
δ0

)
sup

δ0≤s≤t
B(s)


≤ max

√2(1 + ρ),
1√

δ0 log( 1
δ0

)
sup

0≤s≤t
B(s)

 , P− a.s.

It is easy to see that for t ≤ δ0,

sup
0<s≤t

B(s)√
s log(1

s )
≤
√

2(1 + ρ), P− a.s.

Hence, the proof is complete. �

Using the technique similar to Theorem 5.4, we have the following.
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Alternate proof of Theorem 5.2. We follow the argument almost exactly as in Theorem 5.4. We
have already seen from Lemma 5.5 that for t > 0,

M(t)
d
= t max

0≤v≤1

(
tH−1Z(v)− kv

) .
= M̄(t).

And from Lemma 5.6, we know that M(t) P− a.s. converges to M∗ as t→∞.
Therefore, we have

M∗ = lim
t→∞

M̄(t) = lim
t→∞

t max
0≤v≤1

(
tH−1Z(v)− kv

)
, P− a.s.

Now we replace t in M̄(t) by ε−1 and treat t→∞ as ε→ 0. In other words, we have

M∗ = lim
ε→0

M̄(ε−1) = lim
ε→0

ε−1 max
0≤v≤1

(
ε1−HZ(v)− kv

)
, P− a.s. (A.3)

M̄(ε−1) = ε−1 max
0≤v≤1

(
ε1−HZ(v)− kv

)
.

From Lemma 4.1, we know that εM̄(ε−1) satisfies an LDP. From (A.3), we also know that

|M∗ − M̄(ε−1)| = g(ε),

where g is a deterministic positive function such that g(x) → 0 as x → 0, P− a.s. Then, we have
|εM∗ − εM̄(ε−1)| = εg(ε).

Now we are in a position to derive the tail behavior of M∗:

lim sup
ε→0

ε2(1−H) logP (εM∗ > 1) ≤ lim sup
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1− εg(ε)

)
.

Similarly,

lim inf
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1

)
≤ lim inf

ε→0
ε2(1−H) logP (εM∗ > 1− εg(ε)) .

From Lemma 4.1 with T = 1, we have

lim
ε→0

ε2(1−H) logP (εM∗ > 1) = lim
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > 1

)
.

We now notice that

lim
ε→0

ε2(1−H) logP (εM∗ > 1) = λ2(H−1) lim
ε̄→0

ε̄2(1−H) logP (ε̄M∗ > λ) , (A.4)

by changing ε to λ−1ε̄. With the same argument as above, for λ > 0, we have the following

λ2(H−1) lim
ε̄→0

ε̄2(1−H) logP (ε̄M∗ > λ) = λ2(H−1) lim
ε→0

ε2(1−H) logP
(
εM̄(ε−1) > λ

)
=

{
− (λ+k)2

2 , 1 < λH
k(1−H) ,

− k2H

2H2H(1−H)2(1−H)λ
2(1−H), otherwise.

Therefore, choosing λ > k(1−H)
H , from (A.4), we have

lim
ε→0

ε2(1−H) logP
(
M∗ > ε−1

)
= − k2H

2H2H(1−H)2(1−H)
.

This completes the proof. �

Remark A.3. The intuition for the choice λ > k(1−H)
H in the end of the proof is that (A.4) suggests

us a scale invariance of the tail of M∗. Therefore, the decay rate of tail asymptotics is always one

of the two cases in (4.10) which scales in λ as λ2(1−H). This case happens when λ > k(1−H)
H .

The next lemma concerns the locally stationary property of the GFBM process and is used in the
proof in Section 5.1. Recall the definition of local stationarity for a self-similar Gaussian process
in (5.28).
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Lemma A.2. The GFBM X(·) defined in (2.1) is locally stationary.

Proof. For 0 ≤ s ≤ t,

E[|t−HX(t)− s−HX(s)|2] = t−2HE[|X(t)−X(s)|2]− (t−H − s−H)2E[|X(s)|2]

+ 2t−H(t−H − s−H)E[(X(t)−X(s))X(s)]

= t−2HE[|X(t)−X(s)|2]− (ts)−2H(tH − sH)2E[|X(s)|2]

+ 2t−2Hs−H(sH − tH)E[(X(t)−X(s))X(s)] (A.5)

To check that

lim
t→t0
s→t0

E[|t−HX(t)− s−HX(s)|2]

(t− s)2H
exists, (A.6)

it suffices to prove that the corresponding limits exist for the three terms on the right hand side
of (A.5). Before we proceed to do that, using (2.2) and (2.3), we rewrite E[|X(t) − X(s)|2] and
E[(X(t) −X(s))X(s)] by making the following change of variables: u = s − (t − s)v and v = xw
with x = s

t−s for integrals over [0, s] and u = s+ (t− s)v for integrals over [s, t]. We have

E[|X(t)−X(s)|2] = c2

∫ t

s
(t− u)2αu−γdu+ c2

∫ s

0
((t− u)α − (s− u)α)2u−γdu

= c2(t− s)2H

(∫ 1

0
(1− v)2α

(
v +

s

t− s

)−γ
dv

+

∫ 1

0
(1− w)−γ

(
(1 + xw)α − (xw)α

)2
x1−γdw

)
, (A.7)

E[(X(t)−X(s))X(s)] = c2

∫ s

0

(
(t− u)α − (s− u)α

)
(s− u)αu−γdu

= c2(t− s)2H

∫ 1

0
(1− w)−γ

(
(1 + xw)α − (xw)α

)
(xw)αx1−γdw . (A.8)

It is clear that∫ 1

0
(1− v)2α

(
v +

s

t− s

)−γ
dv ≤

∫ 1

0
(1− v)2αv−γdv = B(1 + 2α, 1− γ) <∞. (A.9)

Recall that B(a, b) is the Beta function for a, b > 0. Since −1
2 + γ

2 < α < 1+γ
2 , we have

sup
y>0

{∫ 1

0
(1− w)−γ

(
(1 + yw)α − (yw)α

)2
y1−γdw

}
< KB(1− γ, γ) <∞, for some K > 0. (A.10)

Indeed, we have

sup
y>0

{∫ 1

0
(1− w)−γ

(
(1 + yw)α − (yw)α

)2
y1−γdw

}
≤
(

sup
y>0

g(y)
)2 ∫ 1

0
(1− w)−γw1−γdw

≤
(

sup
y>0

g(y)
)2

B(1− γ, γ).

Here,

g(y)
.
=
(
(1 + y)α − (y)α

)
y

1
2
− γ

2 for y ∈ (0,∞).
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Now showing that supy>0 g(y) < ∞, we are done. To that end, we show that limy→0 g(y) and
limy→∞ g(y) both exist and are finite. Then from continuity of g(·) in (0,∞), we know that g(y) is
finite for every y ∈ (0,∞) and it will then imply that supy>0 g(y) <∞. Consider

lim
y→0

g(y) = lim
y→0

(
(1 + y)αy

1
2
− γ

2 − yα+ 1
2
− γ

2

)
= 0,

where we used 1
2 −

γ
2 > 0 and α > −1

2 + γ
2 . Now consider

lim
y→∞

g(y) = lim
y→∞

(1 + y−1)α − 1

y−α−
1
2

+ γ
2

H
= lim

y→∞

−α(1 + y−1)α−1y−2

(−α− 1
2 + γ

2 )y−α−
1
2

+ γ
2
−1

= lim
y→∞

−α(1 + y−1)α−1yα−
1
2
− γ

2

(−α− 1
2 + γ

2 )

= 0.

In the above,
H
= denotes that we used L’Hôpital’s rule, as the we have a 0

0 form (recall that

α+ 1
2 −

γ
2 > 0). To get the final equality, we used the fact that α < 1

2 + γ
2 .

Now consider (observe that it is (t− s)H , instead of (t− s)2H),

(t− s)H
(∫ 1

0
(1− w)−γ

(
(1 + xw)α − (xw)α

)
(xw)αx1−γdw

)
≤ sH sup

y>0

{
y−H+α−γ+1

(
(1 + y)α − yα

)}∫ 1

0
(1− w)−γwγ−1dw

≤ sHB(1− γ, γ) sup
y>0

{
y

1
2
− γ

2
(
(1 + y)α − yα

)}
, since H = α− γ

2
+

1

2
,

≤ sHB(1− γ, γ) sup
y>0

{
y

1
2
− γ

2
+α
(
(1 + y−1)α − 1

)}
<∞. (A.11)

The finiteness of
sup
y>0

{
y

1
2
− γ

2
+α
(
(1 + y−1)α − 1

)}
can be proved in the similar way as done for g(y). From (A.9) and (A.10) ( (A.11), respectively.),
we can conclude that quantity in parenthesis of (A.7) ((A.8), respectively) is continuous in (s, t)
when δ < s ≤ t, for every δ > 0.

We are finally in a position to prove local stationarity of X(·). For the first term in (A.5),
from (A.7) and continuity of the term in the parenthesis, we know that

lim
t→t0
s→t0

t−2H E[|X(t)−X(s)|2]

(t− s)2H

exists uniformly for t0 > δ, for any δ > 0. To see that the corresponding limit of the second term
in (A.5) exists uniformly for t0 > δ, for any δ > 0, we write

lim
t→t0
s→t0

(ts)−2H(tH − sH)2E[|X(s)|2]

(t− s)2H
= lim

t→t0
s→t0

( tH − sH
(t− s)H

)2
(ts)−2HE[|X(s)|2]

and from H-Hölder continuity of function f(t) = tH , we can conclude the existence of the above
limit.

Now, to see that the corresponding limit of the third term in (A.5) exists uniformly for t0 > δ,
for any δ > 0, we write

lim
t→t0
s→t0

t−2Hs−H(sH − tH)E[(X(t)−X(s))X(s)]

(t− s)2H
= lim

t→t0
s→t0

t−2Hs−H(sH − tH)

(t− s)H
E[(X(t)−X(s))X(s)]

(t− s)H
.
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From the H-Hölder continuity of function f(t) = tH , we obtain

lim
t→t0
s→t0

t−2Hs−H(sH − tH)

(t− s)H
exists

uniformly for t0 > δ, for any δ > 0 and from (A.8) and continuity of the quantity inside the
parenthesis, we know that

lim
t→t0
s→t0

E[(X(t)−X(s))X(s)]

(t− s)H
exists.

Thus, we have proved that (A.6) holds. This proves the result. �
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Lévy motion or fractional Brownian motion? The Annals of Applied Probability, 12(1):23–68,
2002.

[26] I. Norros. On the use of fractional Brownian motion in the theory of connectionless networks.
IEEE Journal on selected areas in communications, 13(6):953–962, 1995.

[27] G. Pang and M. S. Taqqu. Nonstationary self-similar Gaussian processes as scaling limits
of power-law shot noise processes and generalizations of fractional Brownian motion. High
Frequency, 2(2):95–112, 2019.

[28] K. Park and W. Willinger. Self-similar network traffic: An overview. Self-Similar Network
Traffic and Performance Evaluation, pages 1–38, 2000.

[29] V. Pipiras and M. S. Taqqu. Long-range dependence and self-similarity. Cambridge University
Press, 2017.

[30] N. U. Prabhu. Stochastic storage processes: queues, insurance risk, and dams, and data com-
munication. Springer Science & Business Media, 1998.

[31] S. Uhlig. Non-stationarity and high-order scaling in TCP flow arrivals: a methodological
analysis. ACM SIGCOMM Computer Communication Review, 34(2):9–24, 2004.

[32] R. Wang and Y. Xiao. Exact uniform modulus of continuity and Chungs LIL for the generalized
fractional Brownian motion. Journal of Theoretical Probability, 35:24422479, 2022.

[33] W. Whitt. Stochastic-process limits: An introduction to stochastic-process limits and their
application to queues. Springer, 2002.

[34] W. Willinger. Traffic modeling for high-speed networks: Theory versus practice. Institute for
Mathematics and Its Applications, 71:395, 1995.


	1. Introduction
	1.1. Notation
	1.2. Organization of the paper

	2. Preliminaries
	2.1. Generalized Riemann-Liouville FBM
	2.2. Large deviation principle for functionals of BM

	3. LDP for the Generalized R-L FBM
	4. LDP for fluid queues with GFBM input
	4.1.  Alternative proofs of Theorem 4.1 and Lemma 4.1 using Landau-Marcus-Shepp Asymptotics.

	5. Long time behavior of M() and V()
	5.1. Alternative proof of Theorem 5.2 using the results of Hüsler and Piterbarg husler1999extremes

	Acknowledgement
	Appendix A. Auxiliary results
	References

