Week 11 - Summary — Differentiation of functions of multiple variables

Reading: XV.1-XV.2, XVII.1-XVII.3.

Let E, F, G be complete normed vector spaces.
119. Let U be an open set of \mathbb{R}^{n}. Let $f: U \rightarrow \mathbb{R}$. The i th partial derivative of f at $x \in U$ is

$$
D_{i} f(x)=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h} .
$$

120. Theorem: Let $f: U \rightarrow R^{n}$. If $D_{i} f, D_{j} f, D_{i} D_{j} f, D_{j} D_{i} f$ exist and are all continuous on U, then

$$
D_{i} D_{j} f=D_{j} D_{i} f \text { on } U .
$$

121. Relating partial derivatives in different coordinates. Let $x=r \cos \theta, y=r \sin \theta$. Let $f(x, y)=g(r, \theta)$. Then

$$
\frac{\partial g}{\partial r}=D_{1} f(x, y) \frac{\partial x}{\partial r}+D_{2} f(x, y) \frac{\partial y}{\partial r}
$$

and similarly for $\frac{\partial g}{\partial \theta}$.
122. We say that $f: U \rightarrow \mathbb{R}$ is differentiable at $x \in U$ if there exists an $A \in \mathbb{R}^{n}$ such that

$$
f(x+h)=f(x)+A \cdot h+o(h) .
$$

Such an A is the derivative of f at x.
123. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $x \in U$ with derivative A. Then $A=\operatorname{grad} f(x)$.
124. If all partial derivatives of $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ exist and are continuous in some open set containing x, then f is differentiable at x.
125. Let $\phi:[a, b] \rightarrow \mathbb{R}^{n}$ be differentiable and have values in an open set $U \subset \mathbb{R}^{n}$. Let $f: U \rightarrow \mathbb{R}$ be a differentiable function. The $f \circ \phi: J \rightarrow \mathbb{R}$ is differentiable and

$$
(f \circ \phi)^{\prime}(t)=\operatorname{grad} f(\phi(t)) \cdot \phi^{\prime}(t)
$$

126. The direction of $\operatorname{grad} f(x)$ is the direction of maximal increase of the function f at x. The norm $|\operatorname{grad} f(x)|$ is equal to the rate of change of f in its direction of maximal increase. $\operatorname{grad} f(x)$ is perpendicular to the level surface of f at x.
127. Any linear map from \mathbb{R}^{n} to \mathbb{R}^{m} is given by matrix multiplication for some matrix in $\mathbb{R}^{m \times n}$.
128. Let $U \subset E$. We say that $f: U \rightarrow F$ is differentiable at $x \in U$ if there exists a linear map $A: E \rightarrow F$ such that

$$
f(x+h)=f(x)+A h+o(h) .
$$

Such an A is the derivative of f at x, sometimes denoted by $f^{\prime}(x)$.
129. Let U be an open subset of \mathbb{R}^{n}, and let $f: U \rightarrow \mathbb{R}^{m}$ be differentiable at x. The continuous linear map $f^{\prime}(x)$ is represented by the Jacobian matrix

$$
J_{f}(x)=\left(\frac{\partial f_{i}}{\partial x_{j}}\right) .
$$

130. Chain rule: Let U be open in E and let V be open in F. Let $f: U \rightarrow V$ and $g: V \rightarrow G$ be maps. Let $x \in U$. If f is differentiable at x and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x and

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \circ f^{\prime}(x)
$$

