Week 12 - Summary - Inverse Function Theorem

Reading: III.3, XVIII.1, XVIII.2, XVIII. 3
131. A continuous, strictly increasing, real-valued function on \mathbb{R} has an inverse that is continuous and strictly increasing.
132. A differentiable, strictly increasing function has an inverse that is differentiable and strictly increasing. The derivative of the inverse is the inverse of the derivative:

$$
\frac{d y}{d x}(x)=\left(\frac{d x}{d y}(y)\right)^{-1}
$$

133. Shrinking Lemma: Let M be a closed subset of a complete normed vector space. Let $f: M \rightarrow M$ be a mapping, and assume that there is a $0<K<1$ such that for all $x, y \in M,\|f(x)-f(y)\| \leq K\|x-y\|$. Then there exists a unique $x_{0} \in M$ such that $f\left(x_{0}\right)=x_{0}$. If $x \in M$, then the sequence $\left\{f^{n}(x)\right\}$ coverages to x_{0}.
134. The set of invertible $n \times n$ matrices is open subset of all $n \times n$ matrices.
135. Let E be a complete normed vector space, and let $L(E, E)$ be the set of all linear maps from E to E. The set of invertible elements of $L(E, E)$ is open in $L(E, E)$. If $u \in L(E, E)$ is such that $\|u\|<1$, then $I-u$ is invertible and $(I-u)^{-1}=\sum_{n=0}^{\infty} u^{n}$.
136. Let $\operatorname{Inv}(E, E)$ be the set of invertible elements of $L(E, E)$. Let $\phi: \operatorname{Inv}(E, E) \rightarrow \operatorname{Inv}(E, E)$ be the map $u \mapsto u^{-1}$. Then, ϕ is infinitely differentiable, and its derivative is given by $\phi^{\prime}(u) v=-u^{-1} v u^{-1}$.
137. Let E, F be a complete normed vector spaces. Let U be open in E and let $f: U \rightarrow F$ be a C^{p} map. We say that f is C^{p}-invertible on U if the image of f is an open set V in F, and if there is a C^{p} map $g: V \rightarrow U$ such that $g(f(x))=x$ and $f(g(y))=y$ for all $x \in U$ and $y \in V$.
138. Inverse function theorem: Let U be open in E. Let $x_{0} \in U$, and let $f: U \rightarrow F$ be a C^{p} map. Assume that the derivative $f^{\prime}\left(x_{0}\right): E \rightarrow F$ is invertible. The f is locally C^{p}-invertible at x_{0}. If ϕ is its local inverse, and $y=f(x)$, then $\phi^{\prime}(y)=f^{\prime}(x)^{-1}$.
