2 November 2016 Analysis I Paul E. Hand hand@rice.edu

Week 12 — Summary — Inverse Function Theorem

Reading: III.3, XVIII.1, XVIII.2, XVIII.3

- 131. A continuous, strictly increasing, real-valued function on \mathbb{R} has an inverse that is continuous and strictly increasing.
- 132. A differentiable, strictly increasing function has an inverse that is differentiable and strictly increasing. The derivative of the inverse is the inverse of the derivative:

$$\frac{dy}{dx}(x) = \left(\frac{dx}{dy}(y)\right)^{-1}$$

- 133. Shrinking Lemma: Let M be a closed subset of a complete normed vector space. Let $f: M \to M$ be a mapping, and assume that there is a 0 < K < 1 such that for all $x, y \in M$, $||f(x) f(y)|| \le K ||x y||$. Then there exists a unique $x_0 \in M$ such that $f(x_0) = x_0$. If $x \in M$, then the sequence $\{f^n(x)\}$ coverages to x_0 .
- 134. The set of invertible $n \times n$ matrices is open subset of all $n \times n$ matrices.
- 135. Let *E* be a complete normed vector space, and let L(E, E) be the set of all linear maps from *E* to *E*. The set of invertible elements of L(E, E) is open in L(E, E). If $u \in L(E, E)$ is such that ||u|| < 1, then I - u is invertible and $(I - u)^{-1} = \sum_{n=0}^{\infty} u^n$.
- 136. Let Inv(E, E) be the set of invertible elements of L(E, E). Let $\phi : Inv(E, E) \to Inv(E, E)$ be the map $u \mapsto u^{-1}$. Then, ϕ is infinitely differentiable, and its derivative is given by $\phi'(u)v = -u^{-1}vu^{-1}$.
- 137. Let E, F be a complete normed vector spaces. Let U be open in E and let $f : U \to F$ be a C^p map. We say that f is C^p -invertible on U if the image of f is an open set V in F, and if there is a C^p map $g: V \to U$ such that g(f(x)) = x and f(g(y)) = y for all $x \in U$ and $y \in V$.
- 138. Inverse function theorem: Let U be open in E. Let $x_0 \in U$, and let $f: U \to F$ be a C^p map. Assume that the derivative $f'(x_0): E \to F$ is invertible. The f is locally C^p -invertible at x_0 . If ϕ is its local inverse, and y = f(x), then $\phi'(y) = f'(x)^{-1}$.