12 November 2016 Analysis I Paul E. Hand hand@rice.edu

Week 13 — Summary — Implicit Function Theorem

Reading: XVIII.4

139. Let $f : J_1 \times J_2 \to \mathbb{R}$ be a function of two real variables defined on a product of open intervals J_1, J_2 . Assume f is C^p . Let $(a, b) \in J_1 \times J_2$, f(a, b) = 0, $D_2 f(a, b) \neq 0$. Then the map

$$\psi: J_1 \times J_2 \to \mathbb{R} \times \mathbb{R}$$
$$(x, y) \mapsto (x, f(x, y))$$

is locally C^p invertible at (a, b).

- 140. Let S be the set of (x, y) such that f(x, y) = 0. Then there exists an open set $U_1 \subset \mathbb{R}^2$ containing (a, b) such that $\psi(S \cap U_1)$ consists of all numbers (x, 0) for x in some open interval around a.
- 141. Implicit Function Theorem: Let $f : J_1 \times J_2 \to \mathbb{R}$ be a function defined on the product of two open intervals. Assume f is C^p . Let $(a, b) \in J_1 \times J_2$, f(a, b) = 0, and $D_2 f(a, b) \neq 0$. Then there exists an open interval $J \subset \mathbb{R}$ containing a and a C^p function $g : J \to \mathbb{R}$ such that g(a) = b and f(x, g(x)) = 0for all $x \in J$.
- 142. Implicit Function Theorem in higher dimensions: Let $U \subset \mathbb{R}^n$ be open, and let $f : U \to \mathbb{R}$ be a C^p function on U. Let $(a, b) = (a_1, \ldots, a_{n-1}, b) \in U$ and assume that f(a, b) = 0 but $D_n f(a, b) \neq 0$. Then there exists an open ball $V \subset \mathbb{R}^{n-1}$ centered at (a) and a C^p function $g : V \to \mathbb{R}$ such that g(a) = b and f(x, g(x)) = 0 for all $x \in V$.
- 143. Let $U \subset \mathbb{R}^n$ be open, and let $f : U \to \mathbb{R}$ be a C^p function. Let $P \in U$ and assume that f(P) = 0but grad $f(P) \neq 0$. Let $w \in \mathbb{R}^n$ be perpendicular to grad f(P). Let S be the set of points X such that f(X) = 0. Then there exists a C^p curve $\alpha : J \to S$ defined on an open interval J containing the origin such that $\alpha(0) = P$ and $\alpha'(0) = w$.