Analysis I
Paul E. Hand
hand@rice.edu

Week 13 - Summary - Implicit Function Theorem

Reading: XVIII. 4

139. Let $f: J_{1} \times J_{2} \rightarrow \mathbb{R}$ be a function of two real variables defined on a product of open intervals J_{1}, J_{2}. Assume f is C^{p}. Let $(a, b) \in J_{1} \times J_{2}, f(a, b)=0, D_{2} f(a, b) \neq 0$. Then the map

$$
\begin{aligned}
\psi: J_{1} \times J_{2} & \rightarrow \mathbb{R} \times \mathbb{R} \\
(x, y) & \mapsto(x, f(x, y))
\end{aligned}
$$

is locally C^{p} invertible at (a, b).
140. Let S be the set of (x, y) such that $f(x, y)=0$. Then there exists an open set $U_{1} \subset \mathbb{R}^{2}$ containing (a, b) such that $\psi\left(S \cap U_{1}\right)$ consists of all numbers $(x, 0)$ for x in some open interval around a.
141. Implicit Function Theorem: Let $f: J_{1} \times J_{2} \rightarrow \mathbb{R}$ be a function defined on the product of two open intervals. Assume f is C^{p}. Let $(a, b) \in J_{1} \times J_{2}, f(a, b)=0$, and $D_{2} f(a, b) \neq 0$. Then there exists an open interval $J \subset \mathbb{R}$ containing a and a C^{p} function $g: J \rightarrow \mathbb{R}$ such that $g(a)=b$ and $f(x, g(x))=0$ for all $x \in J$.
142. Implicit Function Theorem in higher dimensions: Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}$ be a C^{p} function on U. Let $(a, b)=\left(a_{1}, \ldots, a_{n-1}, b\right) \in U$ and assume that $f(a, b)=0$ but $D_{n} f(a, b) \neq 0$. Then there exists an open ball $V \subset \mathbb{R}^{n-1}$ centered at (a) and a C^{p} function $g: V \rightarrow \mathbb{R}$ such that $g(a)=b$ and $f(x, g(x))=0$ for all $x \in V$.
143. Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}$ be a C^{p} function. Let $P \in U$ and assume that $f(P)=0$ but $\operatorname{grad} f(P) \neq 0$. Let $w \in \mathbb{R}^{n}$ be perpendicular to $\operatorname{grad} f(P)$. Let S be the set of points X such that $f(X)=0$. Then there exists a C^{p} curve $\alpha: J \rightarrow S$ defined on an open interval J containing the origin such that $\alpha(0)=P$ and $\alpha^{\prime}(0)=w$.

