20 November 2016 Analysis I Paul E. Hand hand@rice.edu

Week 14 — Summary — Measure zero and Content zero

Reading: X.4 Appendix

- 144. A set *E* has measure zero if $\forall \varepsilon > 0$, there exist open intervals $\{I_k\}_{k \in \mathbb{N}}$ such that $E \subset \bigcup_{k \in \mathbb{N}} I_k$ and $\sum_{k \in \mathbb{N}} |I_k| \le \varepsilon$.
- 145. A set *E* has content zero if $\forall \varepsilon > 0$, there exists a finite number of open intervals $\{I_k\}_{k=1}^N$ such that $E \subset \bigcup_{k \in \mathbb{N}} I_k$ and $\sum_{k \in \mathbb{N}} |I_k| \le \varepsilon$.
- 146. Any countable set has measure zero.
- 147. There is an uncountable set of measure zero.
- 148. A measure μ is a mapping from a collection of subsets Σ of \mathbb{R} to the extended reals, satisfying:
 - $E \in \Sigma \Rightarrow \mu(E) \ge 0$
 - $\mu(\emptyset) = 0$
 - Countable additivity: If $\{E_i\}_{i\in\mathbb{N}}$ are pairwise disjoint, then $\mu(\bigcup_{i\in\mathbb{N}} E_i) = \sum_{i\in\mathbb{N}} \mu(E_i)$.
- 149. If we want $\mu((a, b)) = b a$, then there are sets that can not be assigned a measure.