23 August 2016
Analysis I
Paul E. Hand
hand@rice.edu

Week 1—Summary - Real Numbers, Limits and Continuous Functions

1. Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the natural numbers, $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ be the integers.
2. ${ }^{*}$ Let \mathbb{Q} be the rationals. If $x \in \mathbb{Q}$, then $x=n / m$, for $n, m \in \mathbb{Z}$ and $m \neq 0$. There are a countable number of rationals.
3. *Let \mathbb{R} be the reals. There are an uncountable number of reals. Each real number has a decimal representation (possibly two)
4. Some axioms of real numbers:
(a) $(x+y)+z=x+(y+z) \forall x, y, z \in \mathbb{R}$ (additive associativity)
(b) $0+x=x+0 \forall x \in \mathbb{R}$ (additive identity)
(c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ such that $x+y=0$ (additive inverse)
(d) $\forall x, y \in R, x+y=y+x$ (additive commutativity)
(e) $(x y) z=x(y z) \forall x, y, z \in \mathbb{R}$ (multiplicative associativity)
(f) $1 x=x \forall x \in \mathbb{R}$ (multiplicative identity)
(g) $\forall x \neq 0, \exists y$ such that $y x=1$ (multiplicative inverse)
(h) $x y=y x \forall x, y \in \mathbb{R}$ (multiplicative commutativity)
(i) $x(y+z)=x y+x z \forall x, y, z \in \mathbb{R}$ (distributivity)
5. Completeness axiom of reals:
(a) *Every non-empty set of reals which is bounded from above has a least upper bound. We denote the least upper bound of a set S by $\sup (S)$, which stands for the supremum of S. If S is unbounded from above, then we say that $\sup (S)=\infty$.
(b) *Similarly, every non-empty set S which is bounded from below has a greatest lower bound, $\inf (S)$, which stands for the infimum of S. If S is unbounded from below, then we say that $\inf (S)=-\infty$.
6. Properties of the reals
(a) Triangle inequality: For real numbers, $|x+y| \leq|x|+|y|$ and $|x-y| \geq|x|-|y|$.
(b) Archimedian property: If $0 \leq x \leq 1 / n \forall n \in \mathbb{N}$, then $x=0$
(c) Density of rationals within the reals: For all $x \in \mathbb{R}$ and $\varepsilon>0$, there exists $q \in \mathbb{Q}$ such that $|q-x|<\varepsilon$
(d) Between two distinct rationals, there is a real. Between two distinct reals, there is a rational.
7. *The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges if $\exists a \in \mathbb{R}$ such that for all $\varepsilon>0 \exists N$ such that $n \geq N \Rightarrow\left|x_{n}-a\right|<$ ε. We say that $\lim _{n \rightarrow \infty} x_{n}=a$.
8. *A bounded monotonic sequence converges.
9. *The sequence $\left\{x_{n}\right\}$ is Cauchy if $\forall \varepsilon>0$, there exists N such that $m, n \geq N \Rightarrow\left|x_{m}-x_{n}\right|<\varepsilon$.
10. \mathbb{R} is complete: If $\left\{x_{n}\right\}$ is a Cauchy sequence of \mathbb{R}, then $\left\{x_{n}\right\}$ converges to an element of \mathbb{R}.
11. Let $x=\left\{x_{n}\right\}$ be a sequence. A subsequence of x is obtained by keeping (in order) an infinite number of the items x_{n} and discarding the rest. Two ways to denote a subsequence are $x_{(n)}$ and $x_{n_{k}}$.
12. Let $\left\{x_{n}\right\}$ be a sequence. The number x is an accumulation point (or point of accumulation) of the sequence if $\forall \varepsilon$ there are infinitely many n such that $\left|x_{n}-x\right|<\varepsilon$.
13. *Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has a convergent subsequence.
14. (a) $* \lim \sup \left\{x_{n}\right\}$ is defined as supremum of the accumulation points of $\left\{x_{n}\right\}$. An alternative way to think about it is through $\lim \sup \left\{x_{n}\right\}=\lim _{n->\infty} \sup _{m \geq n} x_{m}$.
(b) $* \lim \inf \left\{x_{n}\right\}$ is defined analogously.
15. *Let f be a function defined on $S \subset \mathbb{R}$. The limit of $f(x)$ as x approaches a exists if there exists an L such that for all ε there is a $\delta>0$ such that $|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$ for $x \in S$. We write such a limit as $\lim _{x \rightarrow a} f(x)=L$.
16. Limits commute with addition, multiplication, division, and non-strict inequalities
(a) If $\lim _{x \rightarrow a}(c f)(x)=c \lim _{x \rightarrow a} f(x)$ for any real c.
(b) If $\lim _{x \rightarrow a}(f+g)(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$ if both limits on the right exist.
(c) If $\lim _{x \rightarrow a}(f g)(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$ if both limits on the right exist.
(d) If $\lim _{x \rightarrow a}(f / g)(x)=\lim _{x \rightarrow a} f(x) / \lim _{x \rightarrow a} g(x)$ if both limits on the right exist and the limit of g is nonzero.
(e) If $f(x) \leq g(x)$ for all x sufficiently close to a, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$, provided both limits on the right exist.
17. The function $f: S \rightarrow \mathbb{R}$ is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
18. The function f is continuous on the set S if f is continuous at every point in S.
19. The composition of two continuous functions is continuous.
20. Intermediate value theorem: Let f be continuous on $[a, b]$. For any y satisfying $f(a)<y<f(b)$ or $f(b)<y<f(a)$, there exists an $x \in(a, b)$ such that $f(x)=y$.
21. *The function f is uniformly continuous on the set S if for all ε, there exists a $\delta>0$ such that $|x-y|<$ $\delta \Rightarrow|f(x)-f(y)|<\varepsilon$. Notice that the dependence of δ on ϵ does not depend on the position within the set. That is what makes it uniform.
22. *A continuous function on a closed, bounded interval is uniformly continuous.
