8 September 2016 Analysis I Paul E. Hand hand@rice.edu

Week 4 — Summary — Norms

- 42. A vector space V over the reals is a set that permits addition and scalar multiplication.
 - (a) $(x+y) + z = x + (y+z) \ \forall x, y, z \in V$
 - (b) $0 + x = x \ \forall x \in V$
 - (c) $\forall x \in V, \exists y \in V \text{ such that } x + y = 0$
 - (d) $x + y = y + x \ \forall x, y \in V$
 - (e) For $x \in V$ and $a, b \in \mathbb{R}$, (ab)x = a(bx), (a+b)x = ax + bx, a(x+y) = ax + ay.
- 43. A norm on a vector space V is denoted by $\|\cdot\|$ and satisfies
 - (a) $||x|| \ge 0$ for all $x \in V$
 - (b) $||x|| = 0 \Leftrightarrow x = 0.$
 - (c) ||ax|| = |a|||x|| for all $x \in V, a \in \mathbb{R}$
 - (d) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$
- 44. *For finite and infinite sequences x, the ℓ_p norm is $||x||_p = (\sum_i |x_i|^p)^{1/p}$. It is a norm for $1 \le p < \infty$. The ℓ_∞ or sup norm of a sequence x is $||x||_\infty = \sup_i |x_i|$.
- 45. *For functions $f : \Omega \to \mathbb{R}$, the L_p norm is $||f||_p = (\int_{\Omega} |f|^p)^{1/p}$. The L_{∞} norm is $||f||_{\infty} = \sup_{x \in \Omega} |f(x)|$.
- 46. *A norm for $C^{p}[a, b]$ is given by $||f|| = \sum_{i=0}^{p} ||f^{(i)}||_{\infty}$.
- 47. *Norms can be visualized by their unit ball.