13 September 2016 Analysis I Paul E. Hand hand@rice.edu

Week 5 — Summary — Inner Products, Equivalent Norms, Complete Normed Vector Spaces

- 48. An inner product $\langle \cdot, \cdot \rangle$ satisfies the following axioms for all $u, v, w \in V$:
 - (a) $\langle v, w \rangle = \langle w, v \rangle$
 - (b) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
 - (c) If $c \in \mathbb{R}, \langle cv, w \rangle = c \langle v, w \rangle = \langle v, cw \rangle$
 - (d) $\langle v, v \rangle \ge 0 \ \forall v \text{ and } \langle v, v \rangle = 0 \Rightarrow v = 0.$
- 49. Inner products induce a norm $||v|| = \sqrt{\langle v, v \rangle}$.
- 50. *Inner products satisfy the Cauchy-Schwarz inequality $\langle v, w \rangle \leq ||v|| ||w||$.
- 51. *Notes from Bill Symes on Dimension Theory (linear independence, basis, dimension). See website.
- 52. *Definition: Two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent on a vector space V if there exists c, C > 0 such that

$$c||x||_b \le ||x||_a \le C||x||_b \,\forall x \in V.$$

- 53. *All norms on finite dimensional vectors spaces, e.g. \mathbb{R}^n , are equivalent.
- 54. *In infinite dimensional vector spaces, some pairs of norms are not equivalent.
- 55. *Definition: A sequence x_n in a normed vector space is Cauchy if

$$\forall \varepsilon \exists N \text{ such that } n, m \geq N \Rightarrow ||x_n - x_m|| < \varepsilon.$$

- 56. *In a normed vector space, we say that x_n converges to x if $\forall \varepsilon \exists N$ such that $n \geq N \Rightarrow ||x_n x|| < \varepsilon$. We write this as $\lim_{n\to\infty} x_n = x$
- 57. *Definition: A vector space is complete if any Cauchy sequence converges to an element in the set.
- 58. *Definition: A Banach space is a complete normed vector space.
- 59. *Definition: \mathbb{R}^n is a Banach space under the ℓ_{∞} norm. By equivalence of norms on finite dimensional spaces, it is a Banach space under any norm.