Identification of Kernels in a Convolutional Neural Network

Jonas Actor

Rice University

14 October 2019

Target application: medical image segmentation

Abdominal CT scan

Liver and tumor segmentation

- · Well-established theory to analyze approximation, stability
- Upwind finite differences + fast marching method
- · Semiautomated : requires initialization by user
- Works for simple problems only : relies on edge information

Motivation: LSE vs CNN

	Can analyze?	Accurate?
LSE	yes	sometimes
CNN	no	yes

Goal: accurate method we can analyze

Similarities between LSE and CNN

	LSE	CNN		
Convolution	finite difference kernel	learned kernel		
	$\frac{1}{h^2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix}$		
ReLU	upwind scheme	activation function		
	$\max(0, D^+ * u) + \min(0, D^- * u)$	$\max(0, K * x + b)$		
		_		

Build a CNN like a LSE solver

Level Set Equation \longrightarrow Level Set Network

1 Discretize Level Set Equation

- Explicit forward Euler in time
- Upwind finite differences in space
- **2** Forward Euler \rightarrow residual skip connections
- **3** Upwind finite differences \longrightarrow convolutions and ReLU

LSN: Results

K-Fold	LSE	LSN Test	LSN Validation	UNet
0	0.736	0.837	0.619	0.912
1	0.600	0.847	0.729	0.919
2	0.483	0.116	0.005	0.874
3	0.730	0.827	0.606	0.895
4	0.643	0.831	0.596	0.915
Avg	0.604	0.692	0.511	0.903
Avg- $\{2\}$	0.640	0.837	0.638	0.911

Table: DSC scores for each fold, from training the level set network.

Identification of Kernels

- Are CNN convolution kernels finite difference stencils?
- Are they close to finite difference stencils?
- What about other standard image processing kernels?

Numerical analysis kernels

- Laplacian
- Edge detection
- Identity

Image processing kernels

- Gaussian blur
- Local mean
- Sharpen

Setup of CNN

Trained on MICCAI LiTS 2017 dataset for liver segmentation

Kernel Analysis

- For each layer, separate each channel's 3×3 convolution kernel
- Flatten each 3 \times 3 kernel into a vector $\in \mathbb{R}^9$
- Cluster with k-means
- Project down using PCA
- Project known numerical analysis and image processing kernels

Kernel Clustering Results

11

Kernel Clustering Results

Conclusions

- Level Set Equation \neq Level Set Network \neq UNet
- Framework for using same operations (convolutions + ReLU) for both NNs and PDEs
- Examine how learned CNN kernels change across different layers

JAA is supported by the NLM Training Program in Biomedical Informatics & Data Science (T15LM007093), supplemented by the Ken Kennedy Institute Computer Science & Engineering Enhancement Fellowship, funded by the Rice Oil & Gas HPC Conference.

