Introduction
In this example, we check the correctness of SFEMaNS for stationary magnetic problem involving a conducting. The magnetic permeability is variable in (r,z) and presents a jump in \(r=1\). The magnetic permeability is given. We consider Dirichlet boundary conditions. We use P2 finite elements. This set up is approximated over one time iteration with a large time step.
We solve the Maxwell equations with the magnetic field \(\bB=\mu \bH\) as dependent variable:
\begin{align} \begin{cases} \partial_t (\mathbf{B}) + \nabla \times \left(\frac{1}{\Rm \sigma}\nabla \times( \frac{1}{\mu^c}\mathbf{B} ) \right) = \nabla\times (\bu^\text{given} \times \mathbf{B}) + \nabla \times \left(\frac{1}{\Rm \sigma} \nabla\times \mathbf{j} \right) & \text{in } \Omega, \\ \text{div} (\mathbf{B}) = 0 & \text{in } \Omega ,\\ \bH_1 \times \bn_1 + \bH_2 \times \bn_2 = 0 & \text{on } \Sigma_\mu,\\ \mu^c_1\bH _1 \cdot \bn_1 + \mu^c_2 \bH _2 \cdot \bn_2 = 0 & \text{on } \Sigma_\mu,\\ {\bH \times \bn}_{\Gamma} = {\bH_{\text{bdy}} \times \bn}_{\Gamma}, &\\ \bH_{t=0}= \bH_0, \\ \end{cases} \end{align}
in the domain \(\Omega= \{ (r,\theta,z) \in {R}^3 : (r,\theta,z) \in [0,2] \times [0,2\pi) \times [0.25,1]\} \). This domain is the union of two conduction domain \(\Omega_1=\{ (r,\theta,z) \in {R}^3 : (r,\theta,z) \in [0,1] \times [0,2\pi) \times [0.25,1]\}\) and \( \Omega_2= \{ (r,\theta,z) \in {R}^3 : (r,\theta,z) \in [1,2] \times [0,2\pi) \times [0.25,1]\}\). We denote by \(\Sigma_\mu\) the interface of \(\Omega_1\) and \(\Omega_2\). We also set \(\Gamma= \partial \Omega\). We define outward normals \(\bn_1, \bn_2\) to the surface \(\Sigma_\mu\) and the outward normals \(\bn\) to the surface \(\Gamma\). The data are the source term \(\mathbf{j}\), the given velocity \(\bu^\text{given}\), the boundary data \(\bH_{\text{bdy}}\) and the initial data \(\bH_0\). The parameter \(\Rm\) is the magnetic Reynolds number. The parameter \(\mu^c\) is the magnetic permeability of the conducting region \(\Omega\). The parameter \(\sigma\) is the conductivity in the conducting region \(\Omega\).
Manufactured solutions
We define the magnetic permeability in the conducting region as follows:
\begin{align*} \mu^c(r,z)= \begin{cases} 1 + r & \text{ in } \Omega_1, \\ 1+ r + 2 \lambda_\mu \frac{1+r}{z^2(3r+2)} &\text{ in } \Omega_2, \end{cases} \end{align*}
with \(\lambda_\mu= 10\).
We approximate the following analytical solutions:
\begin{align*} H_r(r,\theta,z,t) &= \begin{cases} r z & \text{ in } \Omega_1, \\ \frac{(3r+2)z^3r}{3z^2r+2z^2+ 2 \lambda_\mu} &\text{ in } \Omega_2, \end{cases} \\ H_{\theta}(r,\theta,z,t) &=0, \\ H_z(r,\theta,z,t) &=  \frac{z^2(3r+2)}{2(1+r)}, \end{align*}
and remind that \(\bB=\mu\bH\).
We also set the given velocity field to zero.
\begin{align*} u^\text{given}_r(r,\theta,z,t) &= 0, \\ u^\text{given}_{\theta}(r,\theta,z,t) &= 0, \\ u^\text{given}_z(r,\theta,z,t) &= 0. \end{align*}
The source term \( \mathbf{j}\) and the boundary data \(\bH_{\text{bdy}}\) are computed accordingly.
Generation of the mesh
The finite element mesh used for this test is named mesh_18_0.05.FEM
. The mesh size for the P1 approximation is \(0.05\) in \(\Omega\). You can generate this mesh with the files in the following directory: ($SFEMaNS_MESH_GEN_DIR)/EXAMPLES/EXAMPLES_MANUFACTURED_SOLUTIONS/mesh_18_0.05.FEM. The following images show the mesh for P1 finite elements for the conducting and vacuum regions.
Finite element mesh (P1) of the conducting region.

Information on the file condlim.f90
The initial conditions, boundary conditions and the forcing term \(\textbf{j}\) in the Maxwell equations are set in the file condlim_test_18.f90
. This condlim also uses functions of the file test_18.f90
to define the magnetic permeability and its gradient. Here is a description of the subroutines and functions of interest of the file condlim_test_18.f90
.

The subroutine
init_maxwell
initializes the magnetic field and the scalar potential at the time \(dt\) and \(0\) with \(dt\) being the time step. It is done by using the functions Hexact, Phiexact as follows: time = dt
DO k=1,6
DO i=1, SIZE(list_mode)
Hn1(:,k,i) = Hexact(H_mesh,k, H_mesh%rr, list_mode(i), mu_H_field, time)
IF (inputs%nb_dom_phi>0) THEN
IF (k<3) THEN
phin1(:,k,i) = Phiexact(k, phi_mesh%rr, list_mode(i) , mu_phi, time)
ENDIF
END IF
ENDDO
ENDDO
time = time + dt
DO k=1,6
DO i=1, SIZE(list_mode)
Hn(:,k,i) = Hexact(H_mesh,k, H_mesh%rr, list_mode(i), mu_H_field, time)
IF (inputs%nb_dom_phi>0) THEN
IF (k<3) THEN
phin(:,k,i) = Phiexact(k, phi_mesh%rr, list_mode(i), mu_phi, time)
ENDIF
END IF
ENDDO
ENDDO

The function
Hexact
contains the analytical magnetic field. It is used to initialize the magnetic field and to impose Dirichlet boundary conditions on \(\textbf{H}\times\textbf{n}\) with \(\textbf{n}\) the outter normal vector.

If the Fourier mode m is not equal to 0, we set the magnetic field to zero.
IF (m/=0) THEN
vv(:) = 0.d0
RETURN
END IF

We define a tabular id so that each nodes n, id(n) is equal to 1 or 2 depending if the node is in \(\Omega_1\) or \(\Omega_2\).

If rr contains the radial and vertical coordinates of each np nodes, we define id as follows.
if (SIZE(rr,2)== H_mesh%np) THEN
DO mm = 1, H_mesh%me !id is used to determine on which side of the interface we are
END DO
This case is done during the initialization of the magnetic field.

If rr does not contain the information on np nodes, it means Hexact is called to set boundary conditions. In that case, Hexact is called one time per nodes. So we define id, a tabular of dimension 1, as follows:
ELSE
IF (rr(1,1)<1) THEN !used for
boundary condition
id = 1
ELSE
id = 2
END IF
END IF

For the Fourier mode \(m=0\), we define the magnetic field depending of its TYPE (1 and 2 for the component radial cosine and sine, 3 and 4 for the component azimuthal cosine and sine, 5 and 6 for the component vertical cosine and sine) as follows:
IF (TYPE==1) THEN
DO n = 1, SIZE(rr,2)
IF (id(n)==1) THEN
vv(n) = rr(1,n)*rr(2,n)
ELSE
vv(n) = (3.d0*rr(1,n)+2.d0)*rr(2,n)**3*rr(1,n)/&
(3.d0*rr(2,n)**2*rr(1,n) + 2.d0*rr(2,n)**2 + 2.d0*lambda_mu_T18 )
END IF
END DO
ELSE IF (TYPE==5) THEN
vv =  0.5 * ( rr(2,:)**2*(3*rr(1,:)+2) )/( 1.d0 + rr(1,:) )
ELSE
vv = 0.d0
END IF
RETURN
where lambda_mu_T18 is set to \(10\) in the file test_18.f90
.

The function
Vexact
is used to define the given velocity field \(\bu^\text{given}\). It is set to zero.

The function
Jexact_gauss
is used to define the source term \(\textbf{j}\). We remind that \( \bu^\text{given}=0 \) and \(\partial_t \textbf{H}=0\) so it is defined such that \(\textbf{j}=\ROT \bH\).

If the Fourier mode m is not equal to 0, it is set to zero.
IF (m/=0) THEN
vv = 0.d0
RETURN
END IF

For the Fourier mode \(m=0\), we define the source term depending of its TYPE (1 and 2 for the component radial cosine and sine, 3 and 4 for the component azimuthal cosine and sine, 5 and 6 for the component vertical cosine and sine) as follows:
IF (TYPE==3) THEN
IF (mesh_id==1) THEN !Determine on which side of the interface we are
vv = rr(1)  (1.d0/2.d0)*rr(2)**2*(3*rr(1)+2)/(1+rr(1))**2 &
+ (3.d0/2.d0)*rr(2)**2/(1+rr(1))
ELSE
vv = rr(1)*rr(2)**2*(3*rr(1)+2)*(3*rr(2)**2*rr(1)+2*rr(2)**2+6*lambda_mu_T18) &
/(3*rr(2)**2*rr(1)+2*rr(2)**2+2*lambda_mu_T18)**2 &
+ (3.d0/2.d0)*rr(2)**2/(1+rr(1)) &
 (1.d0/2.d0)*rr(2)**2*(3*rr(1)+2)/(1+rr(1))**2
ENDIF
ELSE
vv = 0.d0
END IF
RETURN

The function
mu_bar_in_fourier_space
defines the magnetic permeability that depends of the radial and vertical coordinates. It is done by using the function mu_bar_in_fourier_space_anal_T18
of the file test_18.f90
. IF( PRESENT(pts) .AND. PRESENT(pts_ids) ) THEN
vv=mu_bar_in_fourier_space_anal_T18(H_mesh,nb,ne,pts,pts_ids)
ELSE
vv=mu_bar_in_fourier_space_anal_T18(H_mesh,nb,ne)
END IF
RETURN
When the magnetic permeability depends of the time or the azimuthal direction (set "===Is permeability variable in theta (true/false)?" to true in the data file), this function is used to define a stabilization term mu_bar. It needs to be smaller than mu everywhere in the domain. The magnetic permeability is then defined with the function mu_in_real_space
.

The function
grad_mu_bar_in_fourier_space
defines the gradient of the magnetic permeability. It is done by using the function grad_mu_bar_in_fourier_space_anal_T18
of the file test_18.f90
. vv=grad_mu_bar_in_fourier_space_anal_T18(pt,pt_id)
RETURN
When the magnetic permeability depends of the time or the azimuthal direction, this function is used to define the gradient of a stabilization term mu_bar.
All the other subroutines present in the file condlim_test_18.f90
are not used in this test. We refer to the section Fortran file condlim.f90 for a description of all the subroutines of the condlim file. The following describes the functions of interest of the file test_18.f90
.

First we define the real number \(\lambda_\mu\).
REAL (KIND=8), PARAMETER, PUBLIC :: lambda_mu_T18=10.0d0

The function
mu_bar_in_fourier_space_anal_T18
defines the magnetic permeability.

First we define the radial and vertical cylindrical coordinates of each nodes. We also define a tabular local_ids that is equal to 1 if the node is in \(\Omega_1\) and 2 if it's in \(\Omega_2\).
IF( PRESENT(pts) .AND. PRESENT(pts_ids) ) THEN !Computing mu at pts
r=pts(1,nb:ne)
local_ids=pts_ids
ELSE
r=H_mesh%rr(1,nb:ne) !Computing mu at nodes
DO m = 1, H_mesh%me
global_ids(H_mesh%jj(:,m)) = H_mesh%i_d(m)
END DO
local_ids=global_ids(nb:ne)
END IF

We define the magnetic permeability.
DO n = 1, ne  nb + 1
IF(local_ids(n)==1) THEN
vv(n) = 1.d0 + r(n) !mu1 , DCQ: If you change mu1_bar, you have to change
!Jexact_gauss() as well
ELSE
vv(n) = 1.d0 + r(n) + 2*lambda_mu_T18*(1+r(n))/(
z(n)**2*(3*r(n)+2)) !mu2
END IF
END DO
RETURN

The function
grad_mu_bar_in_fourier_space_anal_T18
defines the gradient of the magnetic permeability on gauss points.

We define the radial and vertical cylindrical coordinates.

We define the gradient of the magnetic permeability.
IF(pt_id(1)==1) THEN !grad_mu_1
vv(1)= 1.d0
vv(2)= 0.d0
ELSE !grad_mu_2
vv(1)=1.d0 + ( (3*r+2)*(2*lambda_mu_T18)  ( (2*lambda_mu_T18*(1+r)))*(3) ) /(
z*(3*r+2) )**2
vv(2)= (2*lambda_mu_T18*(1+r))/(3*r+2)*(2/
z**3)
END IF
RETURN
Setting in the data file
We describe the data file of this test. It is called debug_data_test_18
and can be found in the following directory: ($SFEMaNS_DIR)/MHD_DATA_TEST_CONV_PETSC.

We use a formatted mesh by setting:
===Is mesh file formatted (true/false)?
.t.

The path and the name of the mesh are specified with the two following lines:
===Directory and name of mesh file
'.' 'mesh_18_0.05.FEM'
where '.' refers to the directory where the data file is, meaning ($SFEMaNS_DIR)/MHD_DATA_TEST_CONV_PETSC.

We use one processor in the meridian section. It means the finite element mesh is not subdivised.
===Number of processors in meridian section
1

We solve the problem for \(1\) Fourier modes.
===Number of Fourier modes
1

We use \(1\) processors in Fourier space.
===Number of processors in Fourier space
1
It means that each processors is solving the problem for \(1/1=1\) Fourier modes.

We do not select specific Fourier modes to solve.
===Select Fourier modes? (true/false)
As a consequence, the code approximates the problem on the first Fourier mode \(m=0\).

We approximate the Maxwell equations by setting:
===Problem type: (nst, mxw, mhd, fhd)
'mxw'

We do not restart the computations from previous results.
===Restart on velocity (true/false)
.f.
===Restart on magnetic field (true/false)
.f.
It means the computation starts from the time \(t=0\).

We use a time step of \(10^{40}\) and solve the problem over \(1\) time iteration.
===Time step and number of time iterations
1d40, 1

We set the number of domains and their label, see the files associated to the generation of the mesh, where the code approximates the Maxwell equations.
===Number of subdomains in magnetic field (H) mesh
2
===List of subdomains for magnetic field (H) mesh
1 2

We set the number of interface in H_mesh and give their respective labels.
===Number of interfaces in H mesh
1
===List of interfaces in H mesh
5
Such interfaces represent interfaces with discontinuities in magnetic permeability or interfaces between the magnetic field mesh and the temperature or the velocity field meshes.

We set the number of boundaries with Dirichlet conditions on the magnetic field and give their respective labels.
===Number of Dirichlet sides for Hxn
3
===List of Dirichlet sides for Hxn
2 3 4

The magnetic permeability is defined with a function of the file
condlim_test_18.f90
. ===Is permeability defined analytically (true/false)?
.t.

We construct the magnetic permeability on the gauss points without using its value on the nodes and a finite element interpolation.
===Use FEM Interpolation for magnetic permeability (true/false)?
.f.

We set the conductivity in each domains where the magnetic field is approximated.
===Conductivity in the conductive part (1:nb_dom_H)
1.d0 1.d0

We set the type of finite element used to approximate the magnetic field.
===Type of finite element for magnetic field
2

We set the magnetic Reynolds number \(\Rm\).
===Magnetic Reynolds number
1.d0

We set stabilization coefficient for the divergence of the magnetic field and the penalty of the Dirichlet and interface terms.
===Stabilization coefficient (divergence)
1.d0
===Stabilization coefficient for Dirichlet H and/or interface H/H
1.d0

We give information on how to solve the matrix associated to the time marching of the Maxwell equations.

===Maximum number of iterations for Maxwell solver
100

===Relative tolerance for Maxwell solver
1.d6
===Absolute tolerance for Maxwell solver
1.d10

===Solver type for Maxwell (FGMRES, CG, ...)
GMRES
===Preconditionner type for Maxwell solver (HYPRE, JACOBI, MUMPS...)
MUMPS
Outputs and value of reference
The outputs of this test are computed with the file post_processing_debug.f90
that can be found in the following directory: ($SFEMaNS_DIR)/MHD_DATA_TEST_CONV_PETSC.
To check the well behavior of the code, we compute four quantities:

The L2 norm of the error on the divergence of the magnetic field \(\textbf{B}=\mu\textbf{H}\).

The L2 norm of the error on the curl of the magnetic field \(\textbf{H}\).

The L2 norm of the error on the magnetic field \(\textbf{H}\).

The L2 norm of the magnetic filed \(\bH\).
They are compared to reference values to attest of the correctness of the code. These values of reference are in the last lines of the file debug_data_test_18
in the directory ($SFEMaNS_DIR)/MHD_DATA_TEST_CONV_PETSC. They are equal to:
============================================
mesh_18_0.05.FEM, dt=1d40, it_max=1
===Reference results
5.053392038384935E005 !L2 norm of div(mu (HHexact))
4.903853881658507E005 !L2 norm of curl(HHexact)
6.193260400950516E006 !L2 norm of HHexact
2.20415767167993 !L2 norm of H
To conclude this test, we show the profile of the approximated magnetic field \(\textbf{H}\) at the final time. These figures are done in the plane \(y=0\) which is the union of the half plane \(\theta=0\) and \(\theta=\pi\).
Magnetic field magnitude in the plane plane y=0.
