SFEMaNS  version 4.1 (work in progress) Reference documentation for SFEMaNS
tools.f90
Go to the documentation of this file.
2
3 CONTAINS
4
5  FUNCTION find_point(mesh,r,z) RESULT(n)
6
7  USE def_type_mesh
8
9  IMPLICIT NONE
10  TYPE(mesh_type), INTENT(IN) :: mesh !type de maillage
11  REAL(KIND=8), INTENT(IN) :: r, z
12  INTEGER :: n
13  REAL(KIND=8) :: hmax
14  INTEGER, DIMENSION(1) :: jlg
15
16  hmax = maxval(mesh%hloc)
17
18  jlg = minloc((mesh%rr(1,:)-r)**2 + (mesh%rr(2,:)-z)**2)
19  n = jlg(1)
20
21  IF (((mesh%rr(1,n)-r)**2 + (mesh%rr(2,n)-z)**2) .GT. hmax**2) THEN
22  n = 0
23  END IF
24
25  IF (n .GT. mesh%dom_np) THEN
26  n = 0
27  END IF
28
29  RETURN
30
31  END FUNCTION find_point
32
33 END MODULE sfemans_tools
integer function find_point(mesh, r, z)
Definition: tools.f90:5
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problemâ€™s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f \$f f is written in the following generic z
Definition: doc_intro.h:193