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Abstract

Most research in robust optimization has so far been focused on inequality-only, convex

conic programming with simple linear models for uncertain parameters. Many practical op-

timization problems, however, are nonlinear and non-convex. Even in linear programming,

coefficients may still be nonlinear functions of uncertain parameters. In this paper, we pro-

pose robust formulations (see (1) versus (5), and (2) versus (3), for example) that extend

the robust-optimization approach to a general nonlinear programming setting with param-

eter uncertainty involving both equality and inequality constraints. The proposed robust

formulations are valid in a neighborhood of a given nominal parameter value and are robust

to the first-order, thus suitable for applications where reasonable parameter estimations are

available and uncertain variations are moderate.

Keywords: Parameterized nonlinear program, Robust optimization formulation.

1 Introduction

Most optimal design or control problems in practice involve system parameters. These parame-

ters must be assigned values before optimization techniques can be applied to obtain numerical

solutions. More often than not, precise values of the involved system parameters are impossible

to determine due to either measurement errors, random noises or other technical difficulties.

On the other hand, some estimated values for the system parameters are often available. In

many applications, good estimates for system parameter values are all that is needed, while

variations in solutions induced by uncertain system parameters are either within the margin of

errors or otherwise tolerable.

However, there are some critical applications where significant solution variations in certain

directions are not allowable, while variations in other directions are. For example, the stress in

a vital part of a structure may not be allowed to exceed a certain threshold value in order to

guarantee safety, but less stress is certainly allowable.
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1.1 An Example

The following model involving ordinary differential equations comes from an optimal control

setting:

min
y,u

∥

∥y(T ) − yend
∥

∥

2

2

s.t. ẏ = f(y, u, s), y(0) = yini, (1a)

yi(t) ≤ γ, i = 1 : m, (1b)

t ∈ (0, T ),

where y(t) : [0, T ] → ℜd represents a vector-valued state function (or variable), u = u(t) is a

vector-valued control function, s is a vector-valued system parameter, and i = 1 : m means

i = 1, 2, · · · ,m. In this model, it is required that the first m (m < d) components of the state

variable y(t) not take values above a given safety threshold γ at any time (as such, the initial

values should also satisfy yini
i ≤ γ for i = 1 : m).

Suppose that the system parameter s and the initial value yini are roughly known, but still

subject to yet unknown variations. Under this uncertainty, the question is how should one

choose the control function u(t) to ensure that (i) the safety requirement yi(t) ≤ γ, i = 1 : m,

be met in the worst case, and (ii) the final state y(T ) is as close as possible to a desired state

yend. This question may be addressed by solving a robust counterpart, or formulation, of (1).

A specific robust formulation of (1) is given in (5).

It is worth emphasizing that optimization problem (1) contains equality constraints, or state

equations, representing physical laws that should always be satisfied. It also contains critical

inequality constraints that are considered “safety constraints”. In addition, we observe that

the state equations implicitly define the state variable y as a function of the control u and the

parameter s.

1.2 A Brief Overview

Recently, robust optimization has become a very active research area for convex conic program-

ming; specifically for linear programming (LP), second-order cone programming (SOCP), and

semi-definite programming (SDP). In particular, we refer to the works of Ben-Tal, Nemirovski

and their co-authors [2]-[9], and the works of El Ghaoui and his co-authors [10]-[14]. Other

recent works on this subject include Mangasarian and Musicant [16], and Goldfarb and Iyengar

[15], for example. When data uncertainty appears only in strictly satisfiable inequalities, and

is restricted to ellipsoidal sets, the main results obtained so far can be briefly summarized as

follows. The robust counterpart of LP is SOCP, of SOCP is SDP (though some remain SOCP),

and of SDP can be approximated by SDP. These results represent significant advances in the

development of rigorous approaches to treating data uncertainties in optimization. In addition,
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a number of works have already appeared (see [17] or [18], for example) that apply the robust

optimization methodology to various problems.

Other approaches, such as stochastic or sampling methods, or semi-infinite programming

techniques, exist for treating parameter uncertainties (some of which have unfortunately also

been termed robust optimization). These different approaches offer different applicabilities and

advantages, but are in general more computationally demanding. For example, the so-called

reliability-based design optimization (RBDO) approach has been actively studied in the field

of engineering design (see [1] for a recent survey and a list of references). RBDO requires

that probability distributions be given for uncertain parameters, and takes the form of either

two-level optimization or mathematical programming with equilibrial constraints.

The robust optimization approach taken in this paper is suitable for applications where

(i) reasonable parameter estimates (nominal values) exist for the uncertain parameters, and

(ii) the magnitudes of uncertain variations are moderate. The resulting robust optimization

formulations are locally valid around nominal values, but are generally more computationally

tractable than those derived from more global approaches.

So far, existing robust optimization results have a number of limitations in their applica-

bilities. First of all, they apply only to linear constraints. Even for linear constraints, they are

applicable only to cases where uncertain data appear exclusively in strictly satisfiable linear in-

equalities. In other words, data uncertainties in equality constraints cannot be readily handled

by existing formulations. Other restrictive assumptions in existing results include that data

elements be uncertain parameters themselves and be independent of each other.

In this paper we will derive robust optimization formulations for general nonlinear pro-

gramming, using straightforward mathematical tools like linearization and the implicit func-

tion theorem. The resulting formulations should help extend the applicability of the robust

optimization methodology to a wide range of scientific and engineering applications.

2 Nonlinear Optimization with Uncertainty

2.1 Nonlinear Programing Model

In this paper, we will focus on finite-dimensional spaces, though a similar approach may be

developed in an infinite-dimensional setting. We consider the following general form of param-

eterized nonlinear optimization problem:

min
y, u∈U

φ(y, u, s) (2a)

s.t. F (y, u, s) = 0 (2b)

G(y, u, s) ≤ 0 (2c)

where s ∈ ℜNs is the vector of uncertain system parameters and, for convenience, we call

y ∈ ℜNy the state variable, u ∈ ℜNu the design variable constrained in a set U ⊂ ℜNu ,
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F (y, u, s) = 0 the state equation for F ∈ ℜNy , and finally we call G(y, u, s) ≤ 0 the safety

constraints for G ∈ ℜm.

Without loss of generality, we have tacitly assumed that all inequality constraints are safety

constraints since non-safety inequality constraints will have no bearing in our derivation of

robust formulations. It is worth noting that the sizes of y and F are equal. We will assume

that the state equation F (y, u, s) = 0 implicitly defines a function y = y(u, s) for relevant u and

s. Throughout the paper, we will assume that F and G are continuously differentiable. Unlike

in convex programming, we are concerned with only local optimization in the general nonlinear

program (2).

2.2 A Robust Counterpart

To have an advanced look, we present a specific robust counterpart of (2) below without a

derivation (though it will be verified later). For the function F , we define Fy to be the Jacobian

of F with respect to y, and similarly for other functions and variables. Let ŝ be our best

estimate on the values of the parameter s, and τ our best estimate on the maximum deviation

of s from ŝ measured by the ℓ1-norm. Under mild assumptions, a robust counterpart of (2) is

min
y,u∈U

φ(y, u, ŝ)

s.t. F (y, u, ŝ) = 0 (3a)

τ(Fyys + Fs) = 0 (3b)

diag(G)E ± τ(Gyys + Gs) ≤ 0 (3c)

where ys ∈ ℜNy×Ns is a new variable representing the unknown Jacobian of y with respect to

s, E ∈ ℜm×Ns is the matrix of all ones, and the matrix inequalities are element-wise. The

functions Fy, Fs, Gy, Gs in (3b)-(3c) are all evaluated at (y, u, ŝ). Several observations are now

in order.

• When the deviation magnitude τ = 0, the robust optimization problem (3) reduces to the

original problem (2) (with multiple copies of the inequality constraint G ≤ 0 present).

• In addition to the Ny equations, the robust problem (3) has NyNs extra equations in (3b)

for the new unknown ys ∈ ℜNy×Ns .

• The robust problem (3) has 2mNs inequality constraints in (3c), which are equivalent to

the following element-wise inequality

diag(G)E + τ |(Gyys + Gs)| ≤ 0, (4)

and are obviously more stringent than the original constraints G ≤ 0. The newly added

nonnegative terms in (4) play the important role of safety margins.
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In a nutshell, the robust optimization problem (3) is a larger nonlinear program with safety

margins added to the safety constraints, and the safety margins require the calculation of ys –

the sensitivity of the state with respect to the parameters. The amount of increase in problem

size is proportional to the number of uncertain parameters in s. The robust problem (3) needs

to be solved only at the parameter value ŝ.

2.3 The Example in (1)

As an illustration, we give a robust counterpart for the example (1). Assume that the dimension

of the parameter vector s is Ns; hence ys(t) ∈ ℜd×Ns is a matrix-valued function for t ∈ (0, T ).

Although the robust formulation (3) is given in a finite-dimensional form, it can in fact be

readily extended to infinite-dimensional problems like (1), resulting in a robust counterpart of

the form:

min
y,u

∥

∥y(T ) − yend
∥

∥

2

2

s.t. ẏ = f(y, u, ŝ), y(0) = yini, (5a)

ẏs = fy(y, u, ŝ)ys + fs(y, u, ŝ), ys(0) = 0, (5b)

yi(t) ± τ [ys(t)]ij ≤ γ, i = 1 : m, j = 1 : Ns (5c)

t ∈ (0, T ).

We observe that in addition to the original nonlinear ODE system in (5a), we now have Ns

extra sets of linear ODE systems in (5b), one for each column of ys. Moreover, the number of

safety constraints (which are semi-infinite inequalities) has increased from m to 2mNs in (5c).

Moreover, it is not difficult to verify that (5c) is equivalent to

yi(t) + τ‖eT
i ys(t)‖∞ ≤ γ, i = 1 : m, t ∈ (0, T ), (6)

where ei ∈ ℜd is the i-th column of the identity matrix. In this case, the safety margin is simply

τ times the infinity-norm of the gradient of yi with respect to s evaluated at s = ŝ.

3 Robust-Optimization Formulation

To aid the development of robust formulations, we first consider using the state equation to

eliminate the state variable y, even though such an action might not be advisable from the

viewpoint of solving the problem. The elimination of the state variable y would result in an

inequality-only optimization problem of the form:

min
u∈U

φ(u, s)

s.t. G(u, s) ≤ 0, (7)
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where u ∈ ℜNu, s ∈ ℜNs , G = (g1, · · · , gm)T ∈ ℜm, and we have slightly abused notation by

using the same letter G in the constraints. It will be necessary to assume that the inequality

constraints in (7) are strictly satisfiable; i.e., there exists a pair (u, s) ∈ ℜNu × ℜNs such that

G(u, s) < 0.

We emphasize that (i) the parameter s is not precisely known, but for it we do have a

reasonable estimate, ŝ, that is called the nominal value of s; (ii) our goal is to satisfy, as much

as possible, the safety constraints, G(u, s) ≤ 0, no matter what value the parameter s takes in

a given set S containing ŝ which we will define next.

3.1 Inequality-only case

Following the standard approach in robust optimization, we insist on the satisfaction of the

inequality constraints for all parameter values in a given set S, and obtain the following equiv-

alence:

G(u, s) ≤ 0, ∀s ∈ S ⇐⇒ max
s∈S

gi(u, s) ≤ 0, i = 1 : m.

In order to solve, at least approximately but explicitly, the maximization problems on the right,

it is necessary, in general, to restrict the set S into a simple form and to linearize the functions

gi(u, s) with respect to s at a given nominal parameter value ŝ (estimate of s). Towards this

end, we first define, for τ > 0 and p ≥ 1,

Sτ := {ŝ + τDδ : ‖δ‖p ≤ 1} (8)

where δ ∈ ℜNd , Nd ≤ Ns, is the parameter variation within the unit ball in p-norm centered at

ŝ, τ > 0 is the magnitude of the variations which ideally should come from prior knowledge or

sampling, and D is an Ns × Nd matrix.

The choice of the matrix D will have little relevance to the further development of our

formulation, but it does play an important role in defining the set of variations. When the

parameters have variations of different scales, one can choose D as a positive diagonal scaling

matrix. If the parameters tend to have significant variations only in a certain subspace of

dimension Nd < Ns, then one can define D as an Ns × Nd basis matrix for that subspace. In

short, one can use the flexibility in D to better match the pattern of parameter variations and

avoid being overly conservative. For the purpose of following the further development, however,

the reader may choose to simply regard D as the Ns × Ns identity matrix.

By the first-order Taylor approximation, for i = 1 : m and τ sufficiently small,

gi(u, ŝ + τDδ) ≈ gi(u, ŝ) + τ〈∇sgi(u, ŝ),Dδ〉,

where we use ∇sgi to denote the (partial) gradient of gi with respect to s. Hence, using Sτ in

places of S, we have

max
s∈Sτ

gi(u, s) ≈ gi(u, ŝ) + τ max
‖δ‖p=1

〈DT∇sgi(u, ŝ), δ〉

= gi(u, ŝ) + τ ‖DT∇sgi(u, ŝ)‖q,
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where q ≥ 1 satisfies 1

p
+ 1

q
= 1, DT is the adjoint of D, and we have explicitly solved the

linearized maximization problem on the right. The solution to this maximization problem

follows from the well-known Holder’s inequality

|〈c, x〉| ≤ ‖x‖p‖c‖q for
1

p
+

1

q
= 1, 1 ≤ p, q ≤ +∞,

where the equality can be achieved in {x : ‖x‖p ≤ 1}; that is,

max
‖x‖p=1

〈c, x〉 = ‖c‖q .

Now replacing max gi(u, s) ≤ 0 by gi(u, ŝ) + τ ‖DT∇sgi(u, ŝ)‖q ≤ 0, we arrive at a robust

version of the inequality constrained problem:

min
u∈U

φ(u, ŝ)

s.t. gi(u, ŝ) + τ ‖DT∇sgi(u, ŝ)‖q ≤ 0, i = 1 : m. (9)

We will call the added nonnegative terms the “safety margins”, which are proportional to the

magnitude τ of the variations, and to the sensitivity of the constraints with respect to the

parameter s at ŝ. It is worth pointing out that only the nominal value, ŝ, of the parameter s is

involved in the robust version of the problem. In general, the robust formulation is considered

only for local optimization due to absence of convexity.

Obviously, in general the robust feasibility set, defined by the inequalities in (9), is smaller

than the original feasibility set defined by the inequalities without the added safety margins.

The actual size of the robust feasibility set depends on the values of τ and q. More importantly,

it depends on the sensitivity of the functions gi(u, s) with respect to the uncertain parameters

s at the nominal value ŝ.

For an illustration, let us define u = (x, y) and s = (a, b), both in ℜ2. Consider the feasibility

set

{(x, y) : |x| ≤ 2, (ax2 + b) ≤ y ≤ 4(ax2 + b)}

with nominal value ŝ = (â, b̂) = (0.25, 1). In this example, g1(u, s) = (ax2 + b) − y and

g2(u, s) = −4(ax2+b)+y. The sensitivity vectors of G = (g1, g2), with respect to the parameter

s at ŝ, are ∇sg1(u, s) = (x2, 1) and ∇sg2(u, s) = −4(x2, 1). In Figure 1, we plot the original

and robust feasibility sets for q = 1, 2,∞, with four different τ values and with D equal to the

identity.

It is worth noting that (i) the larger the τ value, the smaller the robust feasibility set is (and

it will eventually become infeasible if τ is too large); (ii) at any fixed x value the upper curve g2

is four times more sensitive to parameter changes than the lower curve g1 is. These properties

are clearly reflected in Figure 1. Indeed the safety margins for the upper curve are four times

wider than those for the lower curve. This self-adaptivity is a very attractive feature.
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Figure 1: The original and the robust feasibility sets. The solid line depicts the original feasi-

bility set, and the three smaller sets are robust feasibility sets for q = 1, 2,∞. For each fixed τ ,

the largest robust feasibility set is for q = ∞ and the smallest for q = 1.

3.2 General Case

Let us define Fy(y, u, s) to be the partial Jacobian of F (y, u, s) with respect to y, i.e.,

[Fy(y, u, s)]ij =
∂Fi(y, u, s)

∂yj
, i, j = 1, 2, · · · , Ny.

Analogous notations will be used for other functions and variables as well. We also define

Ĝ(u, s) = G(y(u, s), u, s), (10)

where y(u, s) is implicitly defined by the state equation F (y, u, s) = 0. By the Implicit Function

Theorem, the function y(u, s) is well defined in a neighborhood of (u0, s0) if there exists y0 such

that F (y0, u0, s0) = 0 and ∇yF (y0, u0, s0) is nonsingular. In the sequel, we will assume that Fy

is nonsingular in a region of interest.

Differentiating both sides of the equation F (y(u, s), u, s) = 0 with respect to s leads to the
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matrix equation

Fy(y, u, s)ys + Fs(y, u, s) = 0. (11)

Now differentiating Ĝ(u, s) defined in (10) with respect to s, we obain

Ĝs(u, s) = Gy(y, u, s)ys + Gs(y, u, s), (12)

where y = y(u, s). Therefore,

∇sĝi(u, s)T = eT
i Ĝs(u, s) ≡ eT

i [Gy(y, u, s)ys + Gs(y, u, s)], (13)

where again y = y(u, s) and ei ∈ ℜm is the i-th column of the identity matrix. We note that

even if gi does not directly depend on s (i.e., ∇sgi = 0), it may still be sensitive to changes in s

because of its dependence on y = y(u, s) that is defined via the state equation F (y, u, s) = 0.

It follows from (9), with G replaced by Ĝ (and a similar adjustment made in the objective

function φ), a robust counterpart of (2) has the following inequality-only form:

min
u∈U

φ(y(u, s), u, ŝ)

s.t. ĝi(u, ŝ) + τ‖DT∇sĝi(u, ŝ)‖q ≤ 0, i = 1 : m,

where the terms ∇sĝi(u, ŝ), i = 1 : m, are defined by (13). In view of the definition for y(u, s)

and (10), (11) and (13), the above problem is clearly equivalent to

min
y, u∈U

φ(y, u, ŝ)

s.t. F (y, u, ŝ) = 0, (14a)

τ(Fyys + Fs) = 0, (14b)

gi(y, u, ŝ) + τ‖eT
i (Gyys + Gs)D‖q ≤ 0, i = 1 : m, (14c)

where Fy, Fs, Gy and Gs are evaluated at (y, u, ŝ). The equation (14b) involves a new unknown

ys ∈ ℜNy×Ns and is linear in ys. We choose to multiply (14b) by the magnitude τ in order to

make it redundant whenever τ = 0. Now one can easily verify that when q = ∞ (i.e., p = 1),

the inequality constraints in (14c) reduce to those in (3c).

To allow the maximum flexibility, we can use different values for τ , D and q in different

constraints, which leads to a more general form of the robust-optimization formulation for

problem (2) with robust safety constraints:

gi(y, u, ŝ) + τi‖e
T
i (Gyys + Gs)Di‖qi

≤ 0, i = 1 : m. (15)

Without loss of generality, in the sequel we will only consider the simpler form of robust safety

constraints as in (14c) instead of in (15), and in addition, we will treat D as the identity matrix.
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3.3 First-order Robustness

We observe that if the original problem (2) is strictly feasible at s = ŝ, then so is the robust

version (14) as long as τ , the magnitude of maximum parameter variations, is sufficiently small.

The theorem below characterizes the robustness of feasible points for the robust optimization

problem (14). A function f : C ⊂ ℜn → ℜm, where ℜn and ℜm are endowed with a conjugate

pair of p-norm and q-norm respectively, is said to be (p, q)-Lipschitz continuous in C modulo

to L if

‖f(x) − f(y)‖q ≤ L‖x − y‖p, ∀x, y ∈ C.

Recall that the set Sτ is defined in (8), and we have assumed that the functions F and G are

continuously differentiable.

Theorem 1. Let (ŷ, û) be strictly feasible to (14) corresponding to ŝ and τ > 0. Assume that

in the set Sτ , (i) y(û, s) is implicitly defined as a differentiable function of s via the equation

F (y, û, s) = 0, and (ii) every row of [Gyys +Gs](y(s), û, s) is (p, q)-Lipschitz continuous modulo

to L. Then

G(y(û, s), û, s) ≤
L

2
τ2, ∀s ∈ Sτ .

Proof. Consider any element, ĝi(û, s), of the function Ĝ(u, s) defined in (10) with u = û. It

follows from calculus and the Lipcshitz continuity assumption on ∇sĝi(û, s) (which is the i-th

row of Gyys + Gs evaluated at (y(û, s), û, s)) that

ĝi(û, ŝ + h) − gi(û, ŝ) −∇sĝi(û, ŝ)T h

=

∫

1

0

(∇sĝi(û, ŝ + th) −∇sĝi(û, ŝ))T hdt

≤

∫

1

0

‖∇sĝi(û, ŝ + th) −∇sĝi(û, ŝ)‖q‖h‖p dt

≤

∫

1

0

L‖th‖p‖h‖p dt = L‖h‖2

p

∫

1

0

tdt

=
L

2
‖h‖2

p.

Therefore, for s = ŝ + τδ ∈ Sτ (i.e., h = τδ with ‖δ‖p ≤ 1)

gi(y(û, s), û, s) ≡ ĝi(û, ŝ + h)

≤ ĝi(û, ŝ) + τ∇sĝi(û, ŝ)T δ +
L

2
‖τδ‖2

p

≤ ĝi(û, ŝ) + τ‖∇sĝi(û, ŝ)‖q +
L

2
τ2

≤
L

2
τ2,

where the last inequality follows from the feasibility of (ŷ, û) in (14).
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We remark that if a safety constraint has a nonzero safety margin at ŝ, then by continuity

there exists a neighborhood of ŝ throughout which the safety constraint will be strictly satisfied.

It should be pointed out that solving the robust version (14) will give a design variable û

that is robust for all s ∈ Sτ in the sense given by Theorem 1, while the state variable ŷ is good

only at the nominal parameter value ŝ. This limitation is unavoidable whenever parameter

uncertainty is present in the state equation, but inconsequential nevertheless in optimal control

or design applications where the purpose of robust optimization is precisely to find robust

control or design variables.

The robustness result given in Theorem 1 can be called the first-order robustness. While it

does not guarantee the satisfaction of the safety constraint G(y(û, s), û, s) ≤ 0 for all s ∈ Sτ ,

it does ensure that the worst-case violation is bounded by a second-order term in τ . This

first-order robustness should be sufficient in applications where uncertain parameter variations

are known to be relatively small.

3.4 General parameterized linear programming

It is not difficult to verify that when (i) all functions are linear, (ii) there are no uncertain

equality constraints, and (iii) the parameter s is the matrix A in inequality constraints Ax ≤ b,

then our robust-optimization formulation (14) reduces to the existing robust linear programming

model. Therefore, our robust-optimization formulation is indeed a generalization of the existing

model. However, there is more to our formulation even in the case of linear programming.

Let us consider the following general, parameterized linear program

min
y,u

〈c0(s), y〉 + 〈d0(s), u〉 + γ0(s)

s.t. A(s)y + B(s)u − h(s) = 0, (16)

〈ci(s), y〉 + 〈di(s), u〉 + γi(s) ≤ 0, i = 1 : m,

where y ∈ ℜNy , u ∈ ℜNu, s ∈ ℜNs , A(s) ∈ ℜNy×Ny , and the dimensions of other coefficients all

follow from the context. We will assume that all the coefficients are differentiable functions of

s and, in particular, the matrix A(s) is invertible in a neighborhood of some nominal value ŝ.

Since the coefficients can be linear or nonlinear functions of the uncertain parameter s, the

above parameterized linear program is beyond the scope treated by the existing formulations.

Besides the exclusion of uncertain equations, the existing robust optimization formulations

usually assume that the uncertain parameters are the coefficients themselves.

From our general result for parameterized nonlinear programming, we can readily derive

the following result.

Corollary 1. The robust version of the parameterized linear program (16) can be written as a

linear program for p = 1 or p = ∞. Moreover, it is a second-order cone program for p = 2.
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In the parameterized linear program (16), y is considered to be the state variable and u

the design variable. Such a distinction is natural in optimal control or design problems. In

other applications, however, there may not be such a clear distinction between two groups of

variables. Nevertheless, in our formulation we can still split variables into two groups, say,

primary and secondary variables based on some considerations. As long as we ensure that the

coefficient submatrix corresponding to the secondary variables is square and nonsingular, we

can still obtain robust solutions for the primary variables.

4 Concluding Remarks

Real-world optimization problems, such as those arising from optimal design of physical, medical

or engineering systems, often contain parameters whose values cannot be exactly determined

because of various technical difficulties. In critical and sensitive applications, such parameter

uncertainties could negatively affect the quality of solutions. In particular, whenever safety

is at stake, a central issue is how to ensure system safety, even in the worst case, while still

achieving as good a performance as possible.

The robust optimization formulation (14), or in particular (3), extends the existing robust

optimization methodology from inequality-only, convex conic programming to general nonlinear

programming. Even in the heavily studied subject of robust linear programming, the extension

still adds new applicability to the robust optimization approach. These robust formulations

remain one-level optimization problems that need to be solved only once at nominal values;

though the numbers of variables and constraints have been increased.

From a practical point of view, robust satisfaction of safety constraints boils down to the

selection of safety margins. The proposed approach provides a mathematically rigorous, yet

remarkably simple, mechanism to automatically and adaptively choose safety margins based on

constraint sensitivity towards uncertain parameters. We believe that safety margins of this kind

can strike a better balance between the safety and performance than can those based purely on

heuristics.

On the other hand, we should caution that the proposed robust formulations are theoret-

ically valid only in a neighborhood of the nominal value and robust only to the first-order.

Therefore, their degrees of success will likely be dependent on the quality of parameter estima-

tions and on the magnitude of parameter variations. Numerical experiments will be conducted

to assess the behavior and performance of the proposed approach.
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