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Abstract

When using `1 minimization to recover a sparse, nonnegative solution to a under-

determined linear system of equations, what is the highest sparsity level at which recov-

ery can still be guaranteed? Recently, Donoho and Tanner [10] discovered, by invoking

classic results from the theory of convex polytopes [11, 12], that the highest sparsity

level equals half of the number of equations. In this paper, we connect dots for differ-

ent recoverability conditions obtained from different spaces, and provide an alternative,

self-contained and elementary proof for this remarkable result.

1 Introduction

This paper is a sequel to [17] which concerns solution recovery problems associated with

the following two problems:

(O1) : min
x∈<p

‖ATx− b ‖1 (1)

(U1) : min
y∈<n
{‖y‖1 : By = c} (2)

where A ∈ <p×n and B ∈ <q×n are of full-rank with p + q = n, b ∈ <n and c ∈ <q. The

former is to find an approximate solution to an over-determined systems via `1-minimization,

∗Research supported in part by NSF Grants DMS-0442065 and DMS-0405831

1



and the latter is to find the least `1-norm solution to an under-determined system. Under

the conditions

ABT = 0 and c = Bb. (3)

problems (O1) and (U1) are equivalent. The solution recovery problems associated with

them are pertinent to the question that given a sparse vector h ∈ <n and

b = AT x̂+ h, c = Bh, (4)

will x̂ and h uniquely solve (O1) and (U1), respectively?

These solution-recovery problems have recently been studied by a number of authors

(for example, see [1, 2, 3, 4, 5, 6, 14, 15]), and many intriguing results have been obtained.

1.1 The Nonnegativity Case

In the case h ≥ 0, (O1) and (U1) have the following two counterparts, respectively,

(O1+) : min{eT (b−ATx) : ATx ≤ b}, (5)

(U1+) : min{eT y : By = c, y ≥ 0}. (6)

where e ∈ <n is the vector of all ones. Under the conditions in (3), these two problems are

again equivalent.

Proposition 1 (Equivalence). Let both A ∈ <p×n and B ∈ <q×n be of full-rank with

p+ q = n. If conditions in (3) hold, then (O1+) and (U1+) are equivalent. Specifically, if

x∗ solves (O1+), then b−ATx∗ solves (U1+), and if y∗ solves (U1+), then (AAT )−1A(b−y∗)
solves (O1+).

Throughout of the paper, we will assume that the conditions in Proposition 1, in par-

ticular (3), always hold.

1.2 Notations

By a partition (S,Z), we mean a partition of the index set {1, 2, · · · , n} into two disjoint

subsets S and Z so that S∪Z = {1, 2, · · · , n} and S∩Z = ∅. In particular, for any h ∈ <n,

the partition (S(h), Z(h)) refers to the support S(h) of h and its complement – the zero set

Z(h); namely,

S(h) = {i : hi 6= 0, 1 ≤ i ≤ n}, 0, i = 1 ≤ i ≤ n}. (7)
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We will occasionally omit the dependence of a partition (S,Z) on h when it is clear from

the context.

For any index subset J ⊂ {1, 2, · · · , n}, |J | is the cardinality of J . For any matrix

A ∈ <p×n and any index subset J , AJ ∈ <p×|J | denotes the sub-matrix of A consisting of

those columns of A whose indices are in J . For a vector v ∈ <n, similarly, vJ denotes the

sub-vector of v with those components whose indices are in J . We use range(·) to denote

the range space of a matrix and conv(·) the convex hull of a set of points.

2 A Recoverability Result

One of the main purposes of this paper is to provide a self-contained and elementary proof

for the following recoverability result. By recoverability, we mean that given b = AT x̂ + h

with h ≥ 0, the vectors x̂ and h uniquely solve (O1+) and (U1+), respectively.

Theorem 1. For any natural numbers p and n with p < n, there exists a set of p-

dimensional subspaces of <n that has the following property. Let range(AT ) ⊂ <p×n be

a p-dimensional subspace in this set and b = AT x̂ + h with h ≥ 0 and |S(h)| = k. Then x̂

and h uniquely solve (O1+) and (U1+), respectively, whenever

k ≤ n− p
2
≡ q

2
. (8)

An equivalent form of the above result has been discovered by Donoho and Tanner [10]

in connection to some classic results in the theory of convex polytopes [11, 12] (see also

[13, 18]). This theorem is not a mere existence result because a number of qualifying

p-dimensional subspaces can be explicitly constructed that possess the property of the

theorem.

Normally, results have been obtained and stated in terms of the null space of A, i.e.,

range(BT ), which is q-dimensional (recall that p+q = n). In particular, to prove Theorem 1

it suffices to consider a q-dimensional subspace range(BT ) where B is defined as follows.

Given any n non-zero real numbers t1 < t2 < · · · < tn, define

B =


t1 t2 · · · tn

t21 t22 · · · t2n
...

... · · ·
...

tq1 tq2 · · · tqn

 ∈ <q×n. (9)

The convex hull spanned by the columns of B forms a cyclic polytope in <q which was

shown [12], along with other examples, to possess a property called q/2-neighborliness (see
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the next section for a definition). It is this q/2-neighborliness property that enables Donoho

and Tanner [10] to derive a q/2-recoverability result for the under-determined problem

(U1+). (In fact, the bound q/2 is known to be tight.)

We will present a simple proof for Theorem 1 in Section 4 that requires no prior results

of any kind other than some basic facts about polynomials.

3 Connecting the Dots in Different Spaces

In this section, we give a “global picture” for three equivalent recoverability conditions listed

in Table 1. We start with defining necessary terminologies.

Definition 1 (Half k-balancedness, k-thickness and k-neighborliness).

(1) A subspace A ∈ <n is half k-balanced (in `1-norm) if for any partition (S,Z) with

|S| = k

eTSvS ≤ ‖vZ‖1, ∀ v ∈ A satisfying vZ ≤ 0.

It is strictly half k-balanced if the strict inequality holds.

(2) A subspace of <n is half k-thick if it intersects with all the (n − k)-faces of the set

{v ∈ <n : v ≤ 1}. It is strictly half k-thick if the intersection with each (n − k)-face must

contain a part of the relative interior of the face.

(3) Let B := [b1 · · · bn] ∈ <q×n (q < n) be of full rank. The polytope

P (B) := conv({b1, b2, · · · , bn}) ⊂ <q (10)

is called k-neighborly if every set of k vertices of P (B) is the vertex set for a face of P (B).

We note that the “half” k-balancedness and thickness are weaker notions than and are

implied by their “full”-counterparts (see [17]). Moreover, it is clear that half k-balancedness

(thickness) implies half (k − 1)-balancedness (thickness).

Table 1: Equivalent Recoverability Conditions for Different Spaces

Space Condition

range(AT ) ⊂ <n being strictly half k-balanced

range(BT ) ⊂ <n being strictly half k-thick

range(B) = <q P (B) being k-neighborly
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Recall that recoverability means necessary and sufficient conditions for being able to

uniquely recover x̂ via solving (O1) or h via solving (U1). Precise statements on the

equivalence of the recoverability conditions in Table 1 will be presented in Theorem 2, as a

consequence of the following lemmas.

Lemma 1. The vectors x̂ and h solve (O1+) and (U1+), respectively, for all h ≥ 0 with

|S(h)| = k if and only if range(AT ) is half k-balanced. The solutions are unique if and only

range(AT ) is strictly half k-balanced.

Proof. For ant x ∈ <p, let

v = AT (x− x̂).

Then x is feasible (i.e., ATx ≤ b ≡ AT x̂ + h) if and only if vZ ≤ 0 and vS ≤ hS . On the

other hand, for any v with vZ ≤ 0, there exists a γ > 0 satisfying γv ≤ h so that x = x̂+γv

is feasible. Now we examine the objective of (O1+):

eT (b−ATx) = eT (b−AT x̂)− eT v,

which implies that x̂ is a minimizer if and only if eT v ≤ 0 for all v such that vZ ≤ 0;

namely, eTSvS ≤ −eTZvZ = ‖vZ‖1 for all v such that vZ ≤ 0. Therefore, x̂ solves (O1+) (or

h solves (U1+)) for all h ≥ 0 with |S(h)| = k if and only if range(AT ) is half k-balanced.

The uniqueness results also follows immediately.

Lemma 2. The vectors x̂ and h solve (O1+) and (U1+), respectively, for all h ≥ 0 with

|S(h)| = k if and only if range(BT ) is half k-thick.

Proof. The dual of (U1+) is: max{cTx : BTx ≤ e}, where c = Bh. By strong duality,

y = h solves (U1+) if and only if there exists a dual feasible x such that

cTx = (Bh)Tx = hTBTx = hTS (BT
S x) = hTSeS = eT y,

which occurs if and only if x satisfies BT
S x = eS and BT

Zx ≤ 1; namely, BTx intersects with

the (n − k)-face of {v ∈ <n : v ≤ 1} defined by vS = eS . Therefore, x̂ solves (O1+) (or h

solves (U1+)) for all h with |S(h)| = k if and only if range(BT ) is half k-thick.

It is not difficult to see that the null space of A is half k-thick if and only if for any

partition (S,Z) with |S| = k and e ∈ <k (the vector of k ones this time)

min
v∈<n

{
max
i∈Z

vi : Av = 0, vS = e

}
≤ 1,

and is strictly half k-thick if and only if the strict inequality holds.
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Lemma 3. Let A ∈ <p×n (p < n) and (S,Z) be a partition with |S| = k, then

min
v∈<n

{
max
i∈Z

vi : Av = 0, vS = e

}
= max

06=x∈<p

{
eT vS
‖vZ‖1

: v = ATx, vZ ≤ 0

}
. (11)

As a result, range(AT ) is (strictly) half k-balanced if and only if range(BT ) is half (strictly)

k-thick.

Proof. The equality (11) follows from the following calculation,

min
w∈<n−k

{max(w) : AZw +ASe = 0}

= min
w
{ξ : AZw = −ASe, w ≤ ξ}

= max
x,u
{(−ASe)

Tx : u = AT
Zx, e

Tu = 1, u ≥ 0}

= max
x
{(−AT

Sx)T e : ‖AT
Zx‖1 = 1, AT

Zx ≥ 0}

= max
x
{(AT

Sx)T e : ‖AT
Zx‖1 = 1, AT

Zx ≤ 0}

= max
x 6=0
{eT (AT

Sx)/‖AT
Zx‖1 : AT

Zx ≤ 0},

where we have used an equivalent linear program in the first equality and its dual in the

second. Finally, the last statement of the lemma follows readily from (11).

Donoho and Tanner [10, Theorem 1] have shown that, for any c = Bh, solving (U1+)

recovers all h ≥ 0 with |S(h)| = k if and only if P (B) is k-neighborly (we refer to their paper

for more discussions on the topic of neighborliness of polytopes). The lemma below gives an

equivalence result based on a straightforward argument. (A similar argument can also be

applied to show the equivalence between strictly (full) k-thickness and the k-neighborliness

of centrally symmetric polytopes.)

Lemma 4. The subspace range(BT ) is strictly half k-thick if and only if the polytope P (B) ⊂
<q is k-neighborly.

Proof. Let B = [b1 b2 · · · bn] ∈ <q×n, range(BT ) be strictly half k-thick and (S,Z) be any

partition with |S| = k. Then there is a vector a ∈ <q such that

bTi a

{
= 1, i ∈ S
< 1, i ∈ Z.

Clearly, aTx = 1 is a supporting hyperplane for P (B), and {bi : i ∈ S} is a vertex set

that spans the face P (B) ∩ {x ∈ <q : aTx = 1}, implying that P (B) is k-neighborly. This

argument can be easily reversed.
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Using above four lemmas, we have established the following equivalence recoverability

results.

Theorem 2. Let A ∈ <p×n and B ∈ <q×n be full rank such that p+ q = n and ABT = 0.

Let b = AT x̂ + h and c = Bb. Then for any h ≥ 0 with |S(h)| ≤ k, x̂ and h uniquely

solve (O1+) and (U1+), respectively, if and only if one of the following three equivalent

conditions holds: (1) range(AT ) ⊂ <n is strictly half k-balanced; or (2) range(BT ) ⊂ <n is

strictly half k-thick; or (3) P (B) ⊂ <q is a k-neighborly polytope.

The equivalence between recoverability and the k-neighborliness of polytopes allows

one to utilize results from one side to obtain results for the other, as has been done in [10]

where an equivalent result to Theorem 1 has been established by invoking the classic results

on k-neighborliness of polytopes [11, 12]. In the following section, we give a proof based

on the notion of strictly half k-thickness of a space rather than the k-neighborliness of a

polytope. Our proof provides an alternative to Gale’s charmingly simple proof [12] for the

q/2-neighborliness of the cyclic polytope P (B), slightly longer but equally elementary.

4 A Simple Proof for Theorem 1

Without loss of generality, let us assume that q ≥ 2 is an even number (the odd-number

case can be similarly treated). For any a ∈ <q, define fq(·; a) : < → < to be the q-th degree

polynomial (associated with a) of the form:

fq(τ ; a) =

q∑
i=1

aiτ
i. (12)

In light of Lemma 3, it suffices to show that for the matrix B defined in (9), range(BT )

is strictly half q/2-thick. Since any v ∈ range(BT ) can be written as

v = BTa = [fq(t1; a) fq(t2; a) · · · fq(tn; a)]T

for some a ∈ <q, range(BT ) is strictly half q/2-thick if and only if for any partition (S,Z)

with |S| = q/2, one can find some a ∈ <q so that

fq(ti; a)

{
= 1, i ∈ S,
< 1, i ∈ Z.

(13)

To determine the q unknowns in a ∈ <q, we impose the following q linear equations,

fq(ti; a) = 1, f ′q(ti; a) = 0, i ∈ S. (14)
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Together with the implicit condition fq(0; a) = 0, these are well-known Hermite inter-

polation conditions that uniquely determines a polynomial of degree q of the form (12)

corresponding to the coefficient vector a = a(S) associated with the given partition (S,Z).

With the substitution a = a(S), the equality conditions in (13) are all satisfied. So we need

only to verify the inequality ones. We claim that the points in {ti : i ∈ S} are all maximizers

of fq(τ ; a(S)). Sort these points into ti1 < ti1 < · · · < tiq/2 . Since at all these points the

function takes the unit value 1, by the mean-value theorem, there exists a point in each

interval (tim , tim+1), m = 1, · · · , q/2 − 1, where the derivative vanishes. The total number

of such in-between stationary points of fq(τ ; a(S)) is q/2− 1. Together with the q/2 points

in {ti : i ∈ S}, we already have all q − 1 stationary points for fq(τ ; a(S)) — a polynomial

of degree q. Moreover, each of these stationary points must have multiplicity one as a root

of f ′q(τ ; a(S)). This implies that all points in {ti : i ∈ S} are either all minimizers or all

maximizers. However, they cannot be all minimizers because

0 = fq(0; a(S)) < fq(ti; a(S)) = 1, ∀i ∈ S.

Clearly, the set {ti : i ∈ S} comprises all maximizers of fq(τ ; a(S)). Hence, outside of this

set, fq(τ ; a(S)) < 1 and the inequality in (13) holds. This establishes that range(BT ) is

indeed strictly half q/2-thick, and completes the proof.

As has been pointed out in [10], the nonnegativity in h helps tremendously in terms

how many non-zeros can be allowed in h while still guaranteeing exact recoverability. We

believe that this fact will find applications in a number of computational areas.
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