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Abstract

In this paper, we conduct three case studies to assess the effectiveness of a recently proposed

first-order method for robust nonlinear programming (Ref. 1). Three robust nonlinear programming

problems were chosen from the literature using the criteria that results calculated using other methods

must be available and the problems should be realistic, but fairly simple. Our studies show that the

first-order method produced reasonable solutions when the level of uncertainty was small to moderate.

In addition, we demonstrate a method for leveraging a theoretical result to eliminate constraint viola-

tions. Since the first-order method is relatively inexpensive in comparison to other robust optimization

techniques, our studies indicate that under moderate uncertainty the first-order approach may be more

suitable than other methods for large problems.

Keywords: robust optimization, nonlinear programming, first-order robustness, design under un-

certainty, safety constraints

1 Introduction

While sometimes used to refer to probabilistic optimization, in this paper, robust optimization refers to

the deterministic problem of optimizing an objective function while also ensuring that some set of con-

straints will be satisfied even if one or more parameters deviate from their nominal values. We concentrate
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specifically on the robust nonlinear programming (rNLP) problem:

min
y,u∈U

φ (y, u, ŝ)

s.t. F (y, u, s) = 0

G (y, u, s) ≤ 0, ∀s ∈ S,

(1)

where y ∈ Rny are state variables, u ∈ Rnu are control variables and s ∈ S ⊂ Rns is a vector of uncertain

parameters with ŝ its nominal value. φ is a scalar objective function while F ∈ Rny and G ∈ Rm. This

problem, the robust analog of a nonlinear programming problem (NLP), is a semi-infinite optimization

problem since there are an infinite number of constraints (one set for every s ∈ S). Note that the distinction

between y and u variables is often natural (once the independent variables u are specified F may be used

to solve for the dependent variables y), however this formulation may be used even if it is not (Ref. 1).

Much previous work on rNLP has directly addressed the full semi-infinite problem. A common iterative

approach alternates between the NLP defined by the original objective function subject to the constraints

holding at some number of discrete parameter values (multi-period programming), and solving the m

feasibility (inner) problems

max
y,s∈S

Gi (y, u∗k, s)

s.t. F (y, u∗k, s) = 0,

(2)

where u∗k is the optimal value of the first problem. The inner problems yield worst-case parameter values s∗i,k

(and the corresponding state variables y∗i,k). Once determined, all of the s∗i,k such that Gi

(
y∗i,k, u∗k, s∗i,k

)
≥ 0

are added to the discretization in the first problem and the entire process repeats (Ref. 2–7). It is widely

recognized that this is an expensive approach—methods proposed for reducing the computational burden

include introducing heuristics for dropping parameter values from the discretization, aggregating the inner

problems using KS functions, and collapsing the two stages by introducing the KKT conditions for the

inner problems as constraints in the outer problem (Ref. 7).

There have also been several papers that start with the general rNLP formulation, but eventually arrive

at a finite nonlinear programming problem by assuming that the constraints are either convex or monotonic

with respect to the parameters (Ref. 8–10). A sensitivity analysis approach was proposed by Takamatsu

et al. (Ref. 11), see Section 5.

A recent paper by Zhang proposes a method for calculating first-order rNLP (1-rNLP) solutions that

only require the solution of a single (but larger) nonlinear program (Ref. 1). The obvious drawbacks of the

approach are that the full semi-infinite problem is not solved, and the parametric uncertainty must be of
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the form

s ∈ S, S =
{

ŝ + τDδ : ‖δ‖p ≤ 1
}

, (3)

where D ∈ Rns×ns , δ ∈ Rns , and τ is a scalar. However, if the amount of uncertainty is moderate and fits

reasonably within the framework of Equation 3, one should expect to get a good approximate solution for

relatively little cost.

The purpose of this paper is to investigate these claims. In particular, we address the following questions

via three case studies taken from the literature: the design of a three-bar truss, the design of a heat

exchanger network and the design of a reactor-separator system.

1. How do first-order robust solutions compare with other robust solutions found in the literature with

respect to optimality and feasibility?

2. How does the computational complexity of the first-order robust formulation compare with that of

other formulations and solution methods?

3. When is the first-order robust formulation preferred over other methods?

4. Can the theoretical results in (Ref. 1) be leveraged to further ensure robust feasibility?

The case studies were chosen primarily because they have already been solved using other methodologies—

robust designs for the truss and reactor-separator were calculated using iterative schemes similar to the

description above; a sensitivity analysis approach was previously applied to the heat exchanger network.

In addition, the truss problem was chosen for its simplicity, the heat exchanger network demonstrates the

limits of the first-order method with respect to uncertainty set size, and the reactor-separator example is

a standard test problem (Ref. 5, 8, 12–14). The reactor-separator is also important because the particular

instance cited (Ref. 14) gives results for three different uncertainty sets: two that fit the assumptions of

Zhang and one that does not.

The rest of this paper is organized as follows. In Section 2 we introduce the first-order robust formulation

and a theoretical result that bounds the inequality constraint violations. Section 3 summarizes the notation

and approaches used in the remainder of the paper. The three case studies are given in Sections 4 to 6.

Finally, we conclude with Section 7.
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2 A Robust Nonlinear Programming Formulation

Here we briefly summarize the results of Zhang (Ref. 1). Let

S = Sτ =
{

ŝ + τDδ : ‖δ‖p ≤ 1
}

, τ > 0, 1 ≤ p ≤ ∞. (4)

Then if

[Fy (y, u, s)]ij =
∂Fi (y, u, s)

∂yj
, i, j = 1, 2, . . . , ny, (5)

and all other derivatives of interest are defined similarly, the first-order robust formulation for Equation 1

given in (Ref. 1) is

min
y,ys,u∈U

φ (y, u, ŝ)

s.t. F (y, u, ŝ) = 0

Fyys + Fs = 0

Gi (y, u, ŝ) + τ
∥∥eT

i (Gyys + Gs)D
∥∥

q
≤ 0, i = 1, . . . , m,

(6)

where
1
p

+
1
q

= 1, (7)

Fy, Fs, Gy and Gs are evaluated at (y, u, ŝ) and ei ∈ Rm is the ith column of the the identity matrix.

(Note that if p = 1 then q = ∞ and vice-versa.)

In addition, we have the following result, a proof of which is given in (Ref. 1) for the case that D = I.

Theorem 2.1. Let (ŷ, ŷs, û) be feasible for Equation 6 with τ > 0. Assume that in the set Sτ : (i) y (û, s)

is implicitly defined as a differentiable function of s via the equation F (y, û, s) = 0 and (ii) every row of

(Gyys + Gs) (y (s) , û, s) is (p, q)-Lipschitz continuous modulo to L. Then

G (y (û, s) , û, s) ≤ L

2
τ2

(
max
||δ||p≤1

‖Dδ‖2p
)

, ∀s ∈ Sτ . (8)

Thus, for any feasible solution to Equation 6, û, that also satisfies the assumptions of Theorem 2.1 we

have a bound on the maximum violation of any of the inequality constraints. In addition, assuming that

τ
∥∥eT

i (Gyys + Gs)D
∥∥

q
> 0, ∀i = 1, . . . ,m, there will be a neighborhood about ŝ, S̃τ , such that

G (y (û, s) , û, s) ≤ 0, ∀s ∈ S̃τ . (9)
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3 Methodology

There are several conventions followed throughout the three case studies that follow. We outline them here

so as to avoid repetition in the remainder of the paper.

First, for all of the problems the uncertainty sets will be of the form p = ∞ (box uncertainty) or

p = 2 (ellipsoidal uncertainty). Thus q = 1 or q = 2, respectfully. No matter what q is, the resulting

τ
∥∥eT

i (Gyys + Gs)D
∥∥

q
term is not continuously differentiable at 0, which violates standard assumptions

for nonlinear programming. Therefore, whenever applicable, the following approximations are used, with

ε = 1E-8:

‖x‖1 ≈
n∑

i=1

√
x2

i + ε2

‖x‖2 ≈
√√√√

n∑

i=1

x2
i + ε2.

(10)

Secondly, while it will not be discussed in what follows, some attempt was made to scale the various

equations and variables within each problem in order to improve the numerical results.

Thirdly, results for other rNLP methods are cited from other papers; the first-order robust solutions were

calculated using the AMPL modeling language and the NLP solvers MINOS and SNOPT (Ref. 15–17). We

chose not to reproduce the results of the other papers since the solution methods used were complex enough

that exact reproduction would be difficult to impossible, especially if one of the purposes was to calculate

reliable computational times. Since all of the methods rely on solving various NLPs, computational time

can be qualitatively compared by considering the number and size of the NLPs involved for each method.

Finally, given a robust solution, (ŷ, u∗), first-order robust or otherwise, simulation will refer to the

notion of choosing a series of random s ∈ S for some S (maybe different from the one used to calculate u∗),

and for each such parameter value calculating y from F (y, u∗, s) = 0 and the corresponding G (y, u∗, s).

Plots of these results along with the first-order approximations of these quantities (y ≈ ŷ + ŷs (s− ŝ) and

G (y, u∗, s) ≈ G (ŷ, u∗, ŝ) +
(
Ĝy ŷs + Ĝs

)
(s− ŝ)) are used to provide insight into the performance of the

first-order robust formulation versus other rNLP methods. In all of the plots, actual values are represented

by x’s and first-order approximations are represented by o’s. The individual values of s chosen from S are

referred to as samples. The simulations presented in this paper were completed in Matlab using results

imported from AMPL.
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Figure 1: Three-Bar Truss. The three bars are labeled 1, 2 and 3. A force of magnitude P is applied at
the given node in the direction specified by angle α. The subsequent displacement of that node is defined
by the distances z1 and z2.

4 Design of a Three-Bar Truss

The objective of the first case study is to minimize the weight of the truss shown in Figure 1 assuming

that it must be able to withstand a force of magnitude P applied to the free node at any angle α in some

given range (Ref. 2). As the lengths of the bars are given by the geometry of the problem, the weight of

the truss is determined by the cross-sectional areas b1, b2 and b3. These are also the control variables u in

the notation of Section 2. Assuming that the same material is to be used for each bar, the objective of the

problem is

min 10
√

2 b1 + 10 b2 + 10
√

2 b3. (11)

The truss is considered satisfactory if the stress on each bar and the displacement of the free node are kept

below some threshold values, and if the bars are not expected to buckle, for all α ∈ A ⊂ R.

The displacements z1 and z2 (state variables) are calculated from the force balance:

√
2× 106

4




b1 + b3 b1 − b3

b1 − b3 b1 + b3 + 2
√

2b2







z1

z2


 = P




cos α

sin α


 . (12)
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The stress constraints are:

5× 105 |z1 + z2| ≤ 5× 103 (13)

106 |z2| ≤ 2× 104 (14)

5× 105 |z2 − z1| ≤ 5× 103 (15)

and the buckling constraints are:

−10 (z1 + z2) ≤ π2βb1 (16)

−10z2 ≤ π2βb2 (17)

−10 (z2 − z1) ≤ π2βb3, (18)

where β is related to the moments of inertia of the bars and is 1
4π ≈ 0.079577 because the bars are assumed

to be cylindrical. The inequalities limiting the amount of displacement are:

z1 ≤ δ1 (19)

z2 ≤ δ2. (20)

As in (Ref. 2) P = 4× 104 lb and we consider two cases:

C1: A =
[
−π

4
,
π

2

]
, δ1 = δ2 = 0.005”

C2: A =
[
0,

π

2

]
, δ1 = 0.005”, δ2 = 0.004”.

Taking C1 first, we can write the problem in the form of Equation 6 by letting

y =
[
z1 z2

]T
, u =

[
b1 b2 b3

]T
, s = α (21)

and

ŝ =
π

8
, τ = 3ŝ, S =

{
ŝ + τδ :

∥∥δ
∥∥

p
≤ 1

}
, (22)

where p can be any number 1 to ∞ since s is a scalar. φ (y, u, s), F (y, u, s) and G (y, u, s) are readily

determined by making the appropriate substitutions and moving all of the equality and inequality constraint

terms to one side. For C2 we need only change the values of δ1 and δ2 and set

ŝ =
π

4
, τ = ŝ. (23)
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The resulting first-order robust formulation was solved for both C1 and C2, with the nominal solutions

for these cases serving as initial guesses. (The nominal problem is defined by setting s = ŝ, τ = 0, and

excluding the equality constraint containing ys.) The nominal and first-order robust results are given in

Table 1, along with the results given in Kwak and Haug’s paper (Ref. 2).

Table 1: Three-bar truss designs: nominal, first-order robust, and Kwak and Haug’s results for C1 and
C2. The ẑ’s are the displacements when the load is applied at the nominal angle α̂.

Desc. Weight b1 b2 b3 ẑ1 ẑ2
∂ẑ1

∂α

∂ẑ2

∂α
C1 Nom 282.36 12.148 0.0000 7.8183 5.00E-3 1.08E-3 -3.5E-3 6.0E-3
C1 1-R 440.20 12.959 1.9082 16.818 3.72E-3 1.64E-3 -1.1E-3 2.8E-3
C1 K&H 320.45 11.309 0.04475 11.319 4.62E-3 1.90E-3 -1.9E-3 4.6E-3
C2 Nom 125.89 8.8875 0.0022 0.0127 5.00E-3 4.00E-3 -2.7931 2.7921
C2 1-R 427.80 15.164 2.4981 13.320 2.67E-3 2.11E-3 -3.0E-3 2.4E-3
C2 K&H 340.00 11.314 2.0000 11.314 3.54E-3 2.83E-3 -3.5E-3 2.8E-3

Kwak and Haug’s results were obtained with an iterative approach like the one described in the Intro-

duction. The distinctiveness of their algorithm lies in how they update their guess for u. After identifying

the inequality constraints that are currently violated for some value of the parameters, they linearize the

corresponding inner problem (Equation 2), apply the KKT conditions and simplify, ultimately presenting

the following update NLP for u (u(j+1) = u(j) + δu):

min
δu,λi

φuδu

s.t. − eT
i Gy + λT

i Fy = 0, i ∈ I

(
eT
i Gu − λT

i Fu

)
δu ≤ ∆Gi, i ∈ I,

(24)

where I is the index set of the violated inequality constraints, s̄i and ȳi were the optimal arguments of

the corresponding inner problems and the derivatives are calculated at s̄i, ȳi and u(j). In practice, the

NLP is simplified before it is solved. In particular, the equality constraints are solved for λi, the result is

substituted back into the inequality constraints, and the result is a linear program (LP) in δu. The purpose

of this LP is to minimize the increase of the objective function while ensuring an appropriate reduction in

the violated inequality constraints (∆Gi, i ∈ I). In practice, it is not solved to completion, but rather a

step-size restriction is imposed (Ref. 2).

Keeping this in mind it is possible to make a few preliminary remarks concerning the results shown in

Table 1. In particular, it seems that the first-order robust approach tends to overestimate the effect of α
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Figure 2: Simulation results for C1. 50 random angles taken from A =
[−π

4 , π
2

]
(uniformly) and the

corresponding displacements zi, i = 1, 2. In the displacement plots, the dashed lines represent δi, i = 1, 2.
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Figure 3: Simulation results for C1. The stresses on each bar (x’s) and the corresponding first-order
approximations (o’s) for the series of angles shown in Figure 2. The dashed lines (at the top if not visible)
represent the maximum stresses allowed by the stress constraints.

on the system since the first-order robust trusses are both heavier (and thus represent more conservative

solutions) than the corresponding semi-infinite trusses. In addition, the 1-Robust sensitivities of z with

respect to α are uniformly smaller than Kwak and Haug’s which indicates that the lighter semi-infinite

solutions are probably not first-order robust.

To see if these observations hold up, we simulate this system as described in Section 3 using both robust

solutions (first-order and semi-infinite). The results for C1 are shown in Figures 2 through 4. The results

for C2 are very much the same (except that buckling is not at all an issue for either design in this case),

and so are not shown.

Assuming that Kwak and Haug managed to find the global semi-infinite solution to this problem, the
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Figure 4: Simulation results for C1. The buckling constraints for each bar plotted following the same
conventions as Figure 3.

plots demonstrate that the first-order solution had to be the more conservative of the two because the first-

order predictions computed for the semi-infinite case do not satisfy the displacement constraints or the

stress limit on bar 3. In contrast, all of the first-order predictions satisfy the constraints in the first-order

robust case, as expected. In these plots the conservativeness of the solution is indicated by the tendency

of the actual values to fall below the first-order approximations. Taken as a whole, the plots show that

both designs are satisfactory (all design criteria are met for all values of the parameter). From the table

we recall that the semi-infinite designs of Kwak and Haug are more efficient.

But there was a computational cost for obtaining the lighter design—for C1 Kwak and Haug’s approach

required 17 iterations, where each iteration required the solution of 5-6 small “inner” NLP’s (nonlinear

objective and two nonlinear equality constraints in three variables) and 1 LP in three variables, plus the

work it took to derive the LP’s, which mainly consists of evaluating partial derivatives with respect to b

and z and solving a 2×2 linear system. In addition, this approach relies heavily on one’s ability to solve the

inner problems (Equation 2) to global optimality. In contrast, the first-order robust design was obtained

from a single NLP with 7 variables, 4 equality constraints and 8 inequality constraints. Furthermore,

first-order feasibility over the entire parameter range is guaranteed as long as a feasible solution is found

(that is, there is no global optimality requirement).

For both approaches, it is generally wise to conduct a simulation similar to the one presented here. For

the first-order approach the main reason for this is that one does not know if the first-order predictions

will overestimate or underestimate the constraint violations. For the semi-infinite approach, the simulation

may be able to find a bad parameter value and corresponding constraint violation that was missed due to

the non-global nature of standard NLP solvers. In both cases, the simulations proceed readily from the
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Figure 5: Heat exchanger network to be optimized. Picture from

(Ref. 11).
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Figure 6: Heat
Exchanger mn.

NLP model and a pseudo-random number generator.

5 Design of a Heat Exchanger Network

The second example to be considered is the design of the heat exchanger network presented in (Ref. 11)

and depicted in Figure 5.

This network is subdivided by hot streams, such that each exchanger is given two subscripts: the first

denotes which hot stream flows through it, and the second tells us if it is the first, second or third exchanger

that the hot stream encounters. There are four hot streams with initial temperatures T10, T20, T30 and T40.

For an arbitrary exchanger, exchanger nm, we have the situation depicted in Figure 6, and the following

relations hold.

The heat transfer area, Anm (in ft2) must be

Anm =
rn

UnmGnm

(
1− rn/ (wcp)nm

) ln

[(
Tn(m−1) − Snm

)

(Tnm −Rnm)

]
, (25)

where rn is the heat flow rate of the nth hot stream (in BTU h−1 ◦F−1), (wcp)nm is the heat flow rate of

the cold stream, Unm is the overall heat transfer coefficient of the exchanger, Gnm is a geometric correction

factor, Tn(m−1) is the inlet temperature of the hot stream, Tnm is the outlet temperature of the hot stream,

and Rnm and Snm are the inlet and outlet temperatures, respectively, of the cold stream.

We also have that at steady state, the heat lost by the hot stream equals the heat gained by the cold

11



stream, that is:

rn

(
Tn(m−1) − Tnm

)
= (wcp)nm (Snm −Rnm) . (26)

Once the individual exchangers are integrated into a network, we have that each exchanger’s Tn(m−1)

and Rnm will either be equal to some other exchanger’s hot or cold outlet temperature, or must be specified.

In Takamatsu et al., the optimization problem is then given (for a general system with N hot streams and

an index set Subn for each such subsystem n ∈ {1, 2, . . . , N}) as

min
A,R,S,T

N∑
n=1

∑

m∈Subn

Anm

s.t. R = BS + b

Tn0 = cn, n = 1, . . . , N

Anm =
rn

UGnm

(
1− rn/ (wcp)nm

) ln

[(
Tn(m−1) − Snm

)

(Tnm −Rnm)

]

rn

(
Tn(m−1) − Tnm

)
= (wcp)nm (Snm −Rnm)

Ŝout − δ ≤ Sout ≤ Ŝout + δ, n = 1, . . . , N, ∀m ∈ Subn,∀UGnm ∈ U

(27)

where the objective is to minimize the total heat exchanger area while requiring that the cold stream

outlet temperatures Sout (for the entire system) will be near some specified setpoints Ŝout for any UGnm =

UnmGnm values in some set U . For the particular geometry shown in Figure 5, we have that

N = 4,Sub1 = Sub3 = Sub4 = {1, 2} , Sub2 = {1, 2, 3} ,

Sout =




S21

S31

S41




, Ŝout =




500

450

400




, δ = 10,
(28)

B is a connection matrix of zeros and ones, and the values of the remaining parameters, which are b, cn,

rn, (wcp)nm and the nominal values of UGnm, are given in Table 2.

Takamatsu et al.’s approach to this problem is to start with a nominal solution (a solution to Equation

27 with δ = 0 and U = {ÛG}) and then use sensitivity analysis to find an approximately robust solution.

In particular, the following optimization problem is solved for a given deviation in the parameter values,
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Table 2: Model parameter values for the heat exchanger network in (Ref. 11).

n cn rn × 10−4 nm bnm (wcp)nm × 10−4 ÛGnm

1 400 150 11 180 100 100
12 130 100 100

2 530 150 21 0 135 135
22 0 135 135
23 0 100 100

3 600 150 31 0 100 100
32 0 135 135

4 500 150 41 0 100 100
42 150 135 135

δUG.

min
δA,δSout

N∑
n=1

∑

m∈Subn

δAnm

s.t. δSout = f (δA, δUG)

δA ≥ 0

|δSout| ≤ δ,

(29)

where the deviation variables δA and δSout are defined as the difference between the values of the corre-

sponding variables in the final design and the nominal solution, and the function f (δA, δUG) represents

the approximation of the deviations δSout using sensitivity analysis about the nominal optimum. In Taka-

matsu et al., the individual parameter deviations δUGnm were taken as −0.3ÛGnm in the first case, and

as −0.5ÛGnm in the second.

This approach contrasts markedly with both the full semi-infinite robust optimization problem, and

with the approach taken by this paper in at least two respects:

1. It assumes a particular parameter deviation, rather than an infinite set of parameter deviations.

2. Largely because of the first point, its purpose is to calculate one-sided engineering overdesign factors

(δA ≥ 0), rather than the best deviations (in either direction) that result in a sufficiently robust

system.

In addition, the linearization performed by Takamatsu et al. differs from that proposed here. Takamatsu

et al. linearize the entire optimization problem about the nominal solution (via the KKT conditions),

whereas in this work just the constraints are linearized and only with respect to the uncertain parameters

about the final, robust solution (at convergence).
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The first result of note is that we were not able to reproduce Takamatsu et al.’s nominal solution. In

that paper, Takamatsu et al. indicate that they solved the nominal problem using a multilevel technique

dating from 1965 and a coordinating algorithm (for integrating the hot stream subsystems) based on the

conjugate gradient method (Ref. 11). The resulting solution is shown in Figure 7. Our nominal solution is

shown in Figure 8. Note that this solution was found by both SNOPT and MINOS, even when Takamatsu

et al.’s nominal solution was used as the starting guess. The two solutions are qualitatively different (we

found three of the original exchangers to be unnecessary in the nominal case) and our solution has a

significantly improved objective function value.
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Figure 7: Takamatsu et al.’s nominal solution. Heat exchanger areas are at the center of the circles and
are in ft2; temperatures are in ◦F.

In order to obtain robust results as per Section 2 that are somewhat compareable to the results of

Takamatsu et al., the uncertainty set U for the parameters UGnm was defined as

U =
{

ÛG + τ diag(ÛG)δ |‖δ‖∞ ≤ 1
}

, (30)

where diag(·) takes a vector and returns the diagonal matrix whose nonzero elements, in order, are the

elements of the given vector. Thus, for a given value of τ , U corresponds to the hyperbox obtained by

placing ± (τ · 100)% bounds on each individual UGnm about its nominal value.
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Figure 8: Improved nominal solution. Heat exchanger areas are in ft2; temperatures are in ◦F. Note that
exchangers 11, 21 and 22 have been eliminated.

With u and y from Section 2 consisting of the heat exchanger areas and temperatures respectively,

and both lower and upper bounds on the value of Sout, it is only possible to solve the first-order robust

problem corresponding to Equation 27 for τ ≤ 0.1 (approximately). This is not too surprising since the

robust formulation considers an entire hyperbox of potential parameter values whereas Takamatsu et al.

consider a single worst-case point. Therefore, in addition to the solution for τ = 0.1 with both bounds in

place, we also generate 1-rNLP robust solutions for Equation 27 with the upper bound on Sout removed.

This corresponds to the likely situation that we are most interested in the final temperatures of the outlet

cold streams being above some minimum values. For this case we solved the first-order robust problem

with τ = 0.3 and τ = 0.5 so as to include the worst-case points considered by Takamatsu et al.

The first-order robust results, and Takamatsu et al.’s results are summarized in Table 3 and are denoted

“1R” and “T.”, respectively. The heat exchanger areas, the total area required for the network (which

is also the value of the objective function) and the value of Sout when UGnm = ÛGnm, according to the

model, are shown for each solution. Later we will also refer to the engineering over-design case, that is, the

heuristic method of increasing each exchanger area by a certain percentage. This was the base case used

by Takamatsu et al. as a comparison; they cite this approach as adding 13.7% to every heat exchanger

area for the τ = 0.3 case (OD30) and 33.7% for the τ = 0.5 case (OD50). Applying this approach to
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Takamatsu et al.’s nominal solution results in designs of 93,875 ft2 and 110,388 ft2 of total heat exchanger

area, respectively. The corresponding nominal outlet temperatures are 505, 465, and 413◦F for OD30 and

510, 484 and 428◦F for OD50.

Table 3: Heat exchanger network designs. After the two nominal solutions, heat exchanger areas are given
in units of percent change from nominal if the given exchanger has a nonzero area in the nominal solution;
otherwise the actual area is reported. The percentages for the T. solutions are based on T. Nom.; the
percentages for the 1R solutions are based on 1R Nom.

Desc. T. Nom. 1R Nom. 1R10 T. 30 1R30 T. 50 1R50
A11 157 0 1734 +0 0 +0 0
A12 5840 5640 -92.5 +0 +7.13 +0 +7.31
A21 21127 0 0 +0 0 +0 0
A22 1229 0 0 +0 0 +0 0
A23 9144 20627 -1.34 +0 +29.7 +0 +52.3
A31 7682 544 -100 +14.1 -100 +40.0 -100
A32 17015 25828 +10.5 +0 +23.3 +0 +54.4
A41 13145 13252 +41.3 +17.4 +25.2 +43.3 +54.1
A42 7225 4180 -74.5 +0 -25.3 +0 -61.1∑

Anm 82564 70071 70831 85934 84362 91328 99394

Ŝ21 500 500 499 498 517 495 529
Ŝ31 450 450 449 460 464 475 477
Ŝ41 400 400 400 412 418 426 433

By examining the table we see that a) a robust solution for τ = 0.1 is obtained with very little cost

in terms of the objective function value (+1%), b) for the solutions intended to deal with 30% changes

in UGnm, the first-order robust solution has the smallest total area and c) Takamatsu et al.’s solution

actually has the smallest overall area in the 50% change case, however, their nominal value for Ŝ21 seems

dangerously low. Also, as noted before, there are qualitative differences between the various solutions.

To see what these solutions actually mean for the plant, we present simulation results as described

in Section 3. Figure 9 presents such results for the first-order robust problem with τ = 0.1 and both

bounds on Ŝout in place; Figures 10 and 11 give results for all three approaches, for 30% and 50% changes

in UGnm, respectively. All of the plots use randomly generated, independent and uniformly distributed

deviations in the individual values of UGnm. For Figure 9, the deviations were chosen from the set
{

∆UG = 0.1diag(ÛG)δ | ‖δ‖∞ ≤ 1
}

, as one would expect based on Equation 30. However, for Figures

10 and 11, the deviations for UG were chosen from the sets
{

∆UG = − τ
2 ÛG + τ

2diag(ÛG)δ | ‖δ‖∞ ≤ 1
}

with τ = 0.3, 0.5 in order to make the trials more fair to the Takamatsu et al. solutions. In particular,

since only −30% and −50% changes in UG were considered in that paper, it seems reasonable to restrict

ourselves to the the hyperbox defined by that point and the nominal value.
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Figure 9: First-order robust results for τ = 0.1 and both bounds on Sout in place.
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Figure 10: Simulation results for maximum nega-
tive deviations in UG of 30%. Both upper and
lower bounds for Sout are shown, but only the
lower bound was applied in the first-order robust
case.

Notice that for τ = 0.1 (Figure 9), the first-order robust solution behaves both as expected and as

desired—the first order predictions and the actual outlet temperatures stay within the proscribed bounds.

However, we are not quite as lucky with τ = 0.3 and 0.5. While the first-order predictions stay above the
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Figure 11: Simulation results for maximum nega-
tive deviations in UG of 50%. Both upper and
lower bounds for Sout are shown, but only the
lower bound was applied in the first-order robust
case.

lower bound, as required, the actual temperatures are sometimes in violation. However, this is not entirely

unexpected. Recall from Section 2 that our only guarantee is that

G (y (û, s) , û, s) ≤ L

2
τ2

(
max
||δ||p≤1

‖Dδ‖2p
)

, (31)

where L is the Lipschitz constant for Gyys + Gs, for all s ∈ Sτ . Thus, here we can expect maximum

violations (in absolute value) of the lower bound of

1352 L

2
τ2, (32)

since p = ∞. In fact, if we plot the maximum deviaitons found from simulation versus τ2, we obtain Figure

12, which clearly shows the expected linear relationship.

But how does the first-order robust solution stack up against the alternatives proposed by Takamatsu
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Figure 13: Simulation results for the first-
order robust solution corresponding to τ =
0.4164, where τ = 0.3 for simultation.

et al.? For 30% uncertainty, the first-order robust approach outperforms the two alternatives on every

count: frequency and magnitude of the violations and objective function value. For 50% uncertainty, the

results are more mixed. Takamatsu’s solution does very poorly with S21 and S22 in terms of violations,

but the over-design results compare very well against the first-order results. It would require more analysis

(and information) in order to determine whether or not the over-design is worth the extra 10994 m2 in

heat exchanger area.

However, this is not entirely the point. The first-order robust approach was formulated mainly for

moderate amounts of uncertainty, and ±50% changes are certainly not moderate. However, these severe

levels of uncertainty and the resulting constraint violations present an opportunity to demonstrate how

the theory may be leveraged to provide robustness for somewhat larger values of τ . For instance, if you

estimate Li and the minimum value of
∥∥eT

i (Gy (ŷ, u∗ (τ) , ŝ) ys + Gs (ŷ, u∗ (τ) , ŝ))D
∥∥

q
that you expect to

encounter as you solve the 1-rNLP problem for various values of τ near its current value, Ai, for each

inequality constraint, then an approximate overestimate for τ of ατ with

(α− 1) ≥ Li

2Ai
τ

(
max
||δ||p≤1

‖Dδ‖2p
)

, i = 1, . . . ,m (33)

will approximately ensure no violations for the case that τ is the actual level of uncertainty. This result

comes from the observation in (Ref. 1) that (taking for simplicity the case when there are no equality
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constraints—the result is easily generalized):

Gi (û, ŝ + τDδ) ≤ Gi (û, ŝ) + τ
∥∥eT

i Gs (û, ŝ)D
∥∥

q
+

Li

2
τ2 ‖Dδ‖2p , (34)

for any feasible solution to the 1-rNLP problem, û. Thus, enforcing the constraint

Gi (û, ŝ) + ατ
∥∥eT

i Gs (û, ŝ)D
∥∥

q
≤ 0 (35)

will result in no constraint violations as long as the uncertainty set is accurately described by Sτ and

ατ
∥∥eT

i Gs (û, ŝ)D
∥∥

q
≥ τ

∥∥eT
i Gs (û, ŝ) D

∥∥
q
+

Li

2
τ2 ‖Dδ‖2p . (36)

Equation 33 is obtained by replacing
∥∥eT

i Gs (û, ŝ)D
∥∥

q
(or

∥∥eT
i (Gy (ŷ, û, ŝ) ys + Gs (ŷ, û, ŝ))D

∥∥
q
) with Ai

and rearranging the results.

For this case study and τ = 0.3, a calculation like this (the values for Li were estimated to be 0.01107,

0.01016 and 0.01155, respectively, from the slopes of the least-squares lines in Figure 12, and the Ai were

estimated to be 78.0, 73.1 and 86.7 by taking the minima of the
∥∥eT

i (Gy (ŷ, û, ŝ) ys + Gs (ŷ, û, ŝ)) D
∥∥

q

values calculated from the 1-rNLP solutions corresponding to τ = 0.3, 0.4 and 0.5) yields α ≥ 1.3880, and

the corresponding simulation results (the solution was calculated using τ = 0.4164 but the uncertainty

level in the simulation is just τ = 0.3) are shown in Figure 13. Notice that indeed, the types of violations

observed in Figure 10c have been eliminated. (For purposes of comparison, the scales on the plots in Figure

13 were made to match those in Figure 10 as closely as possible, and as in that figure, deviations in UG

were chosen from the set
{

∆UG = − τ
2 ÛG + τ

2diag(ÛG)δ | ‖δ‖∞ ≤ 1
}

.) The cost for this improvement

in performance is essentially 8658 m2 or an extra 10.3% in total heat exchanger area since the total area

required for the τ = 0.4164 solution is 93,020 ft2.

6 Design of a Reactor-Separator System

Our final case study is the design of a reactor-separator system as studied by Rooney and Biegler in

Example 3 of (Ref. 14). The process is depicted in Figure 14. The purpose of the system is to chemically
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convert reactant A to product C via the reaction system

A
k1−→ B

k2−→ C

k3 ↓ k4 ↓
D E

(37)

which consists of four first-order elementary reactions. The uncertain parameters are the reactions rates

ki, i = 1, . . . , 4 with units of time−1. As in (Ref. 14) we are concerned with the following robust program

in the variables V (the volume of the reactor in m3), F (the flow rate out of the reactor in mol/time), δ

(the fraction of species A and B that is recycled back to the reactor), β (the fraction of species D and E

that is recycled back to the reactor) and xa, xb, xc, xd, and xe (the mole fraction of each species at the

reactor outlet).

min 10V 2 + 5Fmax

s.t. Fa0 − xaF (1− δ)− ca0V (k1 + k3)xa = 0

− xbF (1− δ) + ca0V (k1xa − (k2 + k4)xb) = 0

− xcF + ca0V k2xb = 0

− xdF (1− β) + ca0V k3xa = 0

− xeF (1− β) + ca0V k4xb = 0

xa + xb + xc + xd + xe = 1

xcF ≥ 40

F ≤ Fmax

0 ≤ δ ≤ 1, 0 ≤ β ≤ 1

∀ (k1, k2, k3, k4) ∈ K

(38)

The known parameters are Fa0 = 100 mol/time, the inlet molar flow rate, and ca0 = 10 mol/m3, the

concentration of species A at the inlet (and the molar concentration throughout the entire system).

In (Ref. 14) the authors compare the full (semi-infinite) solutions of Equation 38 for several different

uncertainty sets K. In particular, they simulate a set of data and use it to estimate three different types

of statistical confidence regions K for the reaction rates:

1. Individual confidence regions for each ki (Equation 4 in (Ref. 14)), which results in a box uncertainty

set K (expressible in the form of Equation 3 with p = ∞).

2. A joint confidence region derived from a Taylor series expansion about the nominal estimates for the
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Figure 14: Reactor-separator system. Picture from (Ref. 14).

ki’s (Equation 5 in (Ref. 14)), resulting in an ellipsoidal uncertainty set K (expressible in the form

of Equation 3 with p = 2).

3. A joint confidence region derived from the (nonlinear) likelihood ratio test (Equation 6 in (Ref. 14)),

resulting in a possibly non-convex, nonlinear confidence region K, which cannot be expressed in the

form of Equation 3.

They then solved Equation 38 using a standard iterative approach. These results (Example 3 in (Ref. 14),

the “Robust Controls” case) along with the corresponding first-order robust results for y = (xa, xb, xc, xd, xe, F )

and u = (V, δ, β) (the distinction between control and state variables mentioned although not needed in

(Ref. 14)) are shown in Table 4. Note that only V , F and Cost are reported in (Ref. 14), and that the

statistical data needed to calculate the box and ellipsoidal confidence regions is available in (Ref. 14).

Table 4: Robust Designs for the Reactor-Separator System
Form. Set V Fmax Cost

Type (m3) (mol/t) ($×103) δ β xa xb xc xd xe

Nom. N/A 19.08 413.9 570.8 0.974 0.000 0.364 0.414 0.097 0.065 0.060
Full Box 20.88 468.3 670.5 — — — — — — —
1-R 20.71 468.3 663.2 0.992 0.000 0.345 0.413 0.107 0.069 0.066
Full Ell. 19.98 434.3 616.5 — — — — — — —
1-R 19.57 430.8 598.3 0.978 0.000 0.358 0.412 0.101 0.067 0.062
Full Nlin. 19.55 425.2 594.8 — — — — — — —

Based solely on the fact that the 1-rNLP solutions have consistently lower cost as compared to the

corresponding full semi-infinite solutions, it seems that the first-order robust formulation is underestimating

the actual uncertainty effects in some sense. But how do the 1-rNLP system designs perform in the presence

of the nonlinear uncertainty assumed most realistic by Rooney and Biegler? To find out, we generate

random values of the parameters k by the same process that was used in (Ref. 14): for every random
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Figure 15: Simulation results for the reactor-separator problem. The first row plots of the amount of
product (species C) produced for the a) nominal, b) box uncertainty and c) ellipsoidal uncertainty cases.
In all of the plots the dotted line marks the boundary of the ≥ 40 mol/time constraint. The second row
is similar, but contains plots of F. In these plots the dotted lines in the middle of the data represent the
nominal values for each case; the dotted lines above the data, when present, are the maximum values as
calculated by the first-order robust formulations.

value so desired, simulated experimental data like that shown in Table A1 of (Ref. 14) is generated and

used to calculate a maximum likelihood estimate for k, which serves as a sample of k from the desired

nonlinear probability distribution. The data generation step proceeds as follows. Given a true value of k,

k∗, values of the mole fractions xa, . . . , xe are calculated for various CSTR residence times (ca0V/F ) using

the given model without recycle (δ = β = 0). Then zero mean measurement noise of known covariance V ∗
m

(generated using the Matlab function mvnrnd) is added to the mole fractions. Since we could not determine

the original values of k∗ and V ∗
m, they were taken to be the maximum likelihood estimates corresponding

to the data given in (Ref. 14).

The results are shown in Figure 15. All six figures correspond to the same series of pseudo-random

k-values. Three simulations are represented: the a) nominal case and the first-order robust solutions

calculated with b) box and c) ellipsoidal uncertainty. Simulations using the results in (Ref. 14) are not

given because the information given in that paper does not allow one to uniquely identify their solutions.

Briefly, the figures show that frequent constraint violations are to be expected with the nominal de-

sign, the box uncertainty case is overly conservative, and the ellipsoidal uncertainty case is roughly an

improvement over both of the others (few violations and not overly conservative). Note that even with a
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full solution for the rNLP problem subject to a nonlinear confidence region for the parameters, we would

expect some number of violations inversely proportional to the confidence level α. However, the number

of violations obtained in the first-order robust, ellipsoidal uncertainty case may be too frequent in some

cases. Depending on the physics and economics of the process it may be advantageous to back-off a little

bit more using the procedure outlined in Section 5.

In conclusion, while our results for this case study are approximate in the sense that we were not privy

to the true values of k∗ or V ∗
m, or to the full semi-infinite solutions (other than the optimal values of V and

Fmax), it seems that the first-order robust formulation does give two reasonably robust designs—one that

is overly conservative and another that should be acceptable either on its own or after a slight adjustment

via approximation and leverage of the relevant Lipschitz constant as outlined in Section 5.

This case study also raises two issues for future work. First, in the case when there is some discretion

available to the modeler, does it matter how the variables are split between the y (state) and u (control)

vectors? If so, do the differences tell us something about which split should be used in the control system?

Second, in (Ref. 14), the problem is also solved with the controls indexed across the various discrete values

of the parameters. These solutions represent the case when the controls may be used to counteract the

effects of the parametric uncertainty, which is often referred to as the two-level problem (Ref. 9, 18). Is it

possible to come up with “first-order” formulations for these sorts of problems?

7 Conclusions

This paper presents the results of applying the first-order robust nonlinear programming formulation pre-

sented in (Ref. 1) to three small engineering design problems: the design of a truss, of a heat exchanger

network and of a reactor-separator system. In some cases, the formulation over-estimated the impact of the

uncertain parameters; in others the impact was under-estimated. In addition, in the latter case (primarily

in Section 5), the violations were shown to be related to the uncertainty set size as predicted by theory.

Overall, the methodology seems to do well when the level of uncertainty is moderate, as predicted in (Ref.

1).

Small case studies were chosen for this work because a) it seemed appropriate to start with several

small problems and b) the relevant literature is generally restricted to small problems. However, the first-

order formulation used in this work should be suitable for much larger problems than most other proposed

approaches. In particular, the first-order formulation requires the solution of just a single NLP with

ny (1 + ns) + nu variables, ny (1 + ns) equality constraints and m inequality constraints. In contrast, the
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iterative approach described in the Introduction requires the solution of a large NLP (nyx + nu variables,

nyx equality constraints and mx inequality constraints, where x is the number of parameter values in the

current discretization) and m small NLP’s (ny +ns variables and ny equality constraints) for each iteration.

While x can vary greatly, for the purpose of concreteness, consider the case of an initial discretization

consisting of the extreme points of a box uncertainty set. This corresponds to one parameter value for

each vertex of the box or x = 2ns , which is easily much larger than 1 + ns (the corresponding factor for

the first-order case), even for moderate ns.

In addition to solving the rNLP problems presented in this work, Monte Carlo simulations were used

to compare designs. Overall, the authors recommend this technique for evaluating various robust designs.

Data obtained in this way or from an actual system may also be used to reduce the number of constraint

violations using the technique outlined in Section 5. (Several constants in the theoretical bounds on the

violation are estimated and used to enlarge the uncertainty set by some appropriate amount.)

Two additional questions were raised by the third case study which should be investigated further: 1.

How do different designations of the variables as states and controls affect the first-order robust results?

2. Can the first-order robust formulation be extended in any way to two-level problems (when a subset of

the controls can be chosen so as to compensate for a subset of the uncertain parameters)?
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