SOLVING A LOW-RANK FACTORIZATION MODEL FOR MATRIX COMPLETION
BY A NONLINEAR SUCCESSIVE OVER-RELAXATION ALGORITHM

ZAIWEN WEN Y, WOTAO YIN % AND YIN ZHANG *

Abstract. The matrix completion problem is to recover a low-rank matrbnfra subset of its entries. The main solution strategy for this
problem has been based on nuclear-norm minimization whiahnesjcomputing singular value decompositions — a task thatisasingly costly
as matrix sizes and ranks increase. To improve the capaciohaifg large-scale problems, we propose a low-rank facaion model and construct
a nonlinear successive over-relaxation (SOR) algoritheth @hly requires solving a linear least squares problemtpeation. Convergence of this
nonlinear SOR algorithm is analyzed. Numerical results stimw the algorithm can reliably solve a wide range of probleta speed at least
several times faster than many nuclear-norm minimization dfgos.
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1. Introduction. The problem of minimizing the rank of a matrix arises in mamyplacations, for example,
control and systems theory, model reduction and minimureracdntrol synthesis$ [20], recovering shape and motion
from image stream$ [25, B2], data mining and pattern rec¢iogsi [6] and machine learning such as latent semantic
indexing, collaborative prediction and low-dimensionaleedding. In this paper, we consider the Matrix Completion
(MC) problem of nding a lowest-rank matrix given a subsetitsfentries, that is,

(1.1) min  rankKW); s.t.W; = My ; 8(i5j) 2
W2Rm n

where rankW) denotes the rank oV, andM;; 2 R are given for(i;j ) 2 f@aj):2 i ml j no.
Although problem[(T11) is generally NP-hard due to the caorational nature of the functiorank( ), it has been
shown in [28[8[ 4] that, under some reasonable conditidvessolution of probleni(I11) can be found by solving a
convex optimization problem:

(1.2) Wzrrg{irp KWk st Wy = My 8(5j) 2

where thenuclearor trace norm kWk is the summation of the singular values\6f. In particular, Canés and

Recht in [3] proved that a given rankmatrix M satisfying certain incoherence conditions can be recavexactly

by (I.2) with high probability from a subset of uniformly sampled entries whose cardinaljtyj is of the order

O(r(m + n)polylog(m + n)). For more re ned theoretical results on matrix completioa vefer the reader to

[2.14,[11]14[ 16, 27. 40].

Various types of algorithms have been proposed to recoeesdfution of [1.1l) based on solving(L.2). One
method is the singular value thresholding algorithm| [13hgssoft-thresholding operations on the singular values
of a certain matrix at each iteration. Another approach és xed-point shrinkage algorithm_[22] which solves the
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regularized linear least problem:

. 1
(1.3) ,min- KWk + ékP (W M)KZ;
whereP s the projection onto the subspace of sparse matrices witlaeros restricted to the index subsetAn
accelerated proximal gradient algorithm is developed i} f&sed on a fast iterative shrinkage-thresholding algari
[1] for compressive sensing. The classical alternatingation augmented Lagrangian methods have been applied to
solve [1.2) in[8[36] and the closely related sparse andrimwk matrix decomposition i [37]. Other approaches
include [16/ 19, 24, 23./5.18]. All of these algorithms béw tomputational cost required by singular value decom-
positions (SVD) which becomes increasingly costly as taessand ranks of the underlying matrices increase. It is
therefore desirable to exploit an alternative approachersaitable for solving large-scale problems.

In this paper, we investigate solving a more explicit modhko than minimizing the nuclear norm n(lL.2), thus
avoiding SVD computation all together. Our goal is simplyding a low-rank matrixV so thatkP (W M )k2
is minimized. Obviously, any matri¥ 2 R™ " of a rank up toK has a matrix product forrdv = XY where
X 2 R™ X andY 2 RK ". Now we propose the following non-convex model

(1.4) min %kXY ZkZ st Zj = My ;8(j)2 ;

whereX 2 R™ K:y 2 RK ":7Z 2 R™ " and the integeK will be dynamically adjusted. The premise of
introducing the low-rank factorization mod€&l{lL.4) is tihaipefully it is much faster to solve this model than model
(I.2). However, there are two potential drawbacks of the-lamk factorization mode[{114): (a) the non-convexity
in the model may prevent one from getting a global solutiond ) the approach requires an initial rank estimate
K. In this paper, we present convincing evidence to show tgbK a wide range of problems tested, the low-
rank factorization mode[{114) is empirically as reliabkethe nuclear norm minimization mod€l{11.2); and (b) the
initial rank estimate need not be close to the exact raakM (though one can bene t computationally from a good
estimate). For example, we allow a strategy of starting flon¥ 1 and gradually increasin . We observe that
the global optimal value of (1.4) is monotonically non-ieasing with respect t& . In principle, if K is smaller
than the unknown rank, the quality of the solution in terms of the objective functivalue can be improved by
minimizing (I.4) again, starting from the current pointtlwan appropriately increased rank estimate. We mention
that the introduction of the (splitting) variabfeis for a computational purpose that should become clear late

A recent work in [14/716] is also based on a low-rank factditmamodel closely related td_(1.4) where the
factorization is in the form o) SVT whereU andV have orthonormal columns. The authors derived a theotetica
guarantee of recovery with high probability for their apgeb that consists of three steps. The rst step is called
trimming that removes from the sampbe (M) “over-represented” rows or columns. The second step ndsist
rank+ approximation matrix to the remaining sample matrix viegsilar value decomposition (SVD) wherds the
true rank and assumed to be known. In the nal step, startioign the computed SVD factor as an initial guess, they
solve the factorization model via a special gradient detsgethod that keeps the variabldsandV orthonormal.
The key intuition for their theoretical result is that théiel guess is so good that it falls into a certain neighboidho
of the global minimum where there exists no other statiopaint with high probability. This enables the authors to
prove that their gradient descent method generates a segjtessiding within this small neighborhood and converging
to the global solution in the limit, despite the non-contgxif the factorization model. Given that our factorization
model [1.%) is essentially the same as theirs, our apprdamiic be able to bene t from the same initial point and
possibly attain a similar theoretical guarantee. Howeterproofs in[[14] are specially tailored to the particuias of
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their algorithm and do not apply to our algorithm presentethis paper. Extending a similar theoretical result to our
case is a topic of interest for future research. Meanwhile,present paper concentrates on algorithm construction,
convergence (to stationary point) analysis and performavaluations. A low-rank factorization method based on
the augmented Lagrangian framework is proposed_ih [28]icgquivalent quadratic formulation of the model{1.2).
However, this method is only conceptual and the authors 8s@&lMi to solve the SDP formulation ¢f(1.2) in their
numerical experiments.

Our main contribution is the development of an ef cient aigfum for (I.4) that can reliably solve a wide range
of matrix completion and approximation problems at a speadmfaster than the best of existing nuclear norm min-
imization algorithms. Like in many other similar cases, #teicture of [[T4) suggests an alternating minimization
scheme. In this case, one can update each of the varighlé&s or Z ef ciently while xing the other two. The
subproblems with respect to either the varialler Y are linear least squares problems only involviig K coef-
cient matrices in their normal equations, and the solutidthe subproblem foZ can also be carried out ef ciently.
This alternating minimization procedure is also called alimear (block) Gauss-Seidel (GS) scheme or a block co-
ordinate descent method. In this paper, we propose a motessicated nonlinear successive over-relaxation (SOR)
scheme with a strategy to adjust the relaxation weight dyceliy. Numerical experiments show that this new scheme
is signi cantly faster than the straightforward nonlin€a& scheme. The convergence of nonlinear GS (coordinate
descent) methods for several optimization problems has seelied, for example, in [10, 21,133,134]. However, we
are unaware of any general convergence result for nonllB@&& methods on non-convex optimization that is directly
applicable to our nonlinear SOR algorithm. In this paperpnaved that our approach converges to a stationary point
under a very mild assumption.

The rest of this paper is organized as follows. We rst présanalternating minimization scheme for{1.4) in
sectior Z.]L with two ef cient implementation variants. Qwnlinear SOR algorithm is introduced in section 2.2. An
convergence analysis for the nonlinear SOR algorithm isrgin sectiof 3. Finally, two strategies for adjusting the
rank estimaté& and numerical results are presented in se¢flon 4 to denad@skre robustness and ef ciency of our
algorithm.

2. Alternating minimization schemes.

2.1. Nonlinear Gauss-Seidel methodWe start with a straightforward alternating minimizati@neme for solv-
ing problem [[T#). Although alternating minimization is@wemon strategy widely used in many other similar situa-
tions, there is a subtlety in this case regarding ef cier@ixen the current iterates, Y andZ, the algorithm updates
these three variables by minimizirig (IL.4) with respect ttheane separately while xing the other two. For example,
by xing the values ofY andZ, we obtain the new poirX . :

1
Xs = ZYY = argmin ZkXY ZkZ;
X 2Rm K

whereAY is the Moore-Penrose pseudo-inversedofSimilarly, we can updat¥ and thenz, while xing others at
their latest available values. This procedure yields thlevidng iterative scheme:

(2.1a) X, ZYY ZYZ (YY)
(2.1b) Yo (X.)Z O (XZX)(X22Z);
(2.1c) Z, X.Ys+P (M X.Y.):
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It follows from (Z.1&) and(2.1b) that
XiYe = X (X7 X:)X] Z =Py, Z

whereP, = A(A” A)YA® = QQ is the orthogonal projection onto the range spa¢é) of A andQ := orth (A)
is an orthonormal basis fdR (A). The pseudo-inverse &, the orthonormal basis d® (A) and the orthogonal
projection ontoR (A) can be computed from either the SVD or the QR factorizatiod of One can verify that
R(X+) = R(ZY?) . Indeed, lety = U V~ be the economy-form SVD oY, thenX, = ZV YU”> and
ZY> = ZV U?,implyingthatR(X+)= R(ZY>)= R(ZV) and leading to the following lemma.

LEMMA 2.1.Let(X+ ;Y. ) be generated b2. 7). There holds

(2.2) X:Ys = Pyy-Z=2Y>(YZZY (Y Z7)Z:

We next present two iterative schemes equivalenfid (2.ijceSthe objective functior (1.4) is determined by
the productX . Y, , different values ofX . andY. are essentially equivalent as long as they give the sameugtrod
X+ Y. LemmalZ]l shows that the inversi¢vi Y~ )Y can be saved when the projectiBry - is computed. The
unique feature of our new schemes is that only one leastsguablem is involved at each iteration. The rst variant
is to replace the step(Z]1a) by

(2.33) X+ ZY7;

while Y. andZ. are still generated by step (2]11b) ahd (2.1c). The secondntaromputes the orthogonal projection
P,v> = VV”, whereV = orth (ZY~) is an orthogonal basis d? (ZY >). Hence, [[2Z.R) can be rewritten as
X+ Y. = VV>Z and one can derive:

(2.48) X4 V;
(2.4b) Ys V> Z;

while Z.. is still generated by step(Z]1c). The schemel(2.4) is oftefepred since computing the stép (2.4b) by QR
factorization is generally more stable than solving themadrequations. Note that the schenies](2[1)] (2.3) landl (2.4)
can be used interchangeably in deriving properties of thdymtX . VY. .

By introducing a Lagrange multiplier 2 R™ " sothat = P () , the Lagrangian function of (1.4) is de ned
as

(2.5) L(X;Y;Z; )= %kXY Zk? P (Z M);

where the inner product between two matri¢e2 R™ " andB 2 R™ " isdenedasA B = ; AjBj.
Differentiating the Lagrangian functidn(X; Y;Z; ) , we have the rst-order optimality conditions fdr (1.4):

(2.6a) (XY Z)Y”> =0;
(2.6b) X> (XY 2)=0;
(2.6¢) P(Z XY)=0;
(2.6d) P(Z M)=0;
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plus the equations
(2.7) P(Z XY)=

Clearly, the multiplier matrix measures the residuéal XY in and has no effect in the process of determining
X;Y;Z. Itis also easy to see that the above alternating minintimathemes are exactly a Gauss-Seidel (GS) method
applied to the nonlinear and square system (2.6).

2.2. A Nonlinear SOR-like Scheme.Numerical simulations shows that the simple approach isactior 2.1,
though being very reliable, is not ef cient on large yet véow-rank matrices. A possible acceleration technique may
involve applying an extension of the classic augmentedduagjan-based alternating direction method (ADM) for
convex optimization to the factorization model (se€ [29,/[3% for such ADM extensions). However, in this paper,
we investigate a nonlinear Successive Over-RelaxatiorR)jSPproach that we found to be particularly effective for
solving the matrix completion problem.

In numerical linear algebra, the SOR method [9] for solvirgaar system of equations is devised by applying
extrapolation to the GS method, that is, the new trial pairgt iweighted average between the previous iterate and the
computed GS iterate successively for each component. Aepr@tue of the weight often results in faster convergence.
Applying the same idea to the basic scherfied (4.1 (2.3)2d) dives a nonlinear SOR scheme:

(2.8a) X,  ZYZ(YY?);

(2.8b) X.(1) IX,+@ D)X

(2.8¢) Yoo (Xe (1) Xa (1)Y(X4 (1) 2);

(2.8d) Yo(1) YL +@ 0 1)Y;

(2.8e) Zo(1) Xo(Ya(W)+P (M Xo()Ya(1));

where the weight 1. Obviously,! =1 gives the GS method.

Assuming that the matri¥ has full row rank, the two least squares problem§&in (2.8)eareduced into one like
the second basic schenie {2.3). Let us denote the residual by

(2.9) S=P (M XY);

which will be used to measure optimality. After each iteyatithe variableZ , which is feasible, can be expressed as
Z = XY + S. LetZ, be aweighted sum of the matrick¥ andS, that is,

(2.10) Z, , XY +1S =1Z +(1 1)XY:
Using the fact that the matriX Y~ (Y Y~ )Y is the identity from our assumption, we obtain

ZIYT(YY? Y =1ZY (YY) +(@1  DXYYZ (YY)

=X, +(1 )X
5



which is exactly the stejp (2.Bb). Replacifdoy Z, in (2.3) and[[Z}4), we have the following SOR-like scheme:

(2.11a) X. (1) ZyY”or Z Y7 (YY)
(2.11b) Ya(1)  Xe (X (0)YX4 (1) 2Z0);
(2.11c) Pe(Zs(t) P e(Xe(M)Ye());

(2.11d) P (Z:(1) P (M)

Again, an implementation with a single QR decompositionlantilized just as in scheme(2.4).

Since a xed weight is generally inef cient for nonlinear problems, we next peat an updating strategy fbr
that is similar to the one adjusting the trust-region radiuthe trust region method [26] for nonlinear programming.
After the point(X . (! ); Y« (! ); Z+ (1)) is computed, we calculate the residual ratio

o ORLTOLS
where
(2.13) Ss(1), PM  Xi(MY.():

If (') < 1, this new pair of point is accepted as the next iterate sinreobject to reduce the residuebkg :=

kP (M XY )kg is achieved. In this case, the step is called “successftierwise, the step is “unsuccessful” and
we have to generate a new trial point using a new weigé that (! ) < 1is guaranteed. Since the basic GS method
corresponds tb =1 and it can reduce the residde8kg , we simply reset to 1in a “unsuccessful’ case. Once a trial
point is acceptable, we consider whether the weligbhould be updated. As our goal is to minimize the resi#Gi,
asmall (!) indicates that the current weight valuevorks well so far and keeping the current value will very like
continue to provide good progress. Henteis increased only if the calculated point is acceptable hetresidual
ratio (! ) is considered “too large”; thatis,(! ) 2 [ 1;1) for some ; 2 (0;1). If this happens, we increaseto
min(! + ; +), where > 0Ois anincrementant> 1is an upper bound. From the above considerations, we arrive
at Algorithm[1 below.

Algorithm 1: A low-rank matrix tting algorithm (MaFit )

1 Input index set , dataP (M) and a rank overestimate .

2 SetY?2 RK " 7z0=p (M),! =1, 1, > 0, ;2 (0;1)andk =0.

3 while not convergentio

4 | Compute(Xs (!1);Y:+(!);Z+ (1)) according to[{Z011) withiX; Y;Z) = ( X X; Yk, ZK).
5 Compute the residual ratia(! ) according to[(2.12).

6 if (') 1thenset! =1 and go to step 4.
7
8

Update(X k+1; Y k+1-zks 1y = (X, (1); Y+ (1 ); Z+ (1)) and incremenk.
if (1) 1 thenset =max( ; 0:25(! 1)) and! =min(! + ;).

For illustration, we compare the ef ciency of the GS schef@dl( and the nonlinear SOR-like scherhe (2.11) on
two random matrice®! with m = n = 1000, r = 10 with two different sampling ratios at, respectivedy)8and0:15
(see subsectidn 4.2 for detailed construction procedwlealjorithmic parameter setting). The algorithms were run
by using two different rank estimatiomé = 12 and20. The normalized residuald® (M XY )kg =kP (M )kg

are depicted in Figurds 2.1 (a) and (b), respectively. Thm@mt jumps in the residuals were due to adjustments
6



of rank estimations, which will be explained later. From theres, it is evident that the nonlinear SOR scheme is
signi cant faster than the nonlinear GS scheme.

FIG. 2.1.Comparison between the nonlinear GS and SOR schemes
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3. Convergence Analysis.We now analyze Algorithrill1 by revealing the relationshipsMeen the residuals
kSke andkS; (! )kg. LetV(!) := orth (X+ (!)) andU := orth (Y”) be orthogonal bases of the range spaces of
R(X+ (1)) andR(Y?), respectively. Consequently, the orthogonal projectmme R (X . (! )) andR(Y>) can be
expressed as:

Q(l):
P

UuU> = Y (Y Y )Y:

We list several useful identities that can be veri ed frore tfe nition of pseudo-inverse. For ady2 R™ ",

AY = AY(AY)” A7 = A” (AY)” AY = (A” A)YA” = A” (AA”)Y;

(3.1)
A=(AY)”A”A = AA” (AY):

The lemma below and its proof will provide us a key equality.
LEMMA 3.1.Let(X+ (! ); Y+ (1)) be generated b@Z.11) There holds

(3.2) IS (X+(M)Y+(1) XY)= kX+(1)Ya(l) XYKZ:

Proof. It follows fromY~> = YYY Y~ (seelB1)X+ (! )= Z, YYandZ, = XY + IS that
X:(1)YY> =Z, Y> = XYY +1SY >;
Post-multiplying both sides b§¥ Y> )¥Y and rearranging, we hayX . (! ) X)Y = ISY > (Y Y )YY;i.e,

(3.3) (X+ (1) X)Y = ISP:
7



On the other hand, the equaliti®s (! )> = X+ (! )™ X+ (! )(X+ (1))Y and [3:3) yield

X (0P Xe ()Y ()= X (1) 2 = X4 (1) (XY +1S)
X+ (1) (X ()Y (X4 (1) X)Y+1IS)

X. (X, ()Y +1IX (1) S P):

Pre-multiplying both sided by (! )(X« (! )” X4 (! ))Y and rearranging, we arrive at
(3.4) Xe ()Y« (') Y)y=1Q)s(u P):
Therefore, in view of[(313) an@(3.4), we obtain

Xo(Ys () XY =(X+ (1) X)Y +X:()Ys() Y)

(3.5) = ISP +1Q (1)S(I P)
(3.6) =1 (1 QU)SP+!Q()S:

Therefore,

(3.7) KX+ (U)Ya (1) XY K2 =12k(I  Q(!))SPk2 + ! 2kQ(! )Sk2:

Finally, in view of (3.6) and the properties of orthogonabjections, we have:

IS (X+(1)Y+(1) XY)=125 (I Q()SP+!125 Q()S
12SP (I Q( )SP+!2S Q(')S
L2kl Q(!))SPK2 + ! 2kQ(! )Sk2
KX+ ()Y (1) XY K2;

which proves the lemmal

It is easy to see that
1
(38) TkXY Z k|: = kSkF:
Therefore, after the rst two steps in(2]11),
1
TKXe ()Y () Zike Kk Ske

and the strict inequality holds unless the rst two equasiar the optimality conditions of{2.6) already hold. Or
equivalently,

(3.9) KP o(X+ (1)Y4 (1) Z)KkZ2 + kP X+ (1)Y+ (1) Z))kE  k Sk2:

T2

Next we examine the residual reductik®kZ k S. (! )k2 after each step of the algorithm in detail.
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LEMMA 3.2.Let(X+ (! ); Y+ (1)) be generated by (Z.11) for ahy 1, then

(3.10) Iizkx+(! Wa(l) ZikE = k(I Q()S(I P)k& = kSkZ
where
(3.12) 12(1), kX4 ()Y (1) XYkZ = kSPK2 + kQ(!)S(I  P)k2

is the amount of residual reduction frokSk2 after steps 1 and 2 ifi{211).
Proof. From the de nition ofZ, and [3.5), we obtain

Xe(MYe() Zy =X, ()Ye(1) XY 1S =1SP +1Q (1)S(

Lo y)s P

which proves the rst equality if(3.10). Using (3.2) ahddB.we have:

KX+ (U)Ye (1) Z K2

12kSk2 k X4 (1)Ys (1) XY k2
12kSk2 12 55(1);

which proves the second equality in (3.1D).
After the third step in[(2.11), we have

kP c(X+(' )Y+(|) Z+(| ))kF =0:

12(');

KX+ (U)Ya (1) XYKZ2 +12kSkZ2 2SS (X+(1)Y+ (1)

SinceP <(Z,) P (XY ) independent of , the residual reduction in the third step is

(3.12) 3(1), !izkp c(Xa (N)Y+ (1) XY)KZ:
Finally, the change of the residual value after the fourdp $$

A1), !izkp Xe(MY+ (1) Z)kE k Si(1)KE;
or equivalently,
(3.13) A1), ,izk&(! Y+(!  1)SkZ k S, (!)kZ:
Clearly, 4(1)=0. For!> 1, it follows from (3.13) that

(3.14)

12 4(1)
1

! =(!  1)(kSkZ k S.(1)kZ) 2S.(') (S:()

We will show next that the rate of change of(! ) at! = 1% is nonnegative.
LEMMA 3.3.

(3.15) i, f“i:zkp (XY 1) XY)E O

9
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Proof Let! ! landS: , S.(1). We obtain from[(3.14), the de nitions & in (2.9), and[(3R) that
, a() _ o 12 a(h)
lim = lim = 25: (S 9
rroar | R 1
= 2kS. Sk& 2S (S: S)
= 2KP (X.Y. XY)K+2S (X.Y. XY)
=2kP «(X+Y: XY)KZ;

which completes the proofl
If 4(!) is continuous, then Lemnia 3.3 guarantees thét) > 0in some range of > 1. In fact, suppose that

rank(Z,) = rank( Z) as! ! 1*. The equalityank(Y Z7 Z, Y>) =rank( Y Z>ZY>) holdsad ! 1%, hence,
limyy + (YZ7Z,Y?)Y = (YZ>Z2Y?)Y holds by [30]. The continuity of the produ2t. (! )Y. (! ) implies that

4(! ) is continuous as ! 1*. In Figures 3.1 (a) and (b), we depict the continuity of thections 1,(! ), 3(! ) on
a randomly generated problem from two different pair of pefiX; Y;Z ). As cen be seen, the bene t of increasing
can be quite signi cant. For example, in Figlirel3.1 (b), wheis increased from 1 to 4, the amount of total residual
reduction is more than doubled.

FiG. 3.1. Continuity of the functionsi2(! ), 3(!' ) and 4(!).
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We have proved the following result about the residual-céida property of the nonlinear SOR algorithm.

THEOREM 3.4. Assume thatank(Z, ) = rank( Z);8! 2 [1;! 1]forsomel ;1 1. Let(X+(');Y+(!);Z+ (1))
be generated by the SOR scheme (2.11) starting from a ntiorstay point(X;Y;Z), and 1»; s and 4 be de ned
as in [3.11),[(3.1R) and{3:13), respectively. Then theigt®some , 1 such that

(3.16) kSkZ k Si(1)k2 = 1p(1)+ a(1)+ 4(1)>0; 8! 2[5! ,];

where 12(!); 3(!) Oby de nition. Moreover, whenever(1) > 0 (equivalenthP «(X. (1)Y+ (1) XY ) 60),
there existd > 1,sothat 4(! ) > 0;8! 2 (1;!].

Next we present a convergence result for our algorithm. eSimodel [[T.4) is non-convex, we are only able to
establish convergence to a stationary point under a mildnagon. Note that the objective function is bounded
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below by zero and is decreased by at least an amount af every iteration. There must hold (sEe(3.12))
P (XK yk+l  xkykyy o

In light of the above, it is reasonable to assume fRat. (X kY ¥)g remains bounded, barring the unlikely alternative
thatkP «(X*Y*K)k 11

THEOREM 3.5. Letf (X X; YK;Zk)g be generated by Algorithid 1 affi® (X XY *)g be bounded. Then there
exists at least a subsequencd X ¥; YX; ZX)g that satis es the rst-order optimality condition@.8)in the limit.

Proof. It follows from the boundedness & (X KYX)g and the algorithm construction that bdtd ¥ g and
f X XYkg are bounded sequences. It suf ces to prdve (2.6a)]2.6mesihe other conditions are satis ed by the
construction of AlgorithnilL. Without loss of generality, wssume thatX ¥ g is generated by a scheme analogous to
Z2): given(X;Y ) = (XKk:Y*¥) and! 2 [1;H]

Z, =1Z +(1 V)XY; Xy =orth(Z, YT); Ve = X]Zy:

Obviously,f X Xg is bounded. In additiorf,Y Xg is also bounded due to the boundedness of bathg andf X kY ¥g.
Letl = fk: k() 0g,andl ¢ be the complement df. It follows from (3.18) that

X X o .
(3.17) kSOk2 L) = kS'P'k2 + kQ'S'(I  P)k2:
i2l i2l

We consider the following three cases.

i) Suppossl ¢j < 1 . It follows from (3.17) that
(3.18) lim kS'P'kZ =0 and lim kQ'S'kZ =
The construction of the schenie (2.11) gives the equalities:
P (M)=P (Z'); P c(Z')=P «(X'Y); P'=U(U);
whereU' = orth ((Y')”). Therefore, we obtain
SP =P M X'YHP'=pP (z' X'YHP' =(z' X'YHP =(z'" Xx'YHu'(u);

which yieldslimj;  (Z'  X'Y')U' = 0 in view of the rst part of [3.IB). Sinc&)' is an orthonormal basis for
R((Y")”) and the sequendeY ' g is bounded, we have

(3.19) lim (z" X'Y')(Y"H) =o0:

UsingQ' = Vi(V')>, whereV' is an orthonormal basis fé (X '+ ), we obtain

(3.20) Q'S = QS+ QIS S*T)= VI(VI) (2" XYty QIS Si*):
Using [3.T) and(3.18), we obtain

kS' S'"k2 k X"ty xivikZ o (M)2(kS'P'KZ + kQ'S'(I PHKE) ! O
11



hencelim;i; kS' S*1ke =0. This fact, together witH{3.18) and (3]20), proves
(V> (z™ xMy"hHnoo
In view of the boundedness X ' g, we arrive at
(3.21) lim (XY (x'y' zh=o:
i) Supposgl ¢j= 1 andjfk21°¢: (1%) 19j < 1 . Thatis, fork 2 | € suf ciently large we have
kS ke < 1kS*Ke:

Consquentlylimyi;  «2 < kSKke = 0. SincekSKk is nonincreasing, the full sequence converges to the global
minimizer of [1.2).

iii) Supposgl ¢j= 1 andjfi21°¢: (')  1gj= 1 . Then Algorithn{l resets’ = 1 for an in nite number
of iterations. We obtain froni (3.17) that

X X o o _
(3.22) kS°kZ L) = kS'P'kZ + kQ'S'(I  P"k2:
i2l 1 i2l 1

Hence, the subsequencel insatis es [3.19) and(3.21) by repeating, in an analogousidas the proof of part i)J

4. Computational Results. In this section, we report numerical results on our nonlife@R algorithm and
other algorithms. The codeMaFit [38] for our algorithm is implemented in Matlab with a couglesmall tasks
written in C to avoid ineffective memory usage in Matlab. @thested solvers includePGL[31], FPCA[22] and
OptSpace [16], where the rst two are nuclear minimization codes iemlented under the Matlab environment.
APGLalso utilizes a Matlab version (with the task of reorthodagion implemented in C) of the SVD package
PROPACK [17], and=PCAuses a fast Monte Carlo algorithm for SVD calculations immated in Matlab. The code
OptSpace , which has a C version that was used in our tests, solves almlodely related to[(1]4) using a gradient
descent approach and starting from a specially construmitéad guess. All experiments were performed on a Lenovo
D20 Workstation with two Intel Xeon E5506 Processors andB@GRAM.

We tested and compared these solvers on two classes of matbberns: completion and low-rank approximation.
The key difference between the two classes lies in whethévea gample is from a true low-rank matrix (with or
without noise) or not. Although theoretical guaranteestefar matrix completion, to the best of our knowledge no
such guarantees exist for low-rank approximation if sasple taken from a matrix of mathematically full rank. On
the other hand, low-rank approximation problems are méedylito appear in practical applications.

4.1. Implementation details and rank estimation. Algorithm[1 starts from an initial gues¢® 2 RK ". For
the sake of simplicity, in all our experiments we ¥€étto a diagonal matrix with 1's on the diagonal even though more
elaborate choices certainly exist that may lead to bettdopeance. The default values of the parametersand ;
were set tor 1 , 1 and0:7, respectively. Since the incremenis non-decreasing in Algorithid 1, the paraméteran
be increased too fast. Hence, we also red¢et0:1 max(! 1; ) whenever (! ) 1. The stopping criteria in our
numerical experiments follow

kP (M XKYK)ke
kP (M )ke
12

relres = tol



and

kP (M XXYK)ke
kP (M Xk 1yk Lk

reschg = 1 tol =2;

wheretol is a moderately small number.

Since a proper estimation to the raiikfor the model[(T.4) is essential for the succeskMaFit , two heuristic
strategies for choosiniy were implemented. In the rst strategy, we start from a lakg€K  r) and decrease it
aggressively once a dramatic change in the estimated rathle eariableX is detected based on its QR factorization
[9] which usually occurs after a few iterations. Speci gallet QR = XE be the economy-size QR factorization of
X, whereE is a permutation matrix so thdt:= jdiag(R)j is non-increasing, wherdiag(R) is a vector whoséth
component iRR;i . We compute the quotient sequertte= di=d+1; i =1; ;K 1; and examine the ratio

_ (K, D),
i6p d"
whered(p) is the maximal element dfd; g andp is the corresponding index. A largevalue indicates a large drop
in the magnitude ofl right after thep-th element. In the current implementation, we rd§eto p once > 10, and
this adjustment is done only one time. On the other hand,dist) from a small initial guess, our second strategy is
to increas&K to min(K + ; rank _maxy when the algorithm stagnates, i..eschg<10 =*tol . Here,rank _maxis
the maximal rank estimation, and the increment rk _inc if the currentk < 50; otherwise, =2 rk_inc. The
default value ofk _inc is 5. In our codd_MaFit , the rst and second (or decreasing and increasing ran&jegiies
can be speci ed by setting the opti@st _rank to 1 or 2, respectively, and will be called the decreasing r@md
increasing rank strategies, respectively.

Each strategy has its own advantages and disadvantageshanid be selected according to the properties of
the targeted problems. As will be shown by our numerical ltesthe decreasing rank strategy is preferable for
reasonably well-conditioned matrix completion problemkile the increasing rank strategy is more suitable for low-
rank approximation problems where there does not exista-clet desirable rank. Based on these observations, we
use the decreasing rank strategy in the experiments of stitnsgL.2, while the increasing rank strategy is used in

subsections 418=4.5.

4.2. Experiments on random matrix completion problems. The test matrice 2 R™ " with rankr in this
subsection were created randomly by the following procedsee alsd [22]): two random matridgls 2 R™ " and
Mg 2 R" " withi.i.d. standard Gaussian entries were rst generatetithenM = M M2 was assembled; then a
subset of p entries was sampled uniformly at random. The ratimn) between the number of measurements and
the number of entries in the matrix is denoted by “SR” (samgpfiatio). The ratioc(m+ n r)=pbetween the degree
of freedom in a rank matrix to the number of samples is denoted by “FR”.

We rst evaluate the sensitivity diMaFit to the initial rank estimat& using the decreasing rank strategy of
rank estimation. In this test, we used matrices with n = 1000 andr = 10. Three test cases were generated
at the sampling ratios SR equal to 0.04, 0.08 and 0.3, raspbctin each case, we rdoMaFit for each ofK =
10,1112,  ;300n 50 random instances. The average number of iterationa\andge CPU time corresponding to
this set ofK values are depicted in Figures 4.1 (a) and (b), respectivelthese two gures, we observe a notable
difference at the rank estimake = 10 when the sampling ratio SR 0:04. The reason is that at this low sampling
ratio the rank estimate routine &@MaFit mistakenly reduced the working rank to be less than 10 andtegsin
premature exists. For all other cases, we see that the nuohliterations stayed at almost the same level and the
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CPU time only grew slightly a& increased from 10 to 30. Overall, we conclude thietaFit is not particularly
sensitive to the change &f value on this class of problems over a considerable rangsedan this observation, in
all tests using the decreasing rank strategy, we set thalirdnk estimat& either tob1:25r ¢ or to bl:5r ¢, wherebxc
is the largest integer not exceedixgNumerical results generated from these Kvwalues should still be suf ciently
representative.

FIG. 4.1. The sensitivity MaFit with respect to the initial rank estimatid
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Our next test is to study the convergence bahaviddaFit with respect to the sampling ratio and true rank of
M . In this test the dimension &fl were settan = n = 1000 and the initial rank estimate was setliti25rc in
LMaFit . In Figure[4.2 (a), we plot the normalized residkBl (M XY )kg =kP (M )kr at all iterations for three
test cases where the sampling ratio was xed at SR = 0.3 arldrran 10; 50 and 100, respectively. On the other
hand, Figuré 4]2 (b) is for three test cases where SR = 0.08,dhd 0.3, respectively, while the rank was xed at
r = 10. Not surprisingly, these gures show that when the samptaigp is xed, the higher the rank is, the harder
the problem is; and when the rank is xed, the smaller the dargpatio is, the harder the problem is. In all cases, the
convergence of the residual sequences appeared to be boeat quite different rates.

An important question about the factorization mo@ell(1rt) aur nonlinear SOR algorithm is whether or not our
approach (model plus algorithm) has an ability in recovgtow-rank matrices similar to that of solving the nuclear
norm minimization model by a good solver. Or simply put, does algorithm for [T.4) provide a comparable re-
coverability to that of a good nuclear norm minimizationaithm for (1.2) or [1.B)? We address this recoverability
issue in the next test by generating phase diagrams in Ele(a)-(b) for the two modelg(1.3) aid {1.4), respec-
tively. The solvel=PCA[22] was chosen to solvE (1.3) since it has been reportedvie adetter recoverability than
a number of other nuclear norm minimization solvers. In tb&, we used random matrices of sime= n = 500.

We ran each solver on 50 randomly generated problems witkahmpling ratio SR chosen in the order as it appear
in £0:01; 0:06; 0:11; ; 0:86g and with each rank value 2 f 5; 8; 11; ;59g. The two phase diagrams depict the
success rates out of every 50 runs by each solver for eactesstivhere a run was successful when the relative error
kM  Wkr =kM kg between the true and the recovered matriMeandW was smaller thadO 3. If a solver recov-
ered all 50 random instances successfully for=SR andr = , then it ought to have equal or higher recoverability
for SR> andr = . To expedite the part of the experiment involviiBCA we chose to stop testing all other SR

> withr = |, and increment the value. In Figure6413 (a)-(b), a white box indicates a 10086very rate, while
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FiG. 4.2.Convergence behavior of the residualliMaFit runs
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(a) Model [I:B) solved b¥PCA (b) Model [T.3) solved byMaFit

a black box means a 0% rate. The parameter settingM@Fit wastol =10 4, K = bl:25rcandest rank =1,
while for FPCAit wastol = 10 “and = 10 *. All other parameters were set to their respective defalkt v
ues. The two phase diagrams indicate that the recovegabflitMaFit is marginally inferior to that oFPCAIn
this experiment. Given the reported better recoverabilitifFPCA it is reasonable to infer that the recoverability of
LMaFit is comparable to those of the other nuclear norm miniminagimvers studied in[22].

To have a quick assessment on the speddvdFit relative to those of other state-of-the-art solvers, we-com
paredLMaFit with two nuclear norm minimization solveraPGLandFPCA and with a c version dDptSpace that
solves a factorization model similar to ours but uses an ®%Bed initial guess, on a set of small problems with
m = n = 1000. The parameter setting fWMaFit was the same as in the previous experiment. In particular, th
decreasing rank strategy was used. The paramef@rthe model[[TB) was set tt) 4 as suggested by the testing
scripts in the packagBPGL where is the largest singular value & (M ). The stopping tolerance for all solvers
was set tal0 # and all other parameters were set to their default valuesumnsary of the computational results is
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presented in Table4.1, where “time” denotes the CPU timesorea in seconds and rel.esr kW~ M kg =kM kg
denotes the relative error between the true and the reabweagricedM andW (“tsvd” will be explained below).

TABLE 4.1
Comparison of four solvers on small problems with varyingkrand sampling ratio

Problem APGL FPCA OptSpace LMaFit
K = bl:25rc| K = bl:5rc
r SR FR time relerr tsvd time relerr tsvd time relerr | time relerr | time  rel.err

10 0.04 0.505.76e-03 3.89 4.04e-03 82082.62 8.21e-01 12% 24.01 4.44e-040.98 4.72e-041.00 4.35e-0:
10 0.08 0.251.02e-02 2.25 6.80e-04 71943.24 7.30e-04 19% 10.07 2.42e-040.35 2.27e-040.40 2.19e-0:
10 0.15 0.131.78e-02 2.44 2.14e-04 66%/.76 4.21e-04 42% 8.26 1.32e-040.39 1.16e-040.41 1.48e-0:
10 0.30 0.073.42e-02 4.11 1.40e-04 58%7.54 1.97e-04 72% 9.39 1.02e-040.59 8.99e-050.62 9.91e-0
50 0.20 0.492.94e-02 123.90 2.98e-03 93%1.43 4.64e-04 56%6312.94 2.71e-043.96 3.03e-044.96 2.63e-0
50 0.25 0.393.59e-02 23.80 8.17e-04 87%01.47 3.24e-04 67%227.91 1.84e-042.98 1.89e-043.20 2.11e-O
50 0.30 0.334.21e-02 18.64 6.21e-04 85%46.24 2.64e-04 75%235.97 8.90e-052.56 1.78e-042.78 1.91e-O
50 0.40 0.245.53e-02 19.17 3.69e-04 82942.28 2.16e-04 77%120.97 7.79e-052.28 1.11e-042.69 1.65e-O
100 0.35 0.545.70e-02 73.48 1.24e-03 92%59.37 5.41e-04 779d4422.16 2.83e-0413.07 3.01e-0417.40 3.09e-0:
100 0.40 0.476.37e-02 63.08 8.19e-04 91%02.82 4.11e-04 799d4213.33 2.33e-049.74 2.56e-0411.39 2.41e-0:
100 0.50 0.387.71e-02 61.44 4.91e-04 9(%569.66 3.10e-04 8290913.58 1.65e-047.30 1.55e-047.37 1.92e-0
100 0.55 0.3%8.40e-02 50.78 4.12e-04 89%60.28 2.89e-04 81%6862.85 1.52e-046.23 1.14e-047.18 9.99e-0
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From Tabld 411, we see thaMaFit is at least several times (often a few orders of magnitudsfahan all
other solvers to achieve a comparable accuracy. We notehtbaccuracy of the solvédptSpace on problems
with rank 100 could not be improved by using a smaller tolerance. Of cqutsereported performances of all the
solvers involved were pertinent to their tested versiordeuthe speci ¢ testing environment. Improved performance
are possible for different parameter settings, on diffetest problems, or by different versions. However, givea th
magnitude of the timing gaps betwekMaFit and others, the speed advantagd bfaFit should be more than
evident on these test problems. (We also tektddFit with the increasing rank strategy and found that it was not as
effective as the decreasing rank strategy on these randdrixmampletion problems.)

In Table[Z41, the item “tsvd” is the percentage of CPU timenspam SVD-related calculations, as estimated by
the MATLAB pro ler and obtained from separate runs. As carsben, fotAPGLandFPCASVD-related calculations
essentially dominate their total costs (with the exceptibextremely low-rank cases f&iPCA. On the other hand, for
LMaFit , the total cost is dominated by low-rank or sparse matrix &rix multiplications (which are also required
by other solvers), while the cost of solving the least sgaiareblem in[(Z.11lb) is either negligible or at m&4®so of
the total CPU time. Therefore, avoiding SVD-related caltohs is a main reason whyMaFit is much faster than
the nuclear norm minimization solveA®*GLandFPCA validating our original motivation of solving the facteaition
model.

The next test was on large-scale random matrix completioblems in which we comparddviaFit with APGL
following the experiment setup given in section 4.2[of [3The other solver§PCAandOptSpace were excluded
from this comparison since they would have demanded exee€8U times. Summaries of the computational results
are presented in Table 4.2 for noiseless data and Talle Ardisy data, where both the noiseless and noisy data
were generated as in[31]. In these two table, “iter” dentdlesnumber of iterations used, and “#sv” denotes the
rank of the recovered solution. The statistics containetthé@se two tables verify two key observations: (a) solving
the factorization model is reliable for matrix completion a wide range of problems, and (b) our nonlinear SOR
algorithm, as implemented itMaFit , has a clear speed advantage in solving many large-scdieprs.

4.3. Experiments on random low-rank approximation problems. We now consider applying matrix com-
pletion algorithms to randomly generated low-rank matppr@ximation problems. The goal is to nd a low-rank
approximation to a mathematically full-rank matfix whose singular values gradually tend to zero, though none
is exactly zero. Since there does not exist a “best low rantixiian such approximations, any evaluation of solu-
tion quality must take into consideration of two competimiecia: rank and accuracy. The only clear-cut case of
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TABLE 4.2
Numerical results on large random matrix completion praolewithout noise.

Problem APGL LMaFit (K = b1:25rc) | LMaFit (K = bl:5rc)

n r SR FR iter #sv time relerr|iter #sv time relerr|iter #sv time relerr
1000 10 0.119 0.16f1.44e-2 39 10 247 3.04e{23 10 029 167e-4#23 10 0.28 1.73e-
1000 50 0.390 0.25p5.36e-2 40 50 14.48 3.08et418 50 1.88 6.58e-5618 50 2.04 7.62e-
1000 100 0.570 0.33#8.58e-2 53 100 49.67 3.98ef20 100 5.47 1.86e-421 100 5.99 1.42e-
5000 10 0.024 0.1661.37e-2 52 10 12.48 2.17et29 10 199 1.71e-429 10 217 1.77e-
5000 50 0.099 0.20p6.14e-2 76 50 161.82 1.26efR0 50 1587 2.72e-520 50 16.49 3.86e-
5000 100 0.158 0.25p1.02e-1 60 100 316.02 3.74ef#6 100 57.85 1.57e-427 100 60.69 1.47e-
10000 10 0.012 0.16p1.37e-2 53 10 2345 3.61ef434 10 5.08 1.54e-434 10 556 1.66e-
10000 50 0.050 0.20p5.97e-2 56 50 225.21 2.77e[23 50 4480 4.76e-523 50 48.85 5.70e-
10000 100 0.080 0.2509.94e-2 71 100 941.38 2.87¢f80 100 168.44 1.63e¥430 100 176.45 1.70e-
20000 10 0.006 0.16ff1.35e-2 57 10 60.62 2.37e}438 10 12.46 1.44e-438 10 13.60 1.57e-
30000 10 0.004 0.16ff1.35e-2 59 10 9550 1.96ef439 10 20.55 1.71e-439 10 23.48 1.73e-
50000 10 0.002 0.16ff1.35e-2 66 10 192.28 1.58ef#2 10 43.43 1.8le-#42 10 49.49 1.84e-
100000 10 0.001 0.16[/1.34e-2 92 10 676.11 2.10ef#46 10 126,59 1.33e-#46 10 140.32 1.30e-

S~ KOS 0SS IS Ut

TABLE 4.3
Numerical results on large random matrix completion probéewith noise.

Problem APGL LMaFit (K = b1:25rc) LMaFit (K = bl:5rc)

n r SR FR iter #sv time relerr|iter #sv time relerr|iter #sv time rel.err
1000 10 0.119 0.16f1.44e-2 39 10 294 453e{218 10 0.24 453e-218 10 0.23 4.53e-
1000 50 0.390 0.25p5.36e-2 39 50 13.73 5.5lef2l7 50 1.76 551e-P17 50 193 5.5le-
1000 100 0.570 0.3348.59e-2 50 100 43.11 6.40ef2l7 100 4.70 6.40e-p18 100 5.31 6.40e-
5000 10 0.024 0.1661.38e-2 46 10 12.71 45let26 10 1.78 45l1e-P26 10 2.04 45le-
5000 50 0.099 0.20p6.14e-2 67 50 135.89 4.97et2l9 50 15.05 4.97e-p19 50 15.88 4.97e-
5000 100 0.158 0.25p1.02e-1 49 100 223.73 5.68ef2A8 100 39.81 5.68e-p18 100 42.83 5.68e-
10000 10 0.012 0.16p1.37e-2 50 10 25.75 4.52ef29 10 4.41 4.52e-229 10 4.86 4.52e-
10000 50 0.050 0.20p5.97e-2 51 50 187.84 4.99e[23 50 45.04 4.99e-p23 50 49.61 4.99%-
10000 100 0.080 0.2509.95e-2 58 100 681.45 5.73ef22 100 127.01 5.73e22 100 134.87 5.73e-
20000 10 0.006 0.16f1.35e-2 53 10 57.64 4.53e{B33 10 11.21 4.53e-233 10 13.27 4.53e-
30000 10 0.004 0.16f1.35e-2 55 10 89.22 452e{B34 10 17.63 4.52e-234 10 20.89 4.52e-
50000 10 0.002 0.16f1.35e-2 58 10 173.07 4.53efZB7 10 40.24 453e-237 10 4597 4.53e-
100000 10 0.001 0.16[/1.34e-2 70 10 517.36 4.53ef200 10 115.27 4.53e-P40 10 123.81 4.53e-
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superiority is when one solution dominates another by batkra, i.e., a lower rank approximation with a higher
accuracy.

In this experiment, all random instanceshdf2 R™ " were created as follows: two matrickg. 2 R" " and
Mg 2 R™ " with i.i.d. standard Gaussian entries are rst generatedoanly; thenM | andM g are orthogonalized
to obtainU andV, respectively; nally the matrixM = U V~ is assembled. Here is a diagonal matrix whose
diagonal elements;, fori = 1; ;n, are either the power-law decaying, that is,= i 2, or the exponentially
decaying, thatis,; = e %%, Hence, all singular values are positive, and ther@8@nd46 entries whose magnitude
are greater thamO © in these two types of , respectively. These diagonals are illustrated in Figdrdga) and (b).
The sampling procedures are the same as in {hoke 4.2. Ir#hjste dimension and rank Bf were set tan = 500
andr =10, respectively.

We compared_MaFit with the solversAPGLand FPCA[22]. The parameter for the model [I.B) was set
to 10 4. The stopping tolerance for all solvers was setl@“. We set the parametetauncation = 1, and
truncation _gap = 100 in APGL For LMaFit with est rank = 1, we setK = 50 , and forLMaFit with
est rank = 2, we setK = 1, rank_max= 50 andrk _inc = 1. All other parameters were set to default values
for the two solvers. A summary of the computational resltgresented in Table 4.4. We can see thMaFit with
est _rank = 2 was signi cantly better than other solvers. The decreasami strategy of. MaFit , as it is currently
implemented withest _rank = 1, is clearly not suitable for these low-rank approximatignlgjems since there is
no “true low rank” as in matrix completion problems. Speéilly, this strategy €st _rank = 1) reduced the rank
estimate too aggressively.
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FiG. 4.4.illustration of decaying patterns of the singular values
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TABLE 4.4

Numerical results on approximate low-rank problems.

Problem | APGL [ FPCA [ CMaFit (est _rank=1) [ LMaFit (est _rank=2 )
SR FR] #sv_ time  relerr [#sv time relerr [#sv time relerr | #sv time rel.err
power-low decaying
0.04 0.99/1.00e-04 90 16.30 6.48e-011 40.49 1.39e-01 5 0.70 3.68e-01 | 11 0.31 8.96e-03
0.08 0.49 1.00e-04 85 19.95 2.00e-012 45.81 4.38e-02 5 1.59 2.20e-01 | 20 0.60 1.13e-03
0.15 0.26| 1.00e-04 7 1.73 4.05e-034 14.46 1.78e-02 5 1.47 1.52e-01 | 20 0.75 4.57e-04
0.30 0.13[1.00e-04 11 1.85 1.86e-034 31.48 1.04e-02 5 3.20 8.12e-02 | 22 1.33 2.36e-04
exponentially decaying

0.04 0.99 1.00e-04 100 15.03 7.50e-0114 35.79 5.05e-0L 5 0.48 3.92e-01 | 16 0.86 4.08e-01
0.08 0.49/1.00e-04 100 21.60 3.31e-018 39.82 1.24e-01 5 0.44 2.66e-01 | 26 1.84 1.98e-02
0.15 0.26/1.00e-04 100 17.43 4.71e-0213 12.31 2.76e-02 5 0.63 2.39e-01 | 28 1.62 7.26e-04
0.30 0.13[1.00e-04 42 9.50 3.31e-0314 29.13 1.71e-02 6 1.03 1.71e-01 | 30 2.01 2.38e-04

4.4. Experiments on “real data”. In this subsection, we consider low-rank matrix approxiorajproblems
based on two “real data” sets: the Jester joke date set [7iletMovieLens data sef [12]. In these data set, only
partial data are available from the underlying unknown foasr which are unlikely to be of exactly low rank. Nev-
ertheless, matrix completion solvers have been applieditch problems to test their ability in producing low-rank
approximations. As is mentioned above, an assessment wiaolquality should take into consideration of both
rank and accuracy. The Jester joke data set consists of fobtgms “jester-1", “jester-2”, “jester-3” and “jester-
all”, where the last one is obtained by combining all of thet three data sets, and the MovieLens data set has
three problems “movie-100K”, “movie-1M” and “movie—lOI\H’ForLMaFit , We set the parameterstml =10 3,
est_rank =2,K =1, andrk _inc = 2. ForAPGL, the parameter setting wésl = 10 2, truncation =1, and
truncation _gap = 20. In addition, the model parameterfor APGLwas set to = 10 “ which produced better
solutions than choosint0 2 as suggested by the testing scripts in the packéR®L where is the largest singu-
lar value of the sampling matrix. Moreover, we set the maximrank estimate to 80 for the jester problems and to
100 for the MovieLens problems for bottMaFit andAPGLby specifying their parameterank _maxor maxrank,
respectively. We note that since the jester problems halyel®® columns, it is not meaningful to t a matrix of rank
100 to a jester data set. Since the entries of a underlyingxidt are available only on an index set to measure

1They are available atww.ieor.berkeley.edu/ ~ Egoldberg/jester-data andwww.grouplens.org |, respectively.
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accuracy we computed the Normalized Mean Absolute Error AlMas was used in [V, 22,81], i.e.,

1 X .
NMAE = Tt 5, M Mk
(ij )2

wherer min andrnax are the lower and upper bounds for the ratings. Speci cal/havermin =  10andrpa.x = 10
for the jester joke data sets angdi, = 1 andrmax = 5 for the MovieLens data sets. We tried using a part of the
available data as was done in[31] and found thRGLgenerally returned solutions with slightly higher NMAE-
accuracy but also higher ranks than those returnedNdgFit , creating dif culties in interpreting solution quality
(though the speed advantageldflaFit was still clear). Therefore, we only report numerical resulksing all the
available data in Table4.5, where “#asv” denotes the apmrate rank of a computed solution de ned as the total
number of singular values exceedih@ 8.

TABLE 4.5
Numerical results on “real data”.
Problem APGL LMaFit
name m/n iter time NMAE relerr #asyiter time NMAE relerr #as

jester-1 24983/100[1.00e-04 49 140.21 2.21e-02 1.73e-01 [@0L7 44.30 2.50e-02 1.86e-01
jester-2 23500/ 100/1.00e-04 49 133.74 2.27e-02 1.74e-01 RNI8 43.11 2.56e-02 1.87e-01
jester-3 24938/100/1.00e-04 37 56.74 1.63e-06 9.57e-05 BPB5 28.60 4.06e-05 9.31e-04
jester-all 73421/100/1.00e-04 48 284.15 1.90e-02 1.62e-01 @804 96.47 2.03e-02 1.65e-01
moive-100K  943/1682 |1.00e-04 100 82.43 6.89e-04 1.26e-03 1807 24.59 9.95e-04 2.07e-03
moive-1M 6040/ 3706/1.00e-04 61 152.97 6.64e-02 9.59e-02 1000 60.25 6.78e-02 9.85e-02
moive-10M 71567/ 1067[7/1.00e-04 57 1639.86 7.83e-02 1.32e-01 1008 637.27 7.59e-02 1.29e-01

2l ol ol ool N =il
8I\)J>OOJOOOO

As can be seen from Table #.BMaFit and APGLobtained low-rank approximation matrices of comparable
quality on the all the problems, whileMaFit ran more than twice as fast, and returned matrices of sjidgbwer
approximate ranks (except for “jester-all” and “movie-1QMt is particularly interesting to compare the two solser
on problem “jester-3” for which.MaFit reported a solution of rank 43 whilkPGLof rank 80. Even with a much
lower rank, thd_MaFit solution is almost as accurate as &feGLsolution. Finally, we comment that without proper
rank restrictions, the jester problems do not appear to bd ggst problems for low-rank matrix approximation since
the matrices to be approximated have only 100 columns tonbedh. In fact, LMaFit with est _rank = 1 and
K=100 was able to nd “solutions” of rank 100 after one itécat whose NMAE is of ordefl0 6.

4.5. Image and video denoising or inpainting.In this subsection we applyMaFit and APGLto grayscale
image denoising (similar to what was done(inl[22]) and to ceideo denoising of impulsive noise for visualizing
solution quality. The task here is to Il in the missing pixelues of an image or video at given pixel positions that
have been determined to contain impulsive noise. This gsisealso called inpainting, especially when the missing
pixel positions are not randomly distributed. In their ameg forms, these problems are not true matrix completion
problems, but matrix completion solvers can be applied taiodow-rank approximations.

Inthe rsttest, thes12 512original grayscale image is shown in Figlirel4.5(a), and wedated the SVD of the
image to get an image of rank 40 in Figlire]4.5(b). Figlresc} &fd 4.5(f) were constructed from Figukes 4.5(a) and
(b) by sampling half of their pixels uniformly at random, pestively. Figuré Z]5(i) was obtained by maskii§4%
of the pixels of Figur€4]54(b) in a non-random fashion. Wetlse parameter®l =10 3, est rank =2,K =20
andmaxrank = 50 for LMaFit , andtol =10 3, truncation = 1, truncation _gap = 20 andmaxrank= 50
for APGL The recovered images of Figufesl4.5(c), (f) and (i) aredegiin Figure§ 4]5 (d) and (e), (g) and (h), and
(i) and (k), respectively. A summary of the computationalilés is shown in Table4.6. In the table, rel.err denotes the
relative error between the original and recovered imagesmfhese gures and the table, we can see Lh\aFit
can recover the images as well&BGLcan, but signi cantly faster.
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TABLE 4.6
Numerical results on image inpainting

problem APGL LMaFit

image r iter #sv time relerr |iter #sv time relerr
(c) 512[1.34e-02 38 50 528 8.92e-0253 50 0.56 9.24e-02
[0) 40 | 1.34e-02 34 50 4.68 8.01e-0242 40 0.43 7.94e-02
(i) 40 | 251e-02 32 50 5.02 9.07e-0288 40 1.35 7.98e-02

Next, we apphyLMaFit andAPGLto Il in the missing pixels of a video sequence “xylophon@gi (available
with the MATLAB Image Processing Toolbox). The video cotsisf p frames and each frame is an image stored in
the RGB format, which is am, -by-n, -by-3 cube. Herem, = 240, n, = 320, andp = 141. The video was then
reshaped into &n, n;)-by<(3 p), or 76800-by-423, matrif . We sampled0% pixels of the video uniformly
at random. Three frames of the original video and the coording 50% masked images are shown in the rst
and second rows of Figufe 4.6, respectively. We set the garasiol = 10 3, K = 20, rank_max= 80 and
est rank = 2 for LMaFit , andtol = 10 2, truncation = 1, truncation _gap = 20 andmaxrank = 80 for
APGL A summary of computational results is presented in TaldeadAd the recovered images are shown in the third
and fourth rows of Figure4.6. From these gures, we can satltblaFit was able to restore the static part of the
video quite successfully, and the moving part of the vides stdl recognizable. Tab[e 4.7 shows tWRGLobtained
a slightly higher accuracy thanMaFit did, but the latter was about 5 times faster in reaching tineesarder of
accuracy.

TABLE 4.7
Numerical results on video inpainting
problem APGL LMaFit
video m/n iter #sv  time relerr | iter #sv time rel.err

xylophone 76800/423 3.44e+01 34 80 516.22 4.58e-0264 80 92.47 4.93e-02

We emphasize again that the purpose of the above image/getemising or inpainting experiments was to visu-
alize the solution quality for the tested algorithms, rathen demonstrating the suitability of these algorithmlie
tasks of denoising or inpainting.

4.6. Summary of computational results. We performed extensive computational experiments on tassels
of problems: matrix completion and low-rank approximati@n the completion problems, our nonlinear SOR algo-
rithm, coupled with the decreasing rank strategy, has shymaal recoverability, being able to solve almost all tested
problems as reliably as other solvers. We do point out threttomnly generated matrix completion problems are numer-
ically well-conditioned with high probability. On the othieand, any solver, including ours, can break down in the face
of severe ill-conditioning. On low-rank approximation ptems where the concept of rank can be numerically blurry
and the quality of solutions less clear-cut, our nonlind€aR%lgorithm, coupled with the increasing rank strategg, ha
demonstrated a capacity of producing solutions of comipetifuality on a diverse range of test problems.

Our numerical results, especially those on matrix commitethave con rmed the motivating premise for our
approach that avoiding SVD-related calculations can lead much accelerated solution speed for solving matrix
completion and approximation problems. Indeed, in oustelgtaFit has consistently shown a running speed that is
several times, ofter a couple of magnitudes, faster tharofi@ther state-of-the-art solvers.

5. Conclusion. The matrix completion problems is to recover a low-rank mdtom a subset of its entries. It
has recently been proven that, by solving a nuclear-norninmzation model, an incoherent low-rank matrix can be
exactly recovered with high probability from a uniformlynsgled subset of its entries as long as the sample size is
suf ciently large relative to the matrix sizes and rank. histpaper, we study the approach of solving a low-rank
factorization model for matrix completion. Despite thelauf a theoretical guarantee for global optimality due to
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FiG. 4.5.Image Denoising and Inpainting

(a) original image (b) rank 40 image

(c) 50% masked original image

(i) 6:34% masked rank 40 image () APGL (k) LMaFit

model non-convexity, we have shown empirically that therapph is capable of solving a wide range of randomly
generated matrix completion problems as reliably as sglthe convex nuclear-norm minimization model. It remains
atheoretical challenge to prove, or disprove, that undéasie conditions the low-rank factorization model canged
solve matrix completion problems with high probability.

The main contribution of the paper is the development andlysisaof an ef cient nonlinear Successive Over-
Relaxation (SOR) scheme that only requires solving a lifesst-squares problem per iteration instead of a singular-
value decomposition. The algorithm can be started from ghamver-estimate of the true matrix rank for completion
problems, or started from a small initial rank (say, ranket)ow-rank approximation problems. Extensive numerical
results show that the algorithm can provide multi-fold dexions over nuclear-norm minimization algorithms on
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FIG. 4.6.Video Denoising

original video

50% masked original video

recovered video byMaFit

recovered video bAPGL

a wide range of matrix completion or low-rank approximatfmoblems, thus signi cantly extending our ability in
solving large-scale problems in this area.

In order to solve large-scale and dif cult problems, funthesearch on rank estimation techniques is still needed
to improve the robustness and ef ciency of not only our aidgon, but also nuclear norm minimization algorithms
that use partial singular value decompositions rather thirones. Given the richness of matrix completion and
approximation problems, different algorithms should ble &b nd usefulness in various areas of applications.
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