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Abstract.
Most iterative algorithms for eigenpair computation consist of two main steps: a subspace update (SU) step that generates bases for approximate

eigenspaces, followed by a Rayleigh-Ritz (RR) projection step that extracts approximate eigenpairs. So far the predominant methodology for the
SU step is based on Krylov subspaces that builds orthonormal bases piece by piece in a sequential manner. In this work, we investigate block
methods in the SU step that allow a higher level of concurrency than what is reachable by Krylov subspace methods. To achieve a competitive
speed, we propose an augmented Rayleigh-Ritz (ARR) procedure and analyze its rate of convergence under realistic conditions. Combining this
ARR procedure with a set of polynomial accelerators, as well as utilizing a few other techniques such as continuation and deflation, we construct
a block algorithm designed to reduce the number of RR steps and elevate concurrency in the SU steps. Extensive computational experiments
are conducted in Matlab on a representative set of test problems to evaluate the performance of two variants of our algorithm in comparison to
two well-established, high-quality eigensolvers ARPACK and FEAST. Numerical results, obtained on a many-core computer without explicit code
parallelization, show that when computing a relatively large number of eigenpairs, the performance of our algorithms is competitive with, and
frequently superior to, that of the two state-of-the-art eigensolvers.

1. Introduction. For a given real symmetric matrix A ∈ Rn×n, let λ1, λ2, · · · , λn be the eigenvalues of A
sorted in an descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and q1, . . . , qn ∈ Rn be the corresponding eigenvectors such
that Aqi = λiqi, ‖qi‖2 = 1, i = 1, . . . , n and qTi qj = 0 for i 6= j. The eigenvalue decomposition of A is defined as
A = QnΛnQ

T
n , where, for any integer i ∈ [1, n],

(1.1) Qi = [q1, q2, . . . , qi] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i,

where diag(·) denotes a diagonal matrix with its arguments on the diagonal. For simplicity, we also writeA = QΛQT

where Q = Qn and Λ = Λn. In this paper, we consider A to be large-scale, which usually implies that A is sparse.
Since eigenvectors are generally dense, in practical applications, instead of computing all n eigenpairs of A, it is
only realistic to compute k � n eigenpairs corresponding to k largest or smallest eigenvalues of A. Fortunately,
these so-called exterior (or extreme) eigenpairs of A often contain the most relevant or valuable information about the
underlying system or dataset represented by the matrix A. As the problem size n becomes ever larger, the scalability
of algorithms with respect to k has become a critical issue even though k remains a small portion of n.

Most algorithms for computing a subset of eigenpairs of large matrices are iterative in which each iteration consists
of two main steps: a subspace update step and a projection step. The subspace update step varies from method to
method but with a common goal in finding a matrix X ∈ Rn×k so that its column space is a good approximation
to the k-dimensional eigenspace spanned by k desired eigenvectors. Once X is obtained and orthonormalized, the
projection step, often referred to as the Rayleigh-Ritz (RR) procedure, aims to extract from X a set of approximate
eigenpairs (see more details in Section 2) that are optimal in a sense. More complete treatments of iterative algorithms
for computing subsets of eigenpairs can be found, for example, in the books [1, 16, 21, 3, 26].

At present, the predominant methodology for subspace updating is still Krylov subspace methods, as represented
by Lanczos type methods [9, 12] for real symmetric matrices. These methods generate an orthonormal matrix X one
(or a few) column at a time in a sequential mode. Along the way, each column is multiplies by the matrix A and made
orthogonal to all the previous columns. In contrast to Krylov subspace methods, block methods, as represented by
the classic simultaneous subspace iteration method [18], carry out the multiplications of A to all columns of X at the
same time in a batch mode. As such, block methods generally demand a lower level of communication intensity.

The operation of the sparse matrix A multiplying a vector, or SpMV, used to be the most relevant complexity
measure for algorithm efficiency. As Krylov subspace methods generally tend to require considerably fewer SpMVs
than block methods do, they had naturally become the methodology of choice for the past a few decades even up to
date. However, the evolution of modern computer architectures, particularly the emergence of multi/many-core archi-
tectures, has seriously eroded the relevance of SpMV (and arithmetic operations in general) as a leading complexity
measure, as communication costs have, gradually but surely, become more and more predominant.

The purpose of this work is to construct, analyze and test a framework for block algorithms that can efficiently,
reliably and accurately compute a relatively large number of exterior eigenpairs of large-scale matrices. The algorithm

‡Beijing International Center for Mathematical Research, Peking University, Beijing, CHINA (wenzw@pku.edu.cn). Research supported in
part by NSFC grants 11322109 and 11421101, and by the National Basic Research Project under the grant 2015CB856000.
§Department of Computational and Applied Mathematics, Rice University, Houston, UNITED STATES (yzhang@rice.edu). Research sup-

ported in part by NSF DMS-1115950 and NSF DMS-1418724.

1



2 Z. WEN, AND Y. ZHANG

framework is constructed to take advantages of multi/many-core or parallel computers, although a study of parallel
scalability itself will be left as a future topic. It appears widely accepted that a key property hindering the competitive-
ness of block methods is that their convergence can become intolerably slow when decay rates in relevant eigenvalues
are excessively flat. A central task of our algorithm construction is to rectify this issue of slow convergence.

Our framework starts with an outer iteration loop that features an enhanced RR step called the augmented
Rayleigh-Ritz (ARR) projection which can provably accelerate convergence under mild conditions. For the SU step,
we consider two block iteration schemes whose computational cost is dominated by block SpMVs: (i) the classic
power method applied to multiple vectors without periodic orthogonalization, and (ii) a recently proposed Gauss-
Newton method. For further acceleration, we apply our block SU schemes to a set of polynomial accelerators, say
ρ(A), aiming to suppress the magnitudes of ρ(λj) where λj’s are the unwanted eigenvalue ofA for j > k. In addition,
a deflation scheme is utilized to enhance the algorithm’s efficiency. Some of these techniques have been studied in the
literature over the years (e.g. [20, 29] on polynomial filters), and are relatively well understood. In practice, however,
it is still a nontrivial task to integrate all the aforementioned components into an efficient and robust eigensolver. For
example, an effective use of a set of polynomial filters involves the choice of polynomial types and degrees, and the
estimations of intervals in which eigenvalues are to be promoted or suppressed. There are quite a number of choices
to be made and parameters to be chosen that can significantly impact algorithm performance.

Specifically, our main contributions are summarized as follows.
1. An augmented Rayleigh-Ritz (ARR) procedure is proposed and analyzed that provably speeds up conver-

gence without increasing the block size of the iterate matrix X in the SU step (thus without increasing the
cost of SU steps). This ARR procedure can significantly reduce the number of RR projections needed, at the
cost of increasing the size of a few RR calls.

2. A versatile and efficient algorithmic framework is constructed that can accommodate different block meth-
ods for subspace updating. In particular, we revitalize the power method as an exceptionally competitive
choice for a high level of concurrency. Besides ARR, our framework features several important components,
including
• a set of low-degree, non-Chebyshev polynomial accelerators that seem less sensitive to erroneous inter-

vals than the classic Chebyshev polynomials;
• a bold stoping rule for SU steps that demands no periodic orthogonalizations and welcomes a (near)

loss of numerical rank.
With regard to the issue of basis orthogonalization, we recall that in traditional block methods such as the classic

subspace iteration, orthogonalization is performed either at every iteration or frequently enough to prevent the iterate
matrix X from losing rank. On the contrary, our algorithms aim to make X numerically rank-deficient right before
performing an RR projection.

The rest of this paper is organized as follows. An overview of relevant iterative algorithms for eigenpair com-
putation is presented in Section 2. The ARR procedure and our algorithm framework are proposed in Section 3. We
analyze the ARR procedure in Section 4. The polynomial accelerators used by us are given in Section 5. A detailed
pseudocode for our algorithm is outlined in Section 6. Numerical results are presented in Section 7. Finally, we
conclude the paper in Section 8.

2. Overview of Iterative Algorithms for Eigenpair Computation. Algorithms for eigenvalue problem have
been extensively studied for decades. We will only briefly review a small subset of them that are most closely related
to the present work.

Without loss of generality, we assume for convenience that A is positive definite (after a shift if necessary).
Our task is to compute k largest eigenpairs (Qk,Λk) for some k � n where by definition AQk = QkΛk and
QTkQk = I ∈ Rk×k. Replacing A by a suitable function of A, say λ1I − A, one can also in principle apply the same
algorithms to finding k smallest eigenpairs as well.

An RR step is to extract approximate eigenpairs, called Ritz-pairs, from a given matrix Z ∈ Rn×m whose range
space, R(Z), is supposedly an approximation to a desired m-dimensional eigenspace of A. Let orth(Z) be the set
of orthonormal bases for the range space of Z. The RR procedure is described as Algorithm 1 below, which is also
denoted by a map (Y,Σ) = RR(A,Z) where the output (Y,Σ) is a Ritz pair block.

It is known (see [16], for example) that Ritz pairs are, in a certain sense, optimal approximations to eigenpairs in
R(Z), the column space of Z.

2.1. Krylov Subspace Methods. Krylov subspaces are the foundation of several state-of-the-art solvers for
large-scale eigenvalue calculations. By definition, for given matrix A ∈ Rn×n and vector v ∈ Rn, the Krylov
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Algorithm 1: Rayleigh-Ritz procedure: (Y,Σ) = RR(A,Z)

1 Given Z ∈ Rn×m, orthonormalize Z to obtain U ∈ orth(Z).
2 Compute H = UTAU ∈ Rm×m, the projection of A onto orth(Z).
3 Compute the eigen-decomposition H = V TΣV , where V TV = I and Σ is diagonal.
4 Assemble the Ritz pairs (Y,Σ) where Y = UV ∈ Rn×m satisfies Y TY = I .

subspace of order k is span{v,Av,A2v, . . . , Ak−1v}. Typical Krylov subspace methods include Arnoldi algorithm
for general matrices (e.g., [12, 11]) and Lanczos algorithm for symmetric (or Hermitian) matrices (e.g., [23, 10]).
In either algorithm, orthonormal bases for Krylov subspaces are generated through a Gram-Schmidt type process.
Jacobi-Davidson methods (e.g., [2, 24]) are based on a different framework, but they too rely on Krylov subspace
methodologies to solve linear systems at every iteration.

As is mentioned in the introduction, Krylov-subspace type methods are generally most efficient in terms of the
number of SpMVs (sparse matrix-dense vector multiplications). Indeed, they remain the method of choice for com-
puting a small number eigenpairs. However, due to the sequential process of generating orthonormal bases, Krylov-
subspace type methods incur a low degree of concurrency, especially as the dimension k becomes relatively large. To
improve concurrency, multiple-vector versions of these algorithms have been developed where each single vector in
matrix-vector multiplication is replaced by a small number of multiple vectors. Nevertheless, such a remedy can only
provide a limited relief in the face of the inherent scalability barrier as k grows. Another well-known limitation of
Krylov subspace methods is the difficulty to warm-start them from a given subspace. Warm-starting is important in an
iterative setting in order to take advantages of available information computed at previous iterations.

2.2. Classic Subspace Iteration. The simple (or simultaneous) subspace iteration (SSI) method (see [18, 19, 25,
27], for example) extends the idea of the power method which computes a single eigenpair corresponding to the largest
eigenvalue (in magnitude). Starting from an initial (random) matrix U , SSI performs repeated matrix multiplications
AU , followed by periodic orthogonalizations and RR projections. The main purpose of orthogonalization is to prevent
the iterate matrix U from losing rank numerically. In addition, since the rates of convergence for different eigenpairs
are uneven, numerically converged eigenvectors can be deflated after each RR projection. A version of SSI algorithm
is presented as Algorithm 2 below, following the description in [26].

Algorithm 2: Subspace Iteration

1 Initialize orthonormal matrix U ∈ Rn×m with m = k + q ≥ k.
2 while the number of converged eigenpairs is less than k, do
3 while convergence is not expected, do
4 while the columns of U are sufficiently independent, do
5 Compute U = AU

6 Orthogonalize the columns of U .

7 Perform an RR step using U .
8 Check convergence and deflate.

In the above SSI framework, q extra vectors, often called guard vectors, are added into iterations to help improve
convergence at the price of increasing the iteration cost.

A main advantage of SSI is the use of simultaneous matrix-block multiplications instead of individual matrix-
vector multiplications. It enables fast memory access and highly parallelizable computation on modern computer
architectures. Furthermore, SSI method has a guaranteed convergence to the largest k eigenpairs from any generic
starting point as long as there is a gap between the k-th and the (k + 1)-th eigenvalues of A. As is points out in
[26], “combined with shift-and-invert enhancement or Chebyshev acceleration, it sometimes wins the race”. However,
a severe shortcoming of the SSI method is that its convergence speed depends critically on eigenvalue distributions
that can, and often does, become intolerably slow in the face of unfavorable eigenvalue distributions. Thus far, this
drawback has essentially prevented the SSI method from being used as a computational engine to build robust, reliable
and efficient general-purpose eigensolvers.
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2.3. Trace Maximization Methods. Computing a k-dimensional eigenspace associated with k largest eigenval-
ues of A is equivalent to solving an orthogonality constrained trace maximization problem:

(2.1) max
X∈Rn×k

tr(XTAX), s.t. XTX = I.

This formulation can be easily extended to solving the generalized eigenvalue problem where XTX = I is replace by
XTBX = I for a symmetric positive definite matrix B ∈ Rn×n. When maximization is changed to minimization,
one computes an eigenspace associated with k smallest eigenvalues. The algorithm TraceMin [22] solves the trace
minimization problem using a Newton type method.

Some block algorithms have been developed based on solving (2.1), include the locally optimal block precon-
ditioned conjugate gradient method (LOBPCG) [7] and more recently the limited memory block Krylov subspace
optimization method (LMSVD) [13]. At each iteration, these methods solve a subspace trace maximization problem
of the form

(2.2) Y = arg max
X∈Rn×k

{
tr(XTAX) : XTX = I, X ∈ S

}
,

whereX ∈ S means that each column ofX is in the given subspace S which varies from method to method. LOBPCG
constructs S as the span of the two most recent iterates X(i−1) and X(i), and the residual at X(i), which is essentially
equivalent to

(2.3) S = span
{
X(i−1), X(i), AX(i)

}
,

where the term AX(i) may be pre-multiplied by a pre-conditioning matrix. In the LMSVD method, on the other hand,
the subspace S is spanned by the current i-th iterate and the previous p iterates; i.e.,

(2.4) S = span
{
X(i), X(i−1), ..., X(i−p)

}
,

In general, the subspace S should be constructed such that the cost of solving (2.2) can be kept relatively low. The
parallel scalability of these algorithms, although improved from that of Krylov subspace methods, is now limited by
the frequent use of basis orthogonalizations and RR projections involving m×m matrices where m is the dimension
of the subspace S (for example, m = 3k in LOBPCG).

2.4. Polynomial Acceleration. Polynomial filtering has been used in eigenvalue computation in various ways
(see, for example, [20, 26, 29, 6]). For a polynomial function ρ(t) : R → R and a symmetric matrix with eigenvalue
decomposition A = QΛQT , it holds that

(2.5) ρ(A) = Qρ(Λ)QT =

n∑
i=1

ρ(λi)qiq
T
i ,

where ρ(Λ) = diag(ρ(λ1), ρ(λ2), . . . , ρ(λn)). By choosing a suitable polynomial function ρ(t) and replacing A by
ρ(A), we can change the original eigenvalue distribution into a more favorable one at a cost. To illustrate the idea of
polynomial filtering, suppose that ρ(t) is a good approximation to the step function that is one on the interval [λk, λ1]
and zero otherwise. For a generic initial matrix X ∈ Rn×k, it follows from (2.5) that ρ(A)X ≈ QkQ

T
kX , which

would be an approximate basis for the desired eigenspace. In practice, however, approximating a non-smooth step
function by polynomials is an intricate and demanding task which does not always lead to efficient algorithms.

For the purpose of convergence acceleration, the most often used polynomials are the Chebyshev polynomials (of
the first kind), defined by the three-term recursion:

(2.6) ρd+1(t) = 2tρd(t)− ρd−1(t), d ≥ 1,

where ρ0(t) = 1 and ρ1(t) = t. Some recent works that use Chebyshev polynomials include [29, 6], for example.
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2.5. FEAST. The FEAST algorithm [17, 28] is based on complex contour integrals for computing all eigenvalues
in a given interval [a, b] ⊂ R and their corresponding eigenvectors. It is equivalent to using a rational function filter in
subspace iteration.

Let C be the circle on the complex plane centered at c = a+b
2 with radius r = b−a

2 , which can be parameterized
by the function φ(t) = c + reι

π
2 (1+t) for t ∈ [−1, 3] where ι2 = −1 is the imaginary unit. By the Cauchy integral

theorem, for any µ /∈ C

1

2πι

∮
C

1

z − µ
dz =

1

2πι

∫ 1

−1

[
φ′(t)

φ(t)− µ
− φ′(t)

φ(t)− µ

]
dt =

{
1, if |µ− c| < r

0, if |µ− c| > r
,

where the integral on [1, 3] has been equivalently transformed into [−1, 1]. Applying a q-point Gauss-Legendre quadra-
ture formula with weight-node pairs (wl, tl), l = 1, 2, . . . , q, such that wl > 0 and tl ∈ (−1, 1), the above integral can
be approximated by the rational function

ρ(µ) =

q∑
l=1

(
σl

φl − µ
− σl

φl − µ

)
,

where φl = φ(tl) and σl = wlφ
′(tl)/(2πι). Since none of φl’s is real and A is symmetric, the matrices φlI − A and

φlI −A are all invertible for l = 1, 2, . . . , q. Therefore,

(2.7) ρ(A) =

q∑
l=1

σl(φlI −A)−1 −
q∑
l=1

σl(φlI −A)−1

is a rational function filter approximating a desired step function on the real line. The application of this filter to
X ∈ Rn×m, i.e., computing ρ(A)X , will require solving q (since all quantities involved are real) linear systems
of equations with m right-hand sides each. It is notable that these linear systems could be solved independently in
parallel.

In order to compute all eigenpairs in an interval [a, b], FEAST need to estimate the number of eigenvalues in
the interval [a, b]. It repeatedly applies the rational filter X = ρ(A)X , followed by an RR projection. A high-level
summary of the FEAST algorithm is presented as Algorithm 3.

Algorithm 3: A abstract version of FEAST

1 Input [a, b] and m – estimated number of eigenvalues in [a, b].
2 Choose a Gauss-Legendre quadrature formula with q nodes.
3 Initialize a matrix X ∈ Rn×m.
4 while not “converged”, do
5 Compute X = ρ(A)X with ρ(·) given in (2.7).
6 Do RR projection using X to extract Ritz pairs.

It should be clear that the performance of FEAST depends strongly on the efficiency of solving the linear systems
of equations involved in applying the rational filter ρ(A) toX . In addition, in order to compute the k largest eigenpairs,
for example, one need to supply FEAST with an interval [a, b] ⊇ [λk, λ1]. The quality of this interval [a, b] could have
a significant effect on the performance of FEAST.

2.6. A Gauss-Newton Algorithm. A Gauss-Newton (GN) algorithm is recently proposed in [14] to compute
the eigenspace associated with k largest eigenvalues of A based on solving the nonlinear least squares problem:
min ‖XXT − A‖2F,where X ∈ Rn×k, ‖ · ‖2F is the Frobenius norm squared and A is assumed to have at least k
positive eigenvalues. If the eigenpairs of A are required, then an RR projection must be performed afterwards.

It is shown in [14] that at any full-rank iterate X ∈ Rn×k, the GN method takes the simple closed form

X+ = X + α

(
I − 1

2
X(XTX)−1XT

)(
AX(XTX)−1 −X

)
,
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where the parameter α > 0 is a step size. Notably, this method requires to solve a small k × k linear system at each
iteration. It is also shown in [14] that the fixed step α ≡ 1 is justifiable from either a theoretical or an empirical
viewpoint, which leads to a parameter-free algorithm given as Algorithm 4, named simply as GN. For more theoretical
and numerical results on this GN algorithm, we refer readers to [14].

Algorithm 4: A GN Algorithm: X = GN(A,X)

1 Initialize X ∈ Rn×k to a rank-k matrix.
2 while “the termination criterion” is not met, do
3 Compute Y = X

(
XTX

)−1
and Z = AY .

4 Compute X = Z −X(Y TZ − I)/2.

5 Perform an RR step using X if Ritz-pairs are needed.

3. Augmented Rayleigh-Ritz Projection and Our Algorithm Framework. We first introduce the augmented
Rayleigh-Ritz or ARR procedure. It is easy to see that the RR map (Y,Σ) = RR(A,Z) is equivalent to solving the
trace-maximization subproblem (2.2) with the subspace S = R(Z), while requiring Y TAY to be a diagonal matrix
Σ. For a fixed number k, the larger the subspace R(Z) is, the greater chance there is to extract better Ritz pairs. The
classic SSI always sets Z to the current iterate X(i), while both LOBPCG [7] and LMSVD [13] augment X(i) by
additional blocks (see (2.3) and (2.4), respectively). Not surprisingly, such augmentations are the main reason why
algorithms like LOGPCG and LMSVD generally achieve faster convergence than that of the classic SSI.

In this work, we define our augmentation based on a block Krylov subspace structure. That is, for some integer
p ≥ 0 we define

(3.1) S = span{X,AX,A2X, . . . , ApX}.

This choice (3.1) of augmentation is made mainly because it enables us to conveniently analyze the acceleration rates
induced by such an augmentation (see the next Section). It is more than likely that some other choices of S may be
equally effective as well.

The optimal solution of the trace maximization problem (2.2), restricted in the subspace S in (3.1), can be com-
puted via the RR procedure, i.e., Algorithm 1. We formalize our augmented RR procedure as Algorithm 5, which will
often be referred to simply as ARR.

Algorithm 5: ARR: (Y,Σ) = ARR(A,X, p)

1 Input X ∈ Rn×k and p ≥ 0 so that (p+ 1)k < n.
2 Construct augmentation Xp = [X AX A2X · · · ApX].
3 Perform an RR step using (Ŷ , Σ̂) = RR(A,Xp).
4 Extract k leading Ritz pairs (Y,Σ) from (Ŷ , Σ̂).

We next introduce an abstract version of our algorithmic framework with ARR projections. It will be named
ARRABIT (standing for ARR and block iteration). A set of polynomial functions {ρd(t)}, where d is the polynomial
degree, and an integer p ≥ 0 are chosen at the beginning of the algorithm. At each outer iteration, we perform the two
main steps: subspace update (SU) step and augmented RR (ARR) step. There are two sets of stopping criteria: inner
criteria for the SU step, and outer criteria for detecting the convergence of the whole process.

In principle, the SU step can be fulfilled by any reasonable updating scheme and it does not require orthog-
onalizations. In this paper, we consider the classic power iteration as our main updating scheme, i.e., for X =
[x1 x2 · · · , xm] ∈ Rn×m, we do

xi = ρ(A)xi and xi =
xi
‖xi‖2

, j = 1, 2, · · · ,m.

Since the power iteration is applied individually to all columns of the iterate matrixX , we call this scheme multi-power
method or MPM. Here we intensionally avoid to use the term subspace iteration because, unlike in the classic SSI, we
do not perform any orthogonalization during the entire inner iteration process.
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To examine the versatility of the ARRABIT framework, we also use the Gauss-Newton (GN) method, presented in
Algorithm 4, as a second updating scheme. Since the GN variant requires solving k × k linear systems, its scalability
with respect to k may be somewhat lower than that of the MPM variant. Together, we present our ARRABIT algorithmic
framework in Algorithm 6. The two variants, corresponding to “inner solvers” MPM and GN, will be named ARRABIT-
MPM and ARRABIT-GN, or simply MPM and GN.

Algorithm 6: Algorithm ARRABIT (abstract version)

1 Input A ∈ Rn×n, k, p and ρ(t). Initialize X ∈ Rn×k.
2 while not “converged”, do
3 while “inner criteria” are not met, do
4 if MPM is the inner solver, then
5 X = ρ(A)X , then normalize columns individually.

6 if GN is the inner solver, then
7 X = GN(ρ(A), X), as is given by Algorithm 4.

8 ARR projection: (X,Σ) = ARR(A,X, p), as in Algorithm 5.
9 Possibly adjust p, the degree of ρ(t), and perform deflation.

It is worth mentioning that the “inner criteria” in the ARRABIT framework can have a significant impact on the
efficiency of Algorithm 6. Against the conventional wisdom, we do not attempt to keep X numerically full rank by
periodic orthogonalizations which can be quite costly. Instead, we keep iterating until we detect that X is about to
lose, or has just lost, numerical rank. More details on this issue will be given in Algorithm 8 in Section 6.

4. Analysis of the Augmented Rayleigh-Ritz Procedure.

4.1. Notation. Recall that the eigen-decomposition of A ∈ Rn×n is A = QΛQT . In anticipation of later usage,
for integer h ∈ [1, n) we introduce the partition Q = [Qh Qh+] where, as previously defined, Qh = [q1 q2 · · · qh]
and

(4.1) Qh+ = [qh+1 qh+2 · · · qn].

Let X ∈ Rn×k be an approximate basis for R(Qk), the range space of Qk or the eigenspace spanned by the first
k eigenvectors of A. It is desirable for X to have a large projection QkQTkX =

∑k
i=1 qiq

T
i X onto R(Qk) relative to

that ontoR(Qk+). Therefore, a good measure for the relative accuracy of X is the following ratio

(4.2) δk(X) ,
maxi>k ‖qTi X‖
mini≤k ‖qTi X‖

,

where ‖qTi X‖ = ‖(qiqTi )X‖measures the size of the projection of X onto the span of the i-th eigenvector qi. Clearly,
the smaller δk(X) is, the better is X as an approximate basis forR(Qk).

Let Y ∈ Rn×k be another approximate basis for the eigenspaceR(Qk) which is constructed fromX . To compare
Y with X , we naturally compare δk(Y ) with δk(X). More precisely, we will try to estimate the ratio δk(Y )/δk(X)
and show that under reasonable conditions, it can be made much less than the unity.

To facilitate presentation, we introduce the following Vandermonte matrix constructed from the spectrum of A:

(4.3) V =


1 λ1 λ21 · · · λp1
1 λ2 λ22 · · · λp2
...

...
...

...
...

1 λn λ2n · · · λpn

 ∈ Rn×(p+1),

where λ1, · · · , λn are the eigenvalues of A.
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4.2. Technical Results. Before calling the ARR procedure, we have an iterate matrix X ∈ Rn×k. From X , we
construct the augmented matrix [X AX · · · ApX] ∈ Rn×(p+1)k which we call Xp for a given p ≥ 0. In view of
the eigen-decomposition A = QΛQT , we have the expression Xp = QĜ where

(4.4) Ĝ = [QTX ΛQTX · · · ΛpQTX].

We next normalize the rows of Ĝ. Let D be the diagonal matrix whose diagonal consists of the row norms of Ĝ. From
the structure of Ĝ in (4.4), it is easy to see that

(4.5) Dii = ‖eTi Ĝ‖ = ‖qTi X‖‖eTi V ‖, i = 1, 2, · · · , n,

where ei is the i-th column of the n× n identity matrix and V is defined in (4.3). Let D† be the pseudo-inverse of D,
that is, D† is a diagonal matrix with

(4.6) (D†)ii =

{
1/Dii, if Dii 6= 0,

0, otherwise.

The normalization of the rows of Ĝ in (4.4) defines another matrix

(4.7) G = D†Ĝ = [C ΛC · · · ΛpC],

where C = D†QTX and the nonzero rows of G all have unit norm. Now we rewrite

(4.8) Xp = QDD†Ĝ = QDG.

Let m be a parameter varying in the following range: for p ≥ 0 such that k + pk < n,

(4.9) m ∈ [k, k + pk].

We perform the partition

(4.10) Xp = [Qm Qm+]

[
D1 0
0 D2

] [
G1

G2

]
= [Qm Qm+]

[
D1G1

D2G2

]
,

where D and G are partitioned following that of Q. In particular, G1 consists of the first m rows of G and G2 the last
n−m rows of G.

In the sequel, we will make use of an important assumption on G1 ∈ Rm×(p+1)k which we formally name as the
G1-Assumption:

(4.11) G1-Assumption: the first m rows of G (or Ĝ) are linearly independent.

The G1-Assumption implies that (i) D1 > 0, and (ii) the pseudo-inverse G†1 exists such that G1G
†
1 = Im×m. Let

(4.12) Yp = XpG
†
1D
−1
1 = [Qm Qm+]

[
I

D2G2G
†
1D
−1

]
.

In particular, we are interested in the first k columns of Yp, i.e., by Matlab notation,

(4.13) Y = Yp(:, 1:k) ∈ Rn×k.

We summarize what we already have for Y into the following lemma.
LEMMA 4.1. Let A = QΛQT be the eigen-decomposition of A = AT ∈ Rn×n. For integers k > 0 and p ≥ 0

satisfying (p + 1)k < n, and m ∈ [k, k + pk], let G, Xp, Yp and Y be defined as in (4.7), (4.8), (4.12) and (4.13),
respectively. Under the G1-Assumption,

(4.14) Y = QmEk +Qm+SEk,

where S = D2G2G
†
1D
−1
1 and Ek ∈ Rm×k consists of the first k columns of the m×m identity matrix.

Proof. The equality directly follows from (4.12) and (4.13).
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Since Y is extracted from the subspaceR(Xp) constructed from X , a central question is how much improvement
Y can provide overX as an approximate basis forR(Qk). We study this question by comparing the accuracy measure
δk(Y ) relative to δk(X). First, we estimate δk(Y ).

LEMMA 4.2. Under the conditions of Lemma 4.1,

(4.15) δk(Y ) ≤ maxi>m di
mini≤k di

max
1≤i≤n−m

‖eTi G2G
†
1Ek‖.

where d = diag(D) with Dii defined in (4.5).
Proof. It follows from (4.14) that

qTi Y =

 eTi , i ∈ [1, k]
0T , i ∈ (k,m]

eTi−mSEk, i ∈ (m,n]

where ei ∈ Rk, 0 ∈ Rk and ei−m ∈ Rn−m. These formulas imply that in the definition (4.2) the denominator term
mini≤k ‖qTi Y ‖ = 1; thus

(4.16) δk(Y ) = max
i>k
‖qTi Y ‖ = max

i>m
‖qTi Y ‖.

In view of the formula S = D2G2G
†
1D
−1
1 , and the definition of D in (4.5), we have

qTi Y = die
T
i−mG2G

†
1D
−1
1 Ek, i ∈ (m,n].

Therefore, for i ∈ (m,n], ‖qTi Y ‖ ≤ di
minj≤k dj

‖eTi−mG2G
†
1Ek‖. It follows that

max
i>m
‖qTi Y ‖ ≤

maxi>m di
mini≤k di

max
1≤i≤n−m

‖eTi G2G
†
1Ek‖,

which, together with (4.16), establishes (4.15).

4.3. Main Results. We first extend the definition (4.2) for δk(X) into a more general form. For any matrix M
of n rows, we define

(4.17) Γk,m(M) ,
maxi>m ‖eTi M‖
mini≤k ‖eTi M‖

.

By this definition, δk(X) = Γk,k(QTX).
It is worth observing that (i) Γk,m(M) is monotonically non-increasing with respect to m for fixed k and M ; (ii)

Γk,m(M) is small if the first k rows of M are much larger in magnitude than the last n − m; (iii) if {‖eTi M‖} is
non-increasing, then Γk,m(M) ≤ 1.

Specifically, since the eigenvalues of A are ordered in a descending order, for the matrix V in (4.3) we have

(4.18) Γk,m(V ) =
‖eTm+1V ‖
‖eTk V ‖

=

(
1 + λ2m+1 + · · ·+ λ2pm+1

1 + λ2k + · · ·+ λ2pk

) 1
2

≤ 1,

Evidently, the faster the decay is between λk and λm+1, the smaller is Γk,m(V ).
Moreover, when M = z ∈ Rn is a vector which is in turn the element-wise multiplication of two other vectors,

say x ∈ Rn and y ∈ Rn so that zi = xiyi for i = 1, · · · , n, then it holds that

(4.19) Γk,m(z) ≤ Γk,m(x) Γk,m(y).

In our first main result, we refine the estimation of δk(Y ) and compare it to δk(X).
THEOREM 4.3. Under the conditions of Lemma 4.1,

(4.20) δk(Y ) ≤ Γk,m(QTX)Γk,m(V )
∥∥∥G†1Ek∥∥∥

2
.



10 Z. WEN, AND Y. ZHANG

Furthermore,

(4.21)
δk(Y )

δk(X)
≤

maxj>m ‖qTj X‖
maxj>k ‖qTj X‖

Γk,m(V )
∥∥∥G†1Ek∥∥∥

2
.

Proof. Observe that the ratio in the right-hand side of (4.15) is none other than Γk,m(d). Applying (4.19) to
M = d where d = diag(D) with Dii defined in (4.5), xi = ‖qTi X‖ and yi = ‖eTi V ‖, we derive Γk,m(d) ≤
Γk,m(QTX)Γk,m(V ).We observe that ‖eTi G2G

†
1Ek‖ ≤ ‖G

†
1Ek‖2 for all i ∈ [1, n−m], since the row vectors eTi G2

are all unit vectors. Substituting the above two inequalities into (4.15), we arrive at (4.20). To derive (4.21), we simply
observe that

Γk,m(QTX) =
maxj>m ‖qTj X‖
minj≤k ‖qTj X‖

= δk(X)
maxj>m ‖qTj X‖
maxj>k ‖qTj X‖

.

Substituting the above into (4.20) and dividing both sides by δk(X), we obtain (4.21).
To put the above results into perspective, let us examine the right-hand side of (4.21). Clearly, the first term,

the ratio involving ‖qTj X‖’s, is always less than or equal to one since k ≤ m, and it decreases as m increases. In
particular, when m = k + 1 + pk with p > 0 and a large k, then m � k and the ratio can be tiny as long as there is
a significant decay in {‖qTj X‖}nj=1 between indices k and m. In addition, from (4.18), we know that the second term
Γk,m(V ) ≤ 1 and can be far less than one if there is a large decay between λk and λm+1. The third term ‖G†1Ek‖2,
however, presents a complicating factor. How this term behaves as p increases requires a scrutiny which will be the
topic of Section 4.4.

Similarly, we can examine the right-hand side of (4.20) in which only the first term is different. Given a good
approximate basis X for which the row norms of QTX have a nontrivial decay, we can also have Γk,m(QTX) � 1;
and the faster the decay is, the smaller is the term Γk,m(QTX). Therefore, with the exception of the term ‖G†1Ek‖2,
all the terms in the right-hand sizes of (4.20) and (4.21) are small under reasonable conditions.

Next we consider the case where X ∈ Rn×k is the result of applying a block power iteration q times to an initial
random matrix X0 ∈ Rn×k,

(4.22) X = ρ(A)qX0 = Qρ(Λ)qQTX0,

where ρ(A) is a polynomial or rational matrix function accelerator (or filter) such that

(4.23) min
1≤j≤k

|ρ(λj)| = |ρ(λk)| ≥ |ρ(λk+1)| ≥ · · · ≥ |ρ(λm+1)| = max
m<j≤n

|ρ(λj)|.

THEOREM 4.4. Let X be defined in (4.22) from an initial matrix X0 ∈ Rn×k. Assume that the conditions of
Lemma 4.1 hold. Then there exists a constant cm such that

(4.24) δk(Y ) ≤ cm
∣∣∣∣ρ(λm+1)

ρ(λk)

∣∣∣∣q ,
where

(4.25) cm = Γk,m(QTX0)Γk,m(V )
∥∥∥G†1Ek∥∥∥

2
.

Moreover, there exists a constant c′m such that

(4.26)
δk(Y )

δk(X)
≤ c′m

∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q ,
where

(4.27) c′m =
maxj>m ‖qTj X0‖
minj>k ‖qTj X0‖

Γk,m(V )
∥∥∥G†1Ek∥∥∥

2
.
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Proof. It follows from QTX = ρ(Λ)qQTX0 that

(4.28) ‖qTi X‖ = |ρ(λi)|q‖qTi X0‖, i = 1, · · · , n.

Applying (4.19) to (4.28), we obtain Γk,m(QTX) ≤ Γk,m(ρ(Λ)q)Γk,m(QTX0) which establishes (4.24), upon sub-
stituting into (4.20).

To prove (4.26), we first use (4.28) to calculate

maxj>m ‖qTj X‖
maxj>k ‖qTj X‖

=
maxj>m |ρ(λj)|q‖qTj X0‖
maxj>k |ρ(λj)|q‖qTj X0‖

≤
∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q maxj>m ‖qTj X0‖
minj>k ‖qTj X0‖

.

Then substituting the above into (4.21) yields (4.26).
Let us also state a couple of special cases of (4.24).
COROLLARY 4.5. If the G1-Assumption holds for m = k + pk, then there exist constants Cp and C ′p such that

δk(Y ) ≤ Cp
∣∣∣∣ρ(λk+1+pk)

ρ(λk)

∣∣∣∣q and
δk(Y )

δk(X)
≤ C ′p

∣∣∣∣ρ(λk+1+pk)

ρ(λk+1)

∣∣∣∣q .
In particular, when there is no augmentation (p = 0) and no acceleration (ρ(t) = t), the convergence rate reduces to
δk(Y ) ≤ C0 |λk+1/λk|q .

Finally, we remark that all of our results point out that there exists a matrix Y ∈ Rn×k in the augmented subspace
R(Xp) (which is constructed from the matrix X) that is a better approximate basis for R(Qk) than X is, under
reasonable conditions. It is known that the Ritz pairs produced by the RR procedure are optimal approximations to the
eigenpairs of A from the input subspace (see [16] for example). Therefore, the derived bounds in this section should
be attainable by the Ritz pairs generated by the ARR procedure.

4.4. Validity of G1-Assumption. A key condition for our results is the G1-Assumption, given in (4.11), that
requires the first m rows of G in (4.7) to be linearly independent. Under this assumption, the larger m is, the better the
convergence rate could be.

Let us examine the matrix G1 consisting of the first m rows of G in (4.7). To simplify notation, we use H for G1,
redefine C as the first m row of C in (4.7), and consider the matrix

(4.29) H = [C ΛmC · · · ΛpmC] ∈ Rm×(p+1)k,

where Λm is the m×m leading block of Λ whose disgonal is assumed to be positive.
We first give a necessary condition for the m rows of H to be linearly independent.
PROPOSITION 4.6. Let m ∈ (k, k+ pk] for p > 0. The matrix H ∈ Rm×(p+1)k defined in (4.29) has full rank m

only if Λm has no more than k equal diagonal elements (i.e., Λm contains no eigenvalue of multiplicity greater than
k).

Proof. Without loss of generality, suppose that the first k + 1 diagonal elements of Λm are all equal, i.e., λ1 =
λ2 = · · · = λk+1 = α. Then the first k + 1 rows of H , say H ′, is of the form H ′ = [C ′ αC ′ · · · αpC ′], where C ′

consists of the first k+ 1 rows of C. Since all column blocks are scalar multiples of C ′ which has k columns, the rank
of H is at most k. independent of m.

The fact that H is built from C which has only k columns dictates that to have rank(H) greater than k, it is
necessary that the maximum multiplicity of Λm must not exceed k.

On the other hand, the next result says that when p = 1 and m reaches its upper bound 2k, a multiplicity equal to
k is sufficient for H to attain the full rank 2k (i.e., to be nonsingular) in a generic case.

First, let us do the partitioning

(4.30) C =

[
C1

C2

]
, Λm =

[
Λ1

Λ2

]
, H =

[
C1 Λ1C1

C2 Λ2C2

]
.

where m = 2k, and Cj ,Λj , j = 1, 2, are all k × k submatrices. Recall that Λ1 consists of the first k eigenvalues of A
and Λ2 the next k eigenvalues.

PROPOSITION 4.7. Let p = 1, m = 2k, and C, Λm and H be defined as in (4.30). Let r be the maximum
multiplicity of Λm. Assume that any k × k submatrix of C is nonsingular. Then H is nonsingular for r = k.
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Proof. We will show that when λ1 or λk+1 has multiplicity k, then H is nonsingular. All the other cases can be
similarly proven with appropriate permutations before partitioning (4.30) is done.

First, the nonsingularity of H is equivalent to that of[
C1 Λ1C1

C2 Λ2C2

] [
C−11

C−11

]
=

[
I Λ1

C2C
−1 Λ2C2C

−1

]
=

[
I Λ1

F Λ2F

]
,

where F , C2C
−1
1 is nonsingular by our assumption. Eliminating the (2,1) block, we obtain[

I Λ1

F Λ2F

]
−→

[
I Λ1

0 Λ2F − FΛ1

]
Hence, the nonsingularity of H is equivalent to that of FΛ1 − Λ2F , or in turn equivalent to that of the following
matrix:

(4.31) K = Λ1 − F−1Λ2F.

If the multiplicity of λ1 is k (implying that Λ1 = λkI), (4.31) reduces to K = F−1(λkI − Λ2)F . On the other hand,
if the multiplicity of λk+1 is k (implying that Λ2 = λk+1I), then K = Λ1 − λk+1I . In either case, K is nonsingular
since λk+1 < λk; hence, so is H . (Also in either case, K becomes singular for multiplicity r > k which implies
λk+1 = λk.)

In Proposition 4.7, we assume that every k × k submatrix of C is nonsingular. It is well-known that for a generic
random matrix C, this assumption holds with high probability. Therefore, in a generic setting Proposition 4.7 holds
with high probability.

Now the unproven case is for maximum multiplicity r < k. Let us rewrite K in (4.31) into a sum of two matrices,

(4.32) K = (Λ1 − λkI) + F−1(λkI − Λ2)F.

The first is diagonal and positive semidefinite, and the second has positive eigenvalues when λk > λk+1, but is
generally asymmetric. So far, we have not been able to find a result that guarantees nonsingularity for such a matrix
K. However, in a generic setting where K comes from random matrices, nonsingularity should be expected with high
probability (which has been empirically confirmed by our numerical experiments).

It should be noted that G1 being nonsingular with m = k+kp represents the best scenario where the acceleration
potential of p-block augmentation is fully realized. However, m < k + kp does not represent a failure, considering
the fact that as long as m > k, an acceleration is still realized to some extent.

Once it is established for p = 1 and m = 2k that in a generic setting H is nonsingular whenever the maximum
multiplicity of Λm is less than or equal to k, the same result can in principle be extended to the case of p = 3 by
considering

H =
[
C ΛC Λ2C Λ3C

]
=
[
[C ΛC] Λ2[C ΛC]

]
= [Ĉ Λ̂Ĉ],

where Ĉ = [C ΛC] and Λ̂ = Λ2, which has the same form as for the case p = 1. It will also cover the case of p = 2
where the matrix involved is a submatrix of the one for p = 3.

It is worth noting that m = (p + 1)k could be kept constant if k is decreased while p is increased. Is it sensible
to use fewer vectors in power iterations but to compensate it with an augmentation of more blocks? Although in
some cases this strategy works well, in general it seems to be a risky approach for two reasons. First, the smaller
k is, the more likely it is to encounter matrices that have eigenvalues of multiplicity greater than k. In this case,
by Proposition 4.6, the benefit of augmentation could become limited. Secondly, we have observed in numerical
experiments that the condition number of G1 tends to increase as p increases, which would in turn increase the
constants cm and c′m in (4.20)-(4.21). These facts suggest that using a small k and a large p to compute more than
k eigenpairs could be numerically problematic. In our implementation, we choose to be conservative by using the
default value of p = 1, while setting k to be slightly bigger than the number of eigenpairs to be computed.
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5. Polynomial Accelerators. To construct polynomial accelerators (or filters) ρ(t), we use Chebyshev inter-
polants on highly smooth functions. Chebyshev interpolants are polynomial interpolants on Chebyshev points of the
second kind, defined by

(5.1) tj = − cos(jπ/N), 0 ≤ j ≤ N,

where N ≥ 1 is an integer. Obviously, this set of N + 1 points are in the interval [−1, 1] inclusive of the two end-
points. Through any given data values fj , j = 0, 1, · · · , N , at these N + 1 Chebyshev points, the resulting unique
polynomial interpolant of degree N or less is a Chebyshev interpolant. It is known that Chebyshev interpolants are
“near-best” [5].

Our choices of functions to be interpolated are

(5.2) fd(t) = (f1(t))d where f1(t) = max(0, t)10,

and d is a positive integer. Obviously, fd(t) ≡ 0 for t ≤ 0 and fd(1) ≡ 1. The power 10 is rather arbitrary and
exchangeable with other numbers of similar magnitude without making notable differences.

The functions in (5.2) are many times differentiable so that their Chebyshev interpolants converge relatively fast,
see [15]. Interpolating such smooth functions on Chebyshev points helps reducing the effect of the Gibbs phenomenon
and allows us to use relatively low-degree polynomials.

There is a well-developed open-source Matlab package called Chebfun [4] for doing Chebyshev interpolations,
among many other functionalities1. In this work, we have used Chebfun to construct Chebyshev interpolants as
our polynomial accelerators. Specifically, we interpolate the function fd(t) by the d-th degree Chebyshev interpolant
polynomial, say,

(5.3) ψd(t) = γ1t
d + γ2t

d−1 + . . .+ γdt+ γd+1.

Suppose that we want to dampen the eigenvalues in an interval [a, b], where a ≤ λn and b < λk, while magnifying
eigenvalues to the right of [a, b]. Then we map the interval [a, b] onto [−1, 1] by an affine transformation and then apply
ψd(·) to A. That is, we apply the following polynomial function to A,

(5.4) ρd(t) = ψd

(
2t− a− b
b− a

)
.

Let Γd = (γ1, γ2, · · · , γd+1) denote the coefficients of the polynomial ψd(t) in (5.3). The corresponding matrix
operation Y = ρd(A)X can be implemented by Algorithm 7 below.

Algorithm 7: Polynomial function: Y = POLY(A,X, a, b,Γd)

1 Compute c0 = a+b
a−b and c1 = 2

b−a . Set Y = γ1X .
2 for j = 1, 2, . . . , d do Y = c0Y + c1AY + γj+1X .

For a quick comparison, we plot our Chebyshev interpolates of degrees 2 to 7 and the Chebyshev polynomials of
degrees 2 to 7 side by side in Figure 5.1. For both kinds of polynomials, the higher the degree is, the closer the curve
is to the vertical line t = 1. We observe that inside the interval [−1, 1], our Chebyshev interpolates have lower profiles
(with magnitude less than or around 0.2 except near 1) than the Chebyshev polynomials which oscillate between ±1,
while outside [−1, 1] the Chebyshev polynomials grow faster.

The idea of polynomial acceleration is straightforward and old, but its success is far from foolproof, largely
due to inevitable errors in estimating intervals within which eigenvalues are supposed to be suppressed or promoted.
The main reason for us to prefer our Chebyshev interpolates over the classic Chebyshev polynomials is that their
lower profiles tend to make them less sensitive to erroneous intervals, hence easier to control. Indeed, our numerical
comparison, albeit limited, appears to justify our choice.

1Also see the website http://www.chebfun.org/docs/guide/guide04.html

http://www.chebfun.org/docs/guide/guide04.html
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FIG. 5.1. illustration of polynomial functions

6. Details of ARRABIT Algorithms. In this section, we describe technical details and give parameter choices for
our ARRABIT algorithm which computes k eigenpairs corresponding to k algebraically largest eigenvalues of a given
symmetric matrix A.

Guard vectors. When computing k eigenpairs, it is a common practice to compute a few extra eigenpairs to help
guard against possible slow convergence. For this purpose, a small number of “guard vectors” are added to the iterate
matrix X . In general, the more guard vectors are used, the less iterations are needed for convergence, but at a higher
cost per iteration on memory and computing time. In our implementation, we set the number of columns in iterate
matrix X to k + q, where by default q is set to 0.1k (rounded to the nearest integer).

Estimation of λn and λk+q . To apply polynomial accelerators, we need to estimate the interval [a, b] =
[λn, λk+q] which contains unwanted eigenvalues. The smallest eigenvalue λn is computed by calling the the Matlab
built-in solver EIGS (i.e., ARPACK [12]). Given an initial matrix X ∈ Rn×(k+q) whose columns are orthogonalized,
an under-estimation of λk+q can be taken as the smallest eigenvalue of the projected matrix XTAX (which requires
an RR projection). As the iterations progress, more accurate estimates of λk+q will becomes available after each later
ARR projection.

Outer loop stop rule. Let (xi, µi), i = 1, 2, · · · , k, be computed Ritz pairs where xTi xj = δij . We terminate the
algorithm when the following maximum relative residual norm becomes smaller than a prescribed tolerance tol, i.e.,

(6.1) maxres := max
i=1,...,k

{resi} ≤ tol,

where

(6.2) resi :=
‖Axi − µixi‖2
max(1, |µi|)

, i = 1, · · · , k.

The algorithm is also stopped in the following three cases: (i) if a maximum number of iterations, denoted by “maxit”,
is reached (by default maxit = 30); or (ii) if the maximum relative residual norm has not been reduced after three
consecutive outer iterations; or (iii) if most Ritz pairs have residuals considerably smaller than tol and the remaining
have residuals slightly larger than tol; specifically, maxres < (1 + 9h/k)tol (< 10 ∗ tol), where h is the number of
Ritz pairs with residuals less than 0.1 ∗ tol. In our experiments we also monitor the computed partial trace

∑k
i=1 µi at

the end for all solvers as a check for correctness.
Continuation. When a high accuracy (say, tol ≤ 10−8) is requested, we use a continuation procedure to compute

Ritz-pairs satisfying a sequence of tolerances: tol1 > tol2 > · · · ≥ tol, and use the computed Ritz-pairs for tolt as
the starting point to compute the next solution for tolt+1. In our implementation, we use the update scheme

(6.3) tolt+1 = max(10−2 tolt, tol),

where tol1 is chosen to be considerably larger than tol. A main reason for doing such a continuation is that our
deflation procedure (see below) is tolerance-dependent. At the early stages of the algorithm, a stringent tolerance
would delay the activation of deflation and likely cause missed opportunities in reducing computational costs.
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Inner loop parameters and stop rule. Both MPM and GN are tested as inner solvers to update X . These
inner solvers are applied to the shifted matrix A − aI which is supposedly positive semidefinite since a is a good
approximation to λn (computed by EIGS in our implementation). We check inner stopping criteria every maxit2
iterations and check them at most maxit1 times. In the present version, the default values for these two parameters are
maxit1 = 10 and maxit2 = 5 Therefore, the maximum number of inner iterations allowed is maxit1×maxit2 = 50.

The inner loop stopping criteria are either

(6.4) rc = rcond(XTX) ≤ tolt or rc/rcp > 0.99,

where tolt is the current tolerance (in a continuation sequence) and rcp is the previously computed rcond(X). In (6.4),
we use the rcond subroutine in LAPACK (also used by Matlab) to estimate the reciprocal 1-norm condition number
of XTX , which we find to be relatively inexpensive. The first condition in (6.4) indicates that X is about to lose
(or have just lost) rank numerically, which implies that we achieve the goal of eliminating the unwanted eigenspace
numerically. However, it is probable that a part of the desired eigenspace is also sacrificed, especially when there are
clusters among the desired eigenvalues. Fortunately, this problem can be corrected, at a cost, in later iterations after
deflation. On the other hand, the second condition is used to deal with the situation where the conditioning of X does
not deteriorate, which occurs from time to time in later iterations when there exists little or practically no decay in the
relevant eigenvalues.

Deflation. Since Ritz pairs normally have uneven convergence rates, a procedure of detecting and setting aside
Ritz pairs that have “converged” is called deflation or locking, which is regularly used in eigensolvers because it not
only reduces the problem size but also facilitates the convergence of the remaining pairs. In our algorithm, a Ritz
pair (xi, µi) is considered to have “converged” with respect to a tolerance tolt if its residual (see (6.2) for definition)
satisfies

(6.5) resi ≤ max(10−14, tol2t ).

After each ARR projection, we collect the converged Ritz vectors into a matrix Qc, and start the next iteration from
those Ritz vectors “not yet converged”, which we continue to call X . Obviously, whenever Qc is nonempty X
is orthogonal to Qc. Each time we check the stopping rule in the inner loop, we also perform a projection X =
X −Qc(QTc X) to ensure that X stays orthogonal to Qc. In addition, the next ARR projection will also be performed
in the orthogonal complement of R(Qc). That is, we apply an ARR projection to the matrix Y − Qc(Q

T
c Y ) for

Y = [X AZ · · · ApX]. At the end, we always collect and keep k + q leading Ritz pairs from both the “converged”
and the “not yet converged” sets.

Augmentation blocks. The default value for the number of augmentation blocks is p = 1, but this value may be
adjusted after each ARR projection. We increase p by one when we find that the relevant Ritz values show a small
decay and at the same time the latest decrease in residuals is not particularly impressive. Specifically, we set p = p+1
if

(6.6)
µk+q
µk

> 0.95 and
maxres

maxresp
> 0.1,

where maxresp is the maximum relative residual norm at the previous iteration. The values 0.95 and 0.1 are set
after some limited experimentation and by no means optimal. For k relatively large, since the memory demand grows
significantly as p increases, we also limit the maximum value of p to pmax = 3.

Polynomial degree. Under normal conditions, the higher degree is used in a polynomial accelerator, the fewer
number of iterations will be required for convergence, but at a higher cost per iteration. A good balance is needed.
Let d and dmax be the initial and the largest polynomial degrees, respectively. We use the default values d = 3
and dmax = 15. Let ρd(t) be the polynomial function defined in (5.4). After each ARR step, we adjust the degree
based on estimated spectral information of ρd(A) computable using the current Ritz values. We know that the conver-
gence rate of the inner solvers would be satisfactory if the eigenvalue ratio ρd(λk+q)/ρd(λk) is small. Based on this
consideration, we calculate

(6.7) d̂ = min
d≥3

{
d ∈ Z :

ρd(µ
∗
k+q)

ρd(µ∗k)
< 0.9

}
,

and then apply the cap dmax by setting

(6.8) d = min(d̂, dmax)
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where µ∗k and µ∗k+q are a pair of Ritz values corresponding to the iteration with the smallest residual “maxres” defined
in (6.1) (therefore the most accurate so far). The value of 0.9 is of course adjustable.

Finally, a pseudocode for our ARRABIT algorithm with all the above features is presented as Algorithm 8. This
is the version used to produce the numerical results of this paper. As one can see, ARRABIT algorithm uses A only in
matrix multiplications.

Algorithm 8: Algorithm ARRABIT (detailed version)

1 Input A ∈ Rn×n, integer k ∈ (0, n) and tolerance tol > 0.
2 Choose d and dmax, the initial and maximum polynomial degrees. /* initialize */
3 Choose p and pmax, the initial and maximum number of augmentation blocks.
4 Choose q ≥ 0, the number of guard vectors, so that (p+ 1)(k + q) < n.
5 Set tolerance parameters: t = 1, tolt ≥ tol and told = max(10−14, tol2t ).
6 Initialize converged Ritz pairs (Qc,Σc) = ∅ for deflation purposes.
7 Initialize an i.i.d. Gaussian random matrix X ∈ Rn×(k+q).
8 Estimate the interval [λn, λk+q] ≈ [a, b].
9 for j = 1, . . . ,maxit do /* outer loop */

10 Initialize rc to infinity.
11 for i1 = 1, 2, · · · ,maxit1, do /* inner loop */
12 for i2 = 1, 2, · · · ,maxit2, do /* call inner solvers */
13 if MPM is the inner solver, then /* MPM */
14 Call X = POLY(A− aI,X, 0, b− a,Γd). /* accelerator */
15 Normalize the columns of X individually.

16 if GN is the inner solver, then /* GN */

17 Compute Y = X
(
XTX

)−1
.

18 Call Z = POLY(A− aI, Y, 0, b− a,Γd). /* accelerator */
19 Compute X = Z −X(Y TZ − I)/2.

20 Compute X = X −Qc(QTc X) if Qc 6= ∅. /* projection */

21 Set rcp = rc and compute rc = rcond(XTX).
22 if the inner stop rule (6.4) is met, then break. /* end inner loop */

23 Compute Y = [X,AX, . . . , ApX]. /* augmentation */
24 Y = Y −Qc(QTc Y ) if Qc 6= ∅. /* projection */
25 Perform ARR step: (X,Σ) = RR(A, Y ). /* ARR */
26 Extract k + q leading Ritz pairs (xi, µi) from (Qc,Σc) and (X,Σ).
27 Overwrite (X,Σ) by the k + q Ritz pairs. Compute residuals by (6.2).
28 if the outer stop rule (6.1) is met for tol, then
29 output the Ritz pairs (X,Σ) and exit. /* output and exit */

30 if the outer stop rule (6.1) is met for tolt then /* continuation */
31 Set tolt+1 = max

(
10−2tolt, tol

)
, b = µk+q and t = t+ 1.

32 Collect converged Ritz pairs in (Qc,Σc) that satisfy (6.5). /* deflation */
33 Overwrite (X,Σ) by the remaining not yet converged Ritz pairs.
34 if rules in (6.6) are met, then set p = min(p+ 1, pmax). /* update p */
35 Update the polynomial degree by rules (6.7)-(6.8). /* update degree */

7. Numerical Results. In this section, we evaluate the performance of ARRABIT on a set of sixteen sparse
matrixes. Although we have constructed the algorithm with parallel scalability in mind as a major motivating factor, a
study of scalability issues in a massively parallel environment is beyond the scope of the current paper.

As a first step, we test the algorithm in Matlab environment, on a single computing node (2 processors) and
without explicit code parallelization, to determine how it performs in comparison to established solvers. We have
implemented our ARRABIT algorithm, as is described by the pseudocode Algorithm 8, in MATLAB. For brevity, the
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two variants, corresponding to the two choices of inner solvers, will be called MPM and GN, respectively.
We test two levels of accuracy in our experiments: tol = 10−6 or tol = 10−12. By our stoping rule, upon

successful termination the largest eigenpair residual will not exceed 10−5 or 10−11, respectively. Since our algorithm
checks the termination rule only after each ARR call, it often returns solutions of higher accuracies than what is
prescribed by the tol value.

7.1. Solvers, Platform and Test Matrices. Since it is impractical to carry out numerical experiments with a
large number of solvers, we have carefully chosen two high-quality packages to compare with our ARRABIT code.
One package is ARPACK2 [12], which is behind the Matlab built-in iterative eigensolver EIGS, and will naturally serve
as the benchmark solver. Another is a more recent package called FEAST [28] which has been integrated into Intel’s
Math Kernel Library (MKL) under the name “Intel MKL Extended Eigensolver”3. Both ARPACK and FEAST are
written in Fortran. While ARPACK can be directly accessed through EIGS in Matlab, we call FEAST from Intel’s MKL
Library via Matlab’s MEX external interfaces. In our experiments, all parameters in EIGS and FEAST are set to their
default values, and each solver terminates with its own stopping rules using either tol = 10−6 or tol = 10−12.

We have also examined a few other solvers as potential candidates but decided not to use them in this paper,
including but not limited to the filtered Lanczos algorithm4 [6] and the Chebyshev-Davidson algorithm5 [29]. Our
initial tests indicated that, for various reasons, these solvers’ overall performance could not measure up with that of
the commercial-grade software packages ARPACK and FEAST on a number of test problems. This fact may be more of
a reflection on the current status of software development for these solvers than on the merits of the algorithms behind.

It is important to note that FEAST is designed to compute all eigenvalues (and their eigenvectors) in an interval,
which is given as an input along with an estimated number of eigenvalues inside the interval. When computing k
largest eigenpairs, we have observed that the performance of FEAST is affected greatly by the quality of the two
estimations: the interval itself and the number of eigenvalues inside the interval. When calling FEAST, we set (i) the
interval to be [λ∗k, λ

∗
1] where λ∗k and λ∗1 are computed eigenvalues by EIGS using the same tolerance tol; and (ii) the

estimated number of eigenvalues in the interval to 1.2k rounded to the nearest integer. We consider this setting to be
fair, if not overly favorable, to FEAST.

Our numerical experiments are preformed on a single computing node of Edison6, a Cray XC30 supercomputer
maintained at the National Energy Research Scientific Computer Center (NERSC) in Berkeley. The node consists of
two twelve-core Intel “Ivy Bridge” processors at 2.4 GHz with a total of 64 GB shared memory. Each core has its
own L1 and L2 caches of 64 KB and 256 KB, respectively; A 30-MB L3 cache shared between 12 cores on the “Ivy
Bridge” processor. We generate Matlab standalone executable programs and submit them as batch jobs to Edison. The
reported runtimes are wall-clock times.

On a multi/many-core computer, memory access patterns and communication overheads have a notable impact
on computing time. In Matlab, dense linear algebra operations are generally well optimized by using BLAS and
LAPACK tuned to the CPU processors in use. On the other hand, we have observed that some sparse linear algebra
operations in Matlab seem to have not been as highly optimized (at least in version 2013b). In particular, when doing
multiplications between a large sparse matrix and a dense matrix (like AX), Matlab is often slower than a routine
in Intel’s Math Kernel Library (MKL) named “mkl dcscmm” when it is invoked through Matlab’s MEX external
interfaces in our experiments. For this reason, we use this MKL routine in our Matlab code to perform the operation
AX .

Our test matrices are selected from the University of Florida Sparse Matrix Collection7. For each matrix, we
compute both k eigenpairs corresponding to k largest eigenvalues and those corresponding to k smallest eigenvalues.
Many of the selected matrices are produced by PARSEC [8], a real space density functional theory (DFT) based
code for electronic structure calculation in which the Hamiltonian is discretized by a finite difference method. We do
not take into account any background information for these matrices; instead, we simply treat them algebraically as
matrices.

Table 7.1 lists, for each matrix A, the dimensionality n, the number of nonzeros nnz(A) and the density of
A, i.e., the ratio (nnz(A)/n2)100%. The number of eigenpairs to be computed is set either to 1% of n rounded
to the nearest integer or to k = 1000 whichever is smaller. Table 7.1 also reports the number of the nonzeros in

2See http://www.caam.rice.edu/software/ARPACK/
3See http://software.intel.com/en-us/intel-mkl (version 11.0.2 on our workstation)
4See http://www-users.cs.umn.edu/˜saad/software/filtlan
5See http://faculty.smu.edu/yzhou/code.htm
6See http://www.nersc.gov/users/computational-systems/edison/
7See http://www.cise.ufl.edu/research/sparse/matrices

http://www.caam.rice.edu/software/ARPACK/
http://software.intel.com/en-us/intel-mkl
http://www-users.cs.umn.edu/~saad/software/filtlan
http://faculty.smu.edu/yzhou/code.htm
http://www.nersc.gov/users/computational-systems/edison/
http://www.cise.ufl.edu/research/sparse/matrices
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the Cholesky factor L of matrix A − αI where α = max(2λn(A), 0). The factorization is carried out after an
“approximate minimum degree” permutation performed by the Matlab function “amd”, as is done by the following
MATLAB line: t = amd(B); L = chol(B(t, t),′ lower′). We have also tested the “symmetric approximate minimum
degree” permutation (“symamd” in Matlab), but the corresponding density of L is slightly larger on most matrices.
The density of factor L and the computing time in seconds used by Cholesky factorization are also given in Table 7.1.
Although all matrices A are very sparse, the Cholesky factors of some matrices, such as Ga10As10H30, Ga3As3H12
and Ge87H76, are quite dense. As a result, the Cholesky factorization time varies greatly from matrix to matrix. We
mention that the spectral distributions of the test matrices can behave quite differently from matrix to matrix. Even
for the same matrix, the spectrum of a matrix can change behavior drastically from region to region. Most notably,
computing k smallest eigenpairs of many matrices in this set turns out to be more difficult than computing k largest
ones.

The largest matrix size in this set is more than a quarter of million. Relative to the computing resources in use,
we consider these selected matrices to be fairly large scale. Overall, we consider this test set reasonably diverse and
representative, fully aware that there always exist instances out there that are more challenging to one solver or another.

TABLE 7.1
Information of Test Matrices

matrix name n k nnz(A) density of A nnz(L) density of L time
Andrews 60000 600 760154 0.021% 117039940 6.502% 7.18

C60 17576 176 407204 0.132% 34144169 22.105% 1.62
cfd1 70656 707 1825580 0.037% 35877440 1.437% 1.81

finance 74752 748 596992 0.011% 2837714 0.102% 0.28
Ga10As10H30 113081 1000 6115633 0.048% 1562547805 24.439% 127.12

Ga3As3H12 61349 613 5970947 0.159% 596645077 31.705% 42.00
shallow water1s 81920 819 327680 0.005% 2357535 0.070% 0.21

Si10H16 17077 171 875923 0.300% 56103003 38.474% 2.60
Si5H12 19896 199 738598 0.187% 78918573 39.871% 3.80

SiO 33401 334 1317655 0.118% 186085449 33.359% 10.01
wathen100 30401 304 471601 0.051% 1490209 0.322% 0.32
Ge87H76 112985 1000 7892195 0.062% 1403571238 21.990% 109.64

Ge99H100 112985 1000 8451395 0.066% 1477089634 23.141% 120.08
Si41Ge41H72 185639 1000 15011265 0.044% 3457063398 20.063% 358.53

Si87H76 240369 1000 10661631 0.018% 5568995364 19.277% 1499.80
Ga41As41H72 268096 1000 18488476 0.026% 6998257446 19.473% 2498.43

7.2. Comparison between RR and ARR. We first evaluate the performance difference between ARR and RR
for both MPM and GN. Table 7.2 gives results for computing both k largest and smallest eigenpairs on the first six
matrices in Table 7.1 to the accuracy of tol = 10−12. We note that RR and ARR correspond to p = 0 and p > 0,
respectively, in Algorithm 8. In order to differentiate the effect of changing p from that of changing the polynomial
degree, we also test a variant of Algorithm 8 with a fixed polynomial degree at d = 8 (by skipping line 34). In Table
7.2, “maxres” denotes the maximum relative residual norm in (6.1), “time” is the runtime measured in seconds, “RR”
is the total number of the outer iterations, i.e., the total number of the RR or ARR calls made (excluding the one called
in preprocessing for estimating λk+q), and “p” and “d” are the number of augmentation blocks and the polynomial
degree, respectively, used at the final outer iteration. In addition, on the matrices cfd1 and finance we plot the (outer)
iteration history of maxres in Figures 7.1 and 7.2 for computing k largest and smallest eigenpairs, respectively.

The following observations can be drawn from the table and figures.
• The performances of MPM and GN are similar. For both of them, ARR can accelerate convergence, reduce

the number of outer iterations needed, and improve the accuracy, often to a great extent.
• The scheme of adaptive polynomial degree generally works better than a fixed polynomial degree. A more

detailed look at the effect of polynomial degrees is presented in Section 7.3.
• The default value p = 1 for the number of augmentation blocks in ARR is generally kept unchanged (recall

that it can be increased by the algorithm).
• The total number of ARR called is mostly very small, especially in the cases where the adaptive polynomial

degree scheme is used and the k largest eigenpairs are computed (which tend to be easier than the k smallest
ones). We observe from Figure 7.1 that in several cases a single ARR is sufficient to reach the accuracy of
tol=1e-6 (even of tol=1e-12 in one case).
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TABLE 7.2
Comparison results between RR and ARR with tol=1e-12

MPM with RR MPM with ARR GN with RR GN with ARR
matrix maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

computing k largest eigpair by fix deg = 8
Andrew. 9.5e-13 191 4 1/ 8 1.9e-06 250 9 3/ 8 9.0e-12 174 6 1/ 8 9.9e-13 104 2 1/ 8

C60 4.0e-12 45 11 3/ 8 6.3e-12 12 3 1/ 8 7.5e-12 44 22 3/ 8 1.4e-12 16 5 1/ 8
cfd1 9.8e-13 381 4 1/ 8 1.0e-12 296 4 1/ 8 9.8e-13 294 4 1/ 8 9.9e-13 206 2 1/ 8

financ. 9.9e-13 157 3 1/ 8 8.9e-13 151 3 1/ 8 1.0e-12 196 4 1/ 8 1.0e-12 141 2 1/ 8
Ga10As. 3.5e-13 1218 22 3/ 8 9.9e-13 1483 8 2/ 8 6.1e-12 910 8 1/ 8 9.9e-13 448 3 1/ 8
Ga3As3. 9.7e-13 467 6 1/ 8 9.8e-13 270 5 1/ 8 1.9e-12 307 8 1/ 8 9.4e-13 179 3 1/ 8

computing k largest eigpair with adaptive polynomial degree
Andrew. 2.0e-11 337 9 3/ 5 8.8e-13 148 5 2/ 5 5.3e-12 319 17 3/ 5 1.0e-12 125 4 1/ 5

C60 8.7e-12 41 10 3/ 9 2.0e-12 13 3 1/ 9 4.2e-12 42 20 3/ 9 5.5e-12 13 3 1/ 9
cfd1 1.3e-12 441 5 1/ 3 9.8e-13 190 4 1/ 3 4.1e-12 482 17 3/ 3 9.9e-13 188 3 1/ 3

financ. 9.9e-13 256 4 1/ 3 1.3e-12 97 3 2/ 3 2.7e-12 380 14 3/ 3 1.1e-12 69 1 1/ 3
Ga10As. 4.7e-12 1199 6 1/ 5 9.6e-13 442 4 1/ 5 7.1e-12 1442 19 3/ 5 9.7e-13 580 4 1/ 6
Ga3As3. 2.9e-12 473 7 2/ 5 1.7e-12 169 4 1/ 5 3.9e-12 494 17 3/ 5 1.7e-12 198 4 1/ 5

computing k smallest eigpair by fix deg = 8
Andrew. 4.2e-12 465 7 2/ 8 1.5e-13 219 6 2/ 8 7.2e-12 475 19 3/ 8 1.0e-12 199 5 1/ 8

C60 1.7e-12 30 9 3/ 8 6.8e-13 17 6 1/ 8 5.5e-12 24 13 3/ 8 6.7e-12 13 4 1/ 8
cfd1 4.1e-05 2870 30 3/ 8 6.0e-12 1543 21 3/ 8 1.5e-04 2505 30 3/ 8 7.9e-12 1394 22 3/ 8

financ. 3.8e-08 1759 30 3/ 8 5.1e-13 700 9 3/ 8 3.5e-06 1651 30 3/ 8 7.2e-13 713 11 3/ 8
Ga10As. 8.6e-10 2642 10 3/ 8 3.7e-12 1372 5 1/ 8 2.1e-02 1436 6 1/ 8 2.6e-12 961 4 1/ 8
Ga3As3. 7.2e-12 964 11 3/ 8 2.7e-12 489 4 1/ 8 4.2e-12 994 24 3/ 8 9.9e-13 381 4 1/ 8

computing k smallest eigpair with adaptive polynomial degree
Andrew. 7.3e-12 466 8 3/ 8 9.7e-13 200 4 1/ 8 8.9e-12 505 21 3/ 8 1.1e-12 185 5 1/ 8

C60 6.7e-12 38 9 3/ 7 2.8e-12 26 9 3/ 6 4.0e-12 31 23 3/ 6 9.2e-13 15 8 2/ 6
cfd1 3.7e-08 2869 30 3/15 8.9e-12 719 4 1/15 2.3e-06 2515 30 3/15 4.2e-12 1017 12 3/15

financ. 3.7e-12 1391 9 3/15 1.4e-12 600 6 1/15 5.3e-12 1416 24 3/15 3.4e-12 467 5 1/15
Ga10As. 4.5e-11 3261 12 3/ 8 1.1e-12 1558 6 1/ 8 2.9e-12 3681 24 3/ 8 4.0e-12 963 3 1/ 9
Ga3As3. 5.9e-12 1046 8 3/ 9 9.9e-13 420 4 1/ 9 7.7e-12 1238 24 3/ 9 9.5e-13 338 5 1/ 9

7.3. Comparison on Polynomials. We next examine the effect of polynomial degrees on the convergence be-
havior of MPM and GN, again on the first six matrices in Table 7.1. We compare two schemes: the first is to use a fix
degree among {4, 8, 15} and skip line 34 of Algorithm 8, and the second is the adaptive scheme in Algorithm 8. The
computational results are summarized in Table 7.3. We also plot the iteration history of maxres, for computing both
k largest and smallest eigenpairs on the matrices cfd1 and finance in Figures 7.3 and 7.4, respectively. The numerical
results lead to the following observations:

• Again the performances of MPM and GN are similar, and the default value p = 1 for augmentation is mostly
unchanged.

• In general, the number of outer iterations is decreased as the polynomial degree is increased, but the runtime
time is not necessarily reduced because of the extra cost in using higher-degree polynomials. Overall, our
adaptive strategy seems to have achieved a reasonable balance.

• With fixed polynomial degrees, in a small number of test case MPM and GN fail to reach the required accuracy.
Finally, we compare the performance of Algorithm 8 either using Chebyshev interpolates defined in (5.3) or the

Chebyshev polynomials defined in (2.6) on the first six matrices in Table 7.1. The comparison results are given in
Table 7.4. Even though both types of polynomials work well on these six problems, some performance differences are
still observable in favor of our polynomials.

7.4. Comparison with ARPACK and FEAST. We now compare MPM and GN with EIGS and FEAST for com-
puting both k largest and smallest eigenpairs for all sixteen test matrices presented in Tables 7.1 (which also lists the
k values). Computational results are summarized in Tables 7.5 and 7.6, where “SpMV” denotes the total number of
SpMVs, counting each operation AX ∈ Rn×k as k SpMVs.

In addition, the speedup with respect to the benchmark time of EIGS is measured by the quantity log2(timeEIGS/time),
as shown in Figures 7.5 and 7.6 where a positive bar represents a “speedup” and a negative one a “slowdown”. In these
two figures, matrices are ordered from left to right in ascending order of the solution time used by EIGS; that is, when
moving from the left towards the right, problems become progressively more and more time-consuming for EIGS to
solve. A quick glance at the figures tells us that MPM and GN provide clear speedups over EIGS on most problems,
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TABLE 7.3
Comparison results of different polynomial degrees on tol=1e-12

deg=4 deg=8 deg=15 adaptive deg
matrix maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

MPM for k largest eigpair
Andrew. 1.1e-12 127 5 2/ 4 1.9e-06 250 9 3/ 8 4.3e-12 165 4 1/15 8.8e-13 148 5 2/ 5

C60 1.6e-12 18 6 3/ 4 6.3e-12 12 3 1/ 8 9.7e-13 24 3 2/15 2.0e-12 13 3 1/ 9
cfd1 1.8e-12 206 3 1/ 4 1.0e-12 296 4 1/ 8 2.8e-12 411 5 2/15 9.8e-13 190 4 1/ 3

financ. 9.9e-13 102 3 1/ 4 8.9e-13 151 3 1/ 8 9.0e-13 175 4 1/15 1.3e-12 97 3 2/ 3
Ga10As. 1.3e-12 906 8 2/ 4 9.9e-13 1483 8 2/ 8 2.8e-01 5908 6 1/15 9.6e-13 442 4 1/ 5
Ga3As3. 7.6e-13 377 7 1/ 4 9.8e-13 270 5 1/ 8 2.8e-01 1483 6 1/15 1.7e-12 169 4 1/ 5

SLRP for k largest eigpair
Andrew. 1.5e-12 116 4 1/ 4 9.9e-13 104 2 1/ 8 1.2e-13 187 2 1/15 1.0e-12 125 4 1/ 5

C60 1.5e-12 24 9 3/ 4 1.4e-12 16 5 1/ 8 7.1e-13 19 3 1/15 5.5e-12 13 3 1/ 9
cfd1 9.6e-13 185 2 1/ 4 9.9e-13 206 2 1/ 8 1.7e-13 324 2 1/15 9.9e-13 188 3 1/ 3

financ. 1.2e-12 77 1 1/ 4 1.0e-12 141 2 1/ 8 2.7e-13 327 2 1/15 1.1e-12 69 1 1/ 3
Ga10As. 5.9e-13 734 7 2/ 4 9.9e-13 448 3 1/ 8 2.9e-01 1122 6 1/15 9.7e-13 580 4 1/ 6
Ga3As3. 8.4e-12 205 4 1/ 4 9.4e-13 179 3 1/ 8 6.4e-02 442 6 1/15 1.7e-12 198 4 1/ 5

MPM for k smallest eigpair
Andrew. 4.1e-13 247 9 3/ 4 1.5e-13 219 6 2/ 8 9.9e-13 448 5 1/15 9.7e-13 200 4 1/ 8

C60 1.6e-07 20 7 3/ 4 6.8e-13 17 6 1/ 8 7.9e-13 26 5 1/15 2.8e-12 26 9 3/ 6
cfd1 2.5e-07 1626 30 3/ 4 6.0e-12 1543 21 3/ 8 4.3e-12 1340 9 3/15 8.9e-12 719 4 1/15

financ. 6.9e-12 1002 21 3/ 4 5.1e-13 700 9 3/ 8 1.0e-12 586 5 1/15 1.4e-12 600 6 1/15
Ga10As. 9.4e-12 1893 15 3/ 4 3.7e-12 1372 5 1/ 8 1.8e-06 2198 6 2/15 1.1e-12 1558 6 1/ 8
Ga3As3. 4.9e-12 569 11 3/ 4 2.7e-12 489 4 1/ 8 9.7e-13 471 4 1/15 9.9e-13 420 4 1/ 9

SLRP for k smallest eigpair
Andrew. 4.6e-12 315 10 3/ 4 1.0e-12 199 5 1/ 8 9.9e-13 208 3 1/15 1.1e-12 185 5 1/ 8

C60 1.2e-12 16 9 2/ 4 6.7e-12 13 4 1/ 8 4.1e-13 16 3 1/15 9.2e-13 15 8 2/ 6
cfd1 9.1e-07 1956 30 3/ 4 7.9e-12 1394 22 3/ 8 5.2e-12 1121 12 3/15 4.2e-12 1017 12 3/15

financ. 7.4e-12 1223 22 3/ 4 7.2e-13 713 11 3/ 8 1.6e-12 535 6 1/15 3.4e-12 467 5 1/15
Ga10As. 1.6e-12 1625 8 3/ 4 2.6e-12 961 4 1/ 8 1.0e-12 999 3 1/15 4.0e-12 963 3 1/ 9
Ga3As3. 4.8e-12 532 10 3/ 4 9.9e-13 381 4 1/ 8 9.8e-13 374 3 1/15 9.5e-13 338 5 1/ 9

TABLE 7.4
Comparison results on Chebyshev interpolates in (5.3) and Chebyshev polynomials in (2.6)

MPM MPM, Cheb. poly. GN GN, Cheb. poly.
name maxres time RR p/d maxres time RR p/d maxres time RR p/d maxres time RR p/d

computing k largest eigpair, tol=1e-6
Andrew. 2.6e-8 58 2 1/ 5 1.1e-6 60 2 1/ 3 3.0e-8 92 2 1/ 5 6.0e-7 89 2 1/ 3

C60 1.1e-9 13 2 1/ 9 3.9e-8 9 2 1/ 5 5.2e-7 9 2 1/ 8 8.8e-6 12 3 1/ 5
cfd1 5.6e-9 155 2 1/ 3 7.4e-7 144 2 1/ 2 1.5e-7 143 1 1/ 3 1.5e-7 146 1 1/ 3

financ. 1.6e-6 37 1 1/ 3 1.5e-10 51 1 1/ 3 1.1e-12 67 1 1/ 3 1.2e-10 68 1 1/ 3
Ga10As. 5.7e-8 264 2 1/ 5 4.6e-8 550 4 1/ 2 9.2e-7 380 2 1/ 5 2.0e-7 484 3 1/ 3
Ga3As3. 6.4e-8 101 2 1/ 5 1.6e-6 112 3 1/ 3 5.3e-7 136 2 1/ 5 6.2e-6 125 2 1/ 3

computing k largest eigpair, tol=1e-12
Andrew. 8.8e-13 148 5 2/ 5 2.9e-12 199 7 2/10 1.0e-12 125 4 1/ 5 1.5e-12 160 7 3/ 3

C60 2.0e-12 13 3 1/ 9 4.6e-12 16 6 3/ 5 5.5e-12 13 3 1/ 9 4.5e-12 23 12 3/ 5
cfd1 9.8e-13 190 4 1/ 3 3.3e-13 230 6 2/ 2 9.9e-13 188 3 1/ 3 1.8e-12 215 4 1/ 2

financ. 1.3e-12 97 3 2/ 3 6.8e-12 87 3 1/ 2 1.1e-12 69 1 1/ 3 9.9e-13 93 2 1/ 2
Ga10As. 9.6e-13 442 4 1/ 5 9.0e-12 643 9 3/ 3 9.7e-13 580 4 1/ 6 1.3e-12 807 9 3/ 3
Ga3As3. 1.7e-12 169 4 1/ 5 2.2e-12 239 9 3/ 3 1.7e-12 198 4 1/ 5 4.7e-13 285 9 3/ 3

computing k smallest eigpair, tol=1e-6
Andrew. 4.2e-7 113 2 1/ 8 6.1e-7 122 3 1/ 5 5.2e-9 168 3 1/ 8 2.6e-6 175 4 1/ 5

C60 9.6e-7 16 4 2/ 6 1.3e-6 11 3 1/ 4 2.4e-6 9 3 1/ 3 1.4e-6 10 4 1/ 4
cfd1 3.4e-7 601 2 1/15 5.0e-6 427 2 1/15 4.8e-6 614 5 2/15 2.7e-6 607 5 2/15

financ. 1.7e-6 338 2 1/15 3.2e-6 310 2 1/10 5.3e-9 379 3 1/15 9.3e-7 333 3 1/10
Ga10As. 6.2e-6 751 2 1/ 8 2.9e-6 744 3 1/ 5 1.8e-6 715 2 1/ 7 2.8e-6 907 3 1/ 5
Ga3As3. 6.9e-6 325 2 1/ 9 4.2e-7 269 2 1/ 5 1.7e-9 282 3 1/ 9 1.6e-6 369 5 2/ 5

computing k smallest eigpair, tol=1e-12
Andrew. 9.7e-13 200 4 1/ 8 7.3e-12 243 8 3/ 5 1.1e-12 185 5 1/ 8 7.0e-12 293 11 3/ 5

C60 2.8e-12 26 9 3/ 6 3.4e-12 23 9 3/ 4 9.2e-13 15 8 2/ 6 2.1e-12 18 11 3/ 4
cfd1 8.9e-12 719 4 1/15 8.7e-12 1033 11 3/15 4.2e-12 1017 12 3/15 9.0e-12 1471 23 3/15

financ. 1.4e-12 600 6 1/15 8.6e-12 587 8 3/10 3.4e-12 467 5 1/15 9.0e-12 637 10 3/10
Ga10As. 1.1e-12 1558 6 1/ 8 7.6e-08 1629 9 3/15 4.0e-12 963 3 1/ 9 5.2e-12 1496 9 3/ 5
Ga3As3. 9.9e-13 420 4 1/ 9 2.0e-12 547 9 3/ 5 9.5e-13 338 5 1/ 9 3.6e-12 573 14 3/ 5
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FIG. 7.1. ARR vs RR: Iteration history of maxres for computing k largest eigenpairs
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FIG. 7.2. ARR vs RR: Iteration history of maxres for computing k smallest eigenpairs

especially on the more time-consuming problems towards the right. For example, MPM and GN deliver a speedup of
about 4 times on each of the seven most time-consuming problems in Figure 7.5(a), and a speedup of about 10 times
on the most time-consuming problem Ga41As41H72 in Figure 7.6(a). On the other hand, compared to EIGS, FEAST’s
timing profile looks volatile with both big “speedups” and “slowdowns”.

The benchmark solver EIGS usually, though not always, returns solutions more accurate than what is requested by
the tolerance value. In particular, for tol = 10−6 the accuracy of EIGS solutions often reach the order of O(10−12).
This is due to the fact that EIGS need to maintain a high working accuracy to ensure proper convergence.

As is observed previously, it is often more time-consuming for EIGS, MPM and GN to compute k smallest eigen-
pairs than k largest ones on many test matrices. By examining the spectra of the matrices such as cfd1 and finance, we
believe that this phenomenon is attributable to the property that these matrices tend to have a flatter end on the left end
of their spectra. On the other hand, the behavior of FEAST appears less affected by this property but more by sparsity
patterns (see below).
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FIG. 7.3. ARR: Iteration history of maxres for computing k largest eigenpairs using different polynomial degrees
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FIG. 7.4. ARR: Iteration history of maxres for computing k smallest eigenpairs using different polynomial degrees

Concerning the performance of FEAST, we make the following observations.
• FEAST solves most problems successfully but fails to correctly solve a few cases. When computing k largest

eigenvalues for the matrix Ga10As10H30 FEAST returns the warning: “No eigenvalue has been found in
the proposed search interval”. On matrix Ga3As3H12, it seems to exit normally with the output messages
“Eigensolvers have successfully converged”, but the subsequently computed maximum relative residual norm
in (6.1) is way too large at 0.29. On matrices Ga41As41H72 and Si87H76, when computing either k largest
or smallest eigenpairs, FEAST terminates abnormally after spending a long computing time, with the message:
“Eigensolvers ERROR: Problem from Inner Linear System Solver”. By examining the density of Cholesky
factors for Ga41As41H72 and Si87H76 in Table 7.1, we speculate that the abnormal termination most likely
has to do with excessive memory demands encountered by the inner linear system solver in Intel Math Kernel
Library.

• For tol = 10−12, FEAST is the fastest in solving finance and shallow water1s for k largest eigenpairs, and
in solving cfd1, finance, shallow water1s and wathen100 for k smallest eigenpairs. On the other hand,
FEAST can be significantly slower than others on matrices such as Ga10As10H30, Ga3As3H12, Ge87H76,
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FIG. 7.5. Speedup to EIGS: log2(timeEIGS/time) on computing k largest eigenpairs

C
6
0

S
i1

0
H
1
.

S
i5

H
1
2

S
iO

w
a
th

e
n
.

A
n
d
re

w
.

G
a
3
A
s3

.

fin
a
n
c.

sh
a
llo

.

G
e
9
9
H
1
.

G
e
8
7
H
7
.

G
a
1
0
A
s.

cf
d
1

S
i4

1
G

e
.

S
i8

7
H
7
.

G
a
4
1
A
s.

-6

-4

-2

0

2

4

6

MPM

GN

FEAST

(a) tol = 10−6

C
6
0

S
i1

0
H
1
.

S
i5

H
1
2

S
iO

w
a
th

e
n
.

A
n
d
re

w
.

G
a
3
A
s3

.

sh
a
llo

.

fin
a
n
c.

G
e
8
7
H
7
.

G
e
9
9
H
1
.

G
a
1
0
A
s.

cf
d
1

S
i4

1
G

e
.

S
i8

7
H
7
.

G
a
4
1
A
s.

-6

-4

-2

0

2

4

6

MPM

GN

FEAST

(b) tol = 10−12

FIG. 7.6. Speedup to EIGS: log2(timeEIGS/time) on computing k smallest eigenpairs

Ge99H100, Si41Ge41H72, Si87H76 and Ga41As41H72. The performance of FEAST can be at least partly
explained from the density of Cholesky factors L shown in Table 7.1, since FEAST uses a direct linear solver
in Intel Math Kernel Library to compute factorizations of matrices of the form (φlI − A) in (2.7). We can
clearly see the correlation that FEAST is fast when the density of the Cholesky factor is low and Cholesky
factorization is fast.

With regard to the performance of MPM and GN, we make the following observations.
• MPM and GN both attain the required accuracy on all test problems, and they often return smaller residual

errors than what is required by tol. Generally speaking, the two variants perform quite similarly in terms of
both accuracy and timing.

• MPM and GN maintain a clear speed advantage over FEAST in most tested cases. They are faster than
FEAST when either factorizations of shifted A are expensive, or when spectral distributions have a favor-
able decay (for example, on cfd1 for computing k largest eigenpairs).

• MPM and GN also maintain an overall speed advantage over EIGS, especially on those problems more time-
consuming for EIGS (towards the right end of Figures 7.5 and 7.6). They are faster in spite of taking consid-
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TABLE 7.5
Comparison results on computing k largest eigenpairs

EIGS FEAST MPM GN
name maxres time SpMV maxres time RR maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-6
Andrew. 1.0e-7 218 3e+3 1.0e-8 254 5 2.6e-8 58 6e+4 2/ 1/ 5 3.0e-8 92 6e+4 2/ 1/ 5

C60 4.9e-8 13 2e+3 7.9e-9 59 3 1.1e-9 13 5e+4 2/ 1/ 9 5.2e-7 9 3e+4 2/ 1/ 8
cfd1 2.5e-14 338 3e+3 4.2e-8 113 4 5.6e-9 155 6e+4 2/ 1/ 3 1.5e-7 143 4e+4 1/ 1/ 3

financ. 3.1e-14 287 3e+3 6.1e-10 41 3 1.6e-6 37 2e+4 1/ 1/ 3 1.1e-12 67 3e+4 1/ 1/ 3
Ga10As. 4.2e-14 1439 8e+3 1.6e+0 4704 2 5.7e-8 264 1e+5 2/ 1/ 5 9.2e-7 380 1e+5 2/ 1/ 5
Ga3As3. 1.9e-8 353 5e+3 2.9e-1 11738 21 6.4e-8 101 7e+4 2/ 1/ 5 5.3e-7 136 6e+4 2/ 1/ 5

shallo. 1.5e-10 774 8e+3 5.2e-9 69 4 4.9e-9 207 2e+5 2/ 1/ 7 9.2e-8 207 1e+5 2/ 1/ 7
Si10H1. 5.6e-7 10 2e+3 2.6e-10 84 3 5.2e-9 11 4e+4 2/ 1/ 9 1.2e-10 11 3e+4 2/ 1/ 9
Si5H12 1.5e-12 13 2e+3 1.2e-8 170 3 1.0e-10 10 3e+4 2/ 1/ 6 4.6e-8 12 3e+4 2/ 1/ 6

SiO 1.4e-13 58 3e+3 4.1e-7 265 2 1.4e-8 23 4e+4 2/ 1/ 5 4.1e-7 29 4e+4 2/ 1/ 5
wathen. 5.5e-14 39 2e+3 6.0e-8 11 4 1.1e-6 10 2e+4 1/ 1/ 3 6.9e-11 26 4e+4 2/ 1/ 5

Ge87H7. 1.7e-8 1451 8e+3 5.3e-9 8352 3 6.5e-10 439 2e+5 2/ 1/ 6 1.2e-7 392 1e+5 2/ 1/ 6
Ge99H1. 2.5e-14 1636 8e+3 5.6e-7 6119 2 2.3e-9 348 1e+5 2/ 1/ 6 7.4e-8 402 1e+5 2/ 1/ 6
Si41Ge. 1.1e-8 2909 9e+3 3.9e-7 14929 2 1.6e-9 863 2e+5 2/ 1/ 7 5.8e-8 708 1e+5 2/ 1/ 7
Si87H7. 3.5e-14 3568 1e+4 2.8e-1 1702 1 4.0e-9 1126 3e+5 2/ 1/ 7 1.1e-7 882 1e+5 2/ 1/ 7
Ga41As. 7.4e-14 4100 1e+4 8.6e-1 1066 1 1.2e-10 1029 2e+5 3/ 1/ 5 2.1e-7 1028 1e+5 2/ 1/ 7

name maxres time SpMV maxres time RR maxres time SpMV RR/p/d maxres time SpMV RR/p/d
tol=1e-12

Andrew. 5.6e-14 232 4e+3 4.7e-14 489 9 8.8e-13 148 1e+5 5/ 2/ 5 1.0e-12 125 8e+4 4/ 1/ 5
C60 6.3e-13 15 2e+3 2.8e-13 89 5 2.0e-12 13 5e+4 3/ 1/ 9 5.5e-12 13 4e+4 3/ 1/ 9
cfd1 2.5e-14 296 3e+3 7.1e-14 204 8 9.8e-13 190 8e+4 4/ 1/ 3 9.9e-13 188 6e+4 3/ 1/ 3

financ. 2.1e-14 283 3e+3 2.1e-14 67 5 1.3e-12 97 5e+4 3/ 2/ 3 1.1e-12 69 3e+4 1/ 1/ 3
Ga10As. 4.8e-14 1784 8e+3 1.6e+0 4631 2 9.6e-13 442 2e+5 4/ 1/ 5 9.7e-13 580 2e+5 4/ 1/ 6
Ga3As3. 2.1e-14 419 5e+3 2.9e-1 11245 21 1.7e-12 169 1e+5 4/ 1/ 5 1.7e-12 198 1e+5 4/ 1/ 5

shallo. 4.6e-13 768 8e+3 1.9e-13 121 7 1.0e-12 234 2e+5 4/ 1/ 7 9.9e-13 280 2e+5 4/ 1/ 7
Si10H1. 5.3e-14 11 2e+3 4.0e-13 104 4 6.2e-13 10 3e+4 2/ 1/ 9 3.7e-14 12 3e+4 3/ 1/ 9
Si5H12 1.1e-14 15 2e+3 2.6e-13 259 5 9.5e-13 11 3e+4 2/ 1/ 6 5.3e-12 15 3e+4 3/ 1/ 6

SiO 1.4e-14 58 3e+3 4.7e-13 533 4 9.8e-13 33 5e+4 3/ 1/ 5 1.4e-12 45 6e+4 4/ 1/ 5
wathen. 4.3e-14 36 2e+3 5.1e-14 24 8 1.1e-12 19 4e+4 2/ 1/ 5 9.8e-13 30 4e+4 3/ 1/ 5

Ge87H7. 2.8e-14 1524 8e+3 1.3e-13 13993 5 4.8e-12 435 2e+5 3/ 1/ 6 1.0e-12 523 2e+5 4/ 1/ 6
Ge99H1. 8.4e-14 1563 8e+3 2.1e-14 13438 5 3.7e-12 395 2e+5 2/ 1/ 6 9.6e-13 569 2e+5 4/ 1/ 6
Si41Ge. 2.6e-14 2991 9e+3 2.5e-14 35270 5 9.9e-13 865 2e+5 3/ 1/ 7 1.1e-12 954 2e+5 3/ 1/ 7
Si87H7. 2.8e-14 3506 1e+4 2.8e-1 1924 1 1.0e-12 1018 2e+5 3/ 1/ 7 1.4e-12 1102 2e+5 3/ 1/ 7
Ga41As. 7.5e-14 4103 1e+4 8.6e-1 1242 1 7.9e-13 1135 2e+5 3/ 1/ 7 3.7e-12 1366 2e+5 3/ 1/ 7

erably more matrix-vector multiplications than EIGS, as can be seen from Tables 7.5 and 7.6, thanks to the
benefits of relying on high-concurrency operations on many-core computers.

• MPM and GN generally require a smaller number ARR calls, often only two or three when computing k largest
eigenpairs. In quite a number of cases (for example, on finance and wathen100 for MPM and so on), only a
single ARR projection is taken which is absolutely optimal in order to extract approximate eigenpairs.

• The number of augmentation blocks used by MPM and GN is usually 1, and the final polynomial degree
never reaches the maximum degree 15 except on cfd1, finance and wathen100 when computing k smallest
eigenpairs.

In Figure 7.7, we plot runtimes of three categories: SpMV (i.e., AX), SU (lines 10 to 22 of Algorithm 8) and
ARR (lines 23 to 27 of Algorithm 8). In particular, SpMVs are called in both SU and ARR, but overwhelmingly in the
former. These are the major computational components of MPM and GN. The runtime of each category is measured
in the percentage of wall-clock time spent in that category over the total wall-clock time. We can see, especially from
the time-consuming problems on the right, that (i) the time of SU dominates that of RR, and (ii) the time of SpMVs,
always done in batch of k + q, dominates the entire computation in almost all cases. These trends are much more
pronounced (a) for MPM than for GN (recall that GN requires to solve k × k linear systems); and (b) for computing k
smallest eigenpairs than for computing k largest ones (recall that the former is generally more difficult). These runtime
profiles are favorable to parallel scalability since AX operations possess high concurrency for relatively large k.

In the final set of experiments, we examine the solvers’ scalability with respect to k. We apply the solvers to
matrices cfd1 and Ge87H76, with tol = 10−12, and vary k from 100, 200 up to 1200 with increment 200 (there are
exceptions for FEAST). The resulting solution times are plotted in Figures 7.8 and 7.9. In both figures, the slopes of
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TABLE 7.6
Comparison results on computing k smallest eigenpairs

EIGS FEAST MPM GN
name maxres time SpMV maxres time RR maxres time SpMV RR/p/d maxres time SpMV RR/p/d

tol=1e-6
Andrew. 4.9e-7 399 7e+3 8.5e-8 219 4 4.2e-7 113 1e+5 2/ 1/ 8 5.2e-9 168 1e+5 3/ 1/ 8

C60 2.2e-13 8 2e+3 6.4e-5 291 16 9.6e-7 16 5e+4 4/ 2/ 6 2.4e-6 9 2e+4 3/ 1/ 3
cfd1 4.7e-9 3871 6e+4 4.2e-8 167 7 3.4e-7 601 7e+5 2/ 1/ 15 4.8e-6 614 6e+5 5/ 2/ 15

financ. 1.2e-9 1563 2e+4 4.5e-8 51 4 1.7e-6 338 4e+5 2/ 1/ 15 5.3e-9 379 3e+5 3/ 1/ 15
Ga10As. 2.9e-12 2740 2e+4 8.9e-9 9302 4 6.2e-6 751 3e+5 2/ 1/ 8 1.8e-6 715 2e+5 2/ 1/ 7
Ga3As3. 1.7e-12 599 8e+3 7.3e-8 1837 3 6.9e-6 325 2e+5 2/ 1/ 9 1.7e-9 282 2e+5 3/ 1/ 9

shallo. 3.8e-14 1614 2e+4 6.1e-8 69 4 2.0e-8 400 4e+5 2/ 1/ 14 4.1e-6 261 2e+5 2/ 1/ 9
Si10H1. 1.5e-7 14 2e+3 1.2e-7 121 4 2.8e-7 13 5e+4 2/ 1/ 8 7.1e-6 12 3e+4 2/ 1/ 8
Si5H12 5.8e-12 21 3e+3 1.5e-8 166 3 3.3e-7 14 4e+4 2/ 1/ 8 6.5e-6 15 3e+4 2/ 1/ 8

SiO 2.7e-13 97 5e+3 5.6e-8 537 4 4.1e-7 46 9e+4 2/ 1/ 8 8.8e-10 57 9e+4 3/ 1/ 8
wathen. 1.4e-9 118 8e+3 8.4e-8 10 4 8.2e-6 61 2e+5 2/ 1/ 15 2.4e-7 63 1e+5 3/ 1/ 15

Ge87H7. 2.0e-13 2559 1e+4 2.7e-8 11268 4 4.8e-7 509 3e+5 2/ 1/ 9 8.1e-10 641 2e+5 3/ 1/ 9
Ge99H1. 2.1e-11 2319 1e+4 1.0e-8 11892 4 4.8e-7 568 3e+5 2/ 1/ 9 2.0e-6 564 2e+5 2/ 1/ 8
Si41Ge. 4.1e-9 4650 1e+4 1.2e-8 25658 4 6.3e-7 1102 3e+5 2/ 1/ 11 4.1e-10 1361 3e+5 3/ 1/ 11
Si87H7. 3.0e-13 5458 2e+4 3.3e+0 1842 1 3.2e-6 1201 3e+5 2/ 1/ 11 7.4e-6 1243 2e+5 2/ 1/ 10
Ga41As. 3.6e-7 32279 8e+4 8.6e-1 1095 1 2.1e-8 3166 5e+5 3/ 1/ 11 1.3e-6 3193 4e+5 3/ 2/ 11

name maxres time SpMV maxres time RR maxres time SpMV RR/p/d maxres time SpMV RR/p/d
tol=1e-12

Andrew. 1.2e-13 422 7e+3 4.1e-13 361 7 9.7e-13 200 2e+5 4/ 1/ 8 1.1e-12 185 2e+5 5/ 1/ 8
C60 2.6e-14 9 2e+3 6.4e-6 358 21 2.8e-12 26 7e+4 9/ 3/ 6 9.2e-13 15 4e+4 8/ 2/ 6
cfd1 2.9e-14 4209 6e+4 5.5e-14 383 16 8.9e-12 719 9e+5 4/ 1/ 15 4.2e-12 1017 1e+6 12/ 3/ 15

financ. 9.7e-13 1776 2e+4 5.5e-14 93 8 1.4e-12 600 7e+5 6/ 1/ 15 3.4e-12 467 4e+5 5/ 1/ 15
Ga10As. 2.8e-12 3479 2e+4 9.4e-14 17251 7 1.1e-12 1558 7e+5 6/ 1/ 8 4.0e-12 963 3e+5 3/ 1/ 9
Ga3As3. 1.2e-12 571 8e+3 3.8e-13 2908 5 9.9e-13 420 3e+5 4/ 1/ 9 9.5e-13 338 2e+5 5/ 1/ 9

shallo. 3.9e-14 1532 2e+4 2.7e-13 126 8 3.2e-12 600 6e+5 5/ 1/ 12 4.0e-13 505 4e+5 5/ 1/ 14
Si10H1. 7.9e-14 18 2e+3 2.1e-12 198 7 2.0e-12 16 5e+4 4/ 1/ 8 3.9e-13 20 5e+4 5/ 1/ 8
Si5H12 1.5e-13 22 3e+3 3.6e-14 228 5 2.1e-12 20 6e+4 4/ 1/ 8 9.6e-12 23 6e+4 4/ 1/ 8

SiO 2.7e-13 93 5e+3 2.7e-13 915 7 6.0e-13 64 1e+5 5/ 1/ 8 9.4e-13 68 1e+5 5/ 1/ 8
wathen. 8.2e-13 146 8e+3 1.0e-13 18 7 3.1e-12 163 5e+5 6/ 2/ 15 1.5e-12 120 3e+5 7/ 2/ 15

Ge87H7. 1.8e-13 2250 1e+4 1.5e-13 18852 7 2.6e-13 892 4e+5 5/ 1/ 9 9.9e-13 765 3e+5 5/ 1/ 9
Ge99H1. 1.8e-13 2353 1e+4 6.7e-14 17683 7 9.7e-13 986 5e+5 4/ 1/ 9 9.9e-13 804 3e+5 4/ 1/ 9
Si41Ge. 3.3e-13 4656 2e+4 1.3e-13 46386 7 9.9e-12 1705 5e+5 4/ 1/ 11 9.8e-13 1568 3e+5 5/ 1/ 11
Si87H7. 3.0e-13 5487 2e+4 3.3e+0 1854 1 1.1e-12 2284 6e+5 6/ 1/ 11 1.1e-12 1960 4e+5 5/ 1/ 11
Ga41As. 5.3e-12 33254 8e+4 8.6e-1 998 1 8.8e-13 5700 1e+6 7/ 2/ 11 1.7e-12 3913 5e+5 5/ 2/ 12

the time curves confirm that the three block algorithms, FEAST, MPM and GN, clearly scale better with respect to k
than the Krylov subspace algorithm EIGS. Although EIGS can be the fastest for k small, its solution time increases at
a faster pace than the block methods as k increases.

Among the block algorithms themselves, all three provide comparable performances on cfd1 when computing the
k largest eigenpairs, while FEAST is the fastest when computing k smallest eigenpairs. On Ge87H76, which has a
rather dense Cholesky factor, FEAST is much slower in all runs up to k = 1000 (runs for k > 1000 are skipped to save
time).

8. Concluding Remarks. The goal of this paper is to construct a block algorithm of high scalability suitable for
computing relatively large numbers of exterior eigenpairs for really large-scale matrices on modern computers. Our
strategy is simple: to reduce as much as possible the number of RR calls (Rayleigh-Ritz projections) or, in other words,
to shift as much as possible computation burdens to SU (subspace update) steps. This strategy is based on the following
considerations. RR steps perform small dense eigenvalue decompositions, as well as basis orthogonalizations, thus
possessing limited concurrency. On the other hand, SU steps can be accomplished by block operations like A times
X , thus more scalable.

To reach for maximal concurrency, we choose the power iteration for subspace updating (and also include a Gauss-
Newton method to test the versatility of our construction). It is well known that the convergence of the power method
can be intolerably slow, preventing it from being used to drive general-purpose eigensolvers. Therefore, the key to
success reduces to whether we could accelerate the power method sufficiently and reliably to an extent that it can
compete in speed with Krylov subspace methods in general. In this work, such an acceleration is accomplished mainly
through the use of three techniques: (1) an augmented Rayleigh-Ritz (ARR) procedure that can provably accelerate
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convergence under mild conditions; (2) a set of easy-to-control, low-degree polynomial accelerators; and (3) a bold
stoping rule for SU steps that essentially allows an iterate matrix to become numerically rank-deficient. Of course,
the success of our construction also depends greatly on a set of carefully integrated algorithmic details. The resulting
algorithm is named ARRABIT, which uses A only in matrix multiplications.

Numerical experiments in Matlab on sixteen test matrices from the UF Sparse Matrix Collection show, convinc-
ingly in our view, that the accuracy and efficiency of ARRABIT is indeed competitive to start-of-the-art eigensolvers.
Exceeding our expectations, ARRABIT can already provide multi-fold speedups over the benchmark solver EIGS,
without explicit code parallelization and without running on massively parallel machines, on difficult problems. In
particular, it often only needs two or three, sometimes just one, ARR projections to reach a good solution accuracy.

There are a number of future directions worth pursuing from this point on. For one thing, the robustness and
efficiency of ARRABIT can be further enhanced by refining its construction and and tuning its parameters. Software
development and an evaluation of its parallel scalability are certainly important. The prospective of extending the
algorithm to non-Hermitian matrices and the generalized eigenvalue problem looks promising. Overall, we feel that
the present work has laid a solid foundation for these and other future activities.
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(a) tol = 10−6, MPM, k largest eigenpairs
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(b) tol = 10−12, MPM, k largest eigenpairs
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(c) tol = 10−6, GN, k largest eigenpairs
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(d) tol = 10−12, GN, k largest eigenpairs
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(e) tol = 10−6, MPM, k smallest eigenpairs
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(f) tol = 10−12, MPM, k smallest eigenpairs
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(g) tol = 10−6, GN, k smallest eigenpairs
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FIG. 7.7. A comparison of timing profile among SpMV, SU and ARR
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FIG. 7.8. Comparison results of solution time for computing k eigenpairs of the matrix cfd1
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FIG. 7.9. Comparison results on solution time for computing k eigenpairs of the matrix Ge87H76.


