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Abstract.
Iterative algorithms for large-scale eigenpair computation are mostly based subspace projections consisting

of two main steps: a subspace update (SU) step that generates bases for approximate eigenspaces, followed by a
Rayleigh-Ritz (RR) projection step that extracts approximate eigenpairs. A predominant methodology for the SU
step makes use of Krylov subspaces that builds orthonormal bases piece by piece in a sequential manner. On the
other hand, block methods such as the classic (simultaneous) subspace iteration, allow higher levels of concurrency
than what is reachable by Krylov subspace methods, but may suffer from slow convergence. In this work, we analyze
the rate of convergence for a simple block algorithmic framework that combines an augmented Rayleigh-Ritz (ARR)
procedure with the subspace iteration. Our main results are Theorem 4.5 and its corollaries which show that the
ARR procedure can provide significant accelerations to convergence speed. Our analysis will offer useful guidelines
for designing and implementing practical algorithms from this framework.

1. Introduction. For a given real symmetric matrix A ∈ Rn×n, let λ1, λ2, · · · , λn be
the eigenvalues of A sorted in an descending order: λ1 ≥ λ2 ≥ · · · ≥ λn, and u1, . . . , un ∈
Rn be corresponding eigenvectors such that Aui = λiui, ‖ui‖2 = 1, i = 1, . . . , n and
uTi uj = 0 for i 6= j. An eigen-decomposition of A is then A = UnΛnU

T
n , where for any

integer i ∈ [1, n]

(1.1) Ui = [u1, u2, . . . , ui] ∈ Rn×i, Λi = diag(λ1, λ2, . . . , λi) ∈ Ri×i,

and diag(·) denotes a diagonal matrix with its arguments on the diagonal. For simplicity, we
also write A = UΛUT where U = Un and Λ = Λn. In this paper, we consider A to be large-
scale, which usually implies that A is sparse. Since eigenvectors are generally dense, instead
of computing all n eigenpairs of A, in applications it is only realistic to compute k � n
eigenpairs corresponding to k largest or smallest eigenvalues of A. Fortunately, these so-
called exterior (or extreme) eigenpairs ofA often contain the most relevant information about
the underlying system or dataset represented by the matrixA. Unlike in many previous works,
in this work we concentrate on the cases where k is far larger than a few. As the problem size
n becomes ever larger, the scalability of algorithms with respect to k has become a critical
issue even though k remains a small portion of n.

Most algorithms for computing a subset of eigenpairs of large matrices are iterative in
which each iteration consists of two main steps: a subspace update (SU) step and a projection
step. The subspace update step varies from method to method but with a common goal in find-
ing a matrixX ∈ Rn×k so that its column space is a good approximation to the k-dimensional
eigenspace spanned by k desired eigenvectors. Once X is obtained and orthonormalized, the
projection step aims to extract from XTAX a set of approximate eigenpairs that are optimal
in a sense. The method of choice for this projection step is the Rayleigh-Ritz (RR) proce-
dure, as will be detailed in Section 2. More complete treatments of iterative algorithms for
computing subsets of eigenpairs can be found in several books, for example [1, 15, 19, 4, 23].

For decades, the predominant methodology for subspace update had been (and arguably
still is) Krylov subspace methods, as represented by Lanczos type methods [9, 12] for real
symmetric matrices. These methods generate an orthonormal matrix X one column (or a few
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columns) at a time in a sequential mode. Along the way, each column (or group of columns) is
multiplied by the matrixA and made orthogonal to all the previous ones. In contrast to Krylov
subspace methods, block methods, as represented by the classic simultaneous subspace iter-
ation method [16], carry out the multiplications of A to all columns of X at the same time
in a batch mode. As such, block methods generally require a lower level of communication
intensity.

The operation of the sparse matrix A multiplying a vector, or SpMV, used to be the most
relevant complexity measure for algorithm efficiency. As Krylov subspace methods generally
require considerably fewer SpMVs than block methods do, they had become the methodol-
ogy of choice for the past few decades even up to date. However, the evolution of modern
computer architectures, particularly the emergence of multi/many-core architectures, has se-
riously eroded the relevance of SpMV (and arithmetic operations in general) as a leading
complexity measure, as communication costs have, gradually but surely, become more and
more predominant.

The purpose of this work is to analyze a simple block algorithmic framework for com-
puting a relatively large number of exterior eigenpairs. It is widely accepted that a key short-
coming of block methods is that their convergence can become excessively slow when the
decay rate in relevant eigenvalues is too flat. A central effort of our algorithm construction is
to rectify this issue of slow convergence. Our framework starts with an outer iteration loop
that features an enhanced RR step called augmented Rayleigh-Ritz (ARR) projection which
can provably accelerate convergence under mild conditions. For the SU step, we consider
the classic power method applied to multiple vectors without frequent or periodic orthogo-
nalizations. The well-known technique of polynomial acceleration can also be incorporated
into the framework, but will not be studied in any detail. Our main contribution is an analysis
of the proposed framework that reveals the rate of convergence by the ARR projection, and
provides guidelines for the construction of practical algorithms within the framework.

The rest of this paper is organized as follows. A brief overview of relevant iterative
algorithms for eigenpair computation is presented in Section 2. The ARR procedure and our
algorithm framework are proposed in Section 3. We analyze the ARR procedure in Section
4. Numerical results are presented in Section 5. Finally, we conclude the paper in Section 6.

2. Overview of Iterative Algorithms for Eigenpair Computation. Algorithms for the
eigenvalue problem have been extensively studied for decades. We will only briefly review a
small subset of them that are most closely related to the present work.

Without loss of generality, we assume for convenience that A is positive definite (after
a shift if necessary). Our task is to compute k largest eigenpairs (Uk,Λk) for some k � n
where by definition AUk = UkΛk and UT

k Uk = I ∈ Rk×k. Replacing A by a suitable
function of A, say λ1I −A, one can also in principle apply the same algorithms to finding k
smallest eigenpairs as well.

An RR step is to extract approximate eigenpairs, called Ritz-pairs, from a given matrix
Z ∈ Rn×m whose range space, R(Z), is supposedly an approximation to a desired m-
dimensional eigenspace of A. Let orth(Z) be the set of orthonormal bases for the range
space of Z. The RR procedure is described as Algorithm 1 below, which is also denoted by a
map (Y,Σ) = RR(A,Z) where the output (Y,Σ) is a Ritz pair block.

2.1. Krylov Subspace Methods. Krylov subspaces are the foundation of several state-
of-the-art solvers for large-scale eigenvalue calculations. By definition, for given matrix A ∈
Rn×n and vector v ∈ Rn, the Krylov subspace of order p ≥ 0 associated with A and v is

(2.1) Kp(A, v) = span{v,Av,A2v, . . . , Apv}.
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Algorithm 1: Rayleigh-Ritz procedure: (Y,Σ) = RR(A,Z)

1 Given Z ∈ Rn×m, orthonormalize Z (if necessary) to obtain U ∈ orth(Z).
2 Compute H = UTAU ∈ Rm×m, the projection of A onto the range space of U .
3 Compute the eigen-decomposition H = V T ΣV , where V TV = I and Σ is diagonal.
4 Assemble the Ritz pairs (Y,Σ) where Y = UV ∈ Rn×m satisfies Y TY = I .

Typical Krylov subspace methods include Arnoldi algorithm for general matrices (e.g., [12,
11]) and Lanczos algorithm for symmetric (or Hermitian) matrices (e.g., [20, 10]). In either
algorithm, orthonormal bases for Krylov subspaces are generated through a Gram-Schmidt
type process. Some variants of Jacobi-Davidson methods (e.g., [2, 21]) are based on a differ-
ent framework, but they too rely on Krylov subspace methodologies to solve linear systems
at every iteration.

Direct extensions of Krylov methods lead to so-called block Krylov methods [5, 26, 3, 7]
that replace a single vector v ∈ Rn by a block matrix V ∈ Rn×b, b > 1, for the purpose
of either improving convergence or enhancing parallelism. Starting from V ∈ Rn×b, block
Krylov methods generate an orthonormal basis for the block Krylov subspace

(2.2) Kp(A, V ) = span{V,AV,A2V, . . . , ApV },

and then apply the RR procedure to compute approximate eigenpairs of A. The dimension of
Kp(A, V ) can be up to b times larger than that of Kp(A, v).

2.2. Classic Subspace Iteration. The simple (or simultaneous) subspace iteration (SSI)
method (see [16, 17, 22, 24, 23], for example) extends the idea of the power method which
computes a single eigenpair corresponding to the largest eigenvalue (in magnitude). Start-
ing from an initial (random) matrix U , SSI performs repeated matrix multiplications AU ,
followed by periodic orthogonalizations and RR projections. The main purpose of orthogo-
nalization is to prevent the iterate matrix U from losing rank numerically. In addition, since
the rates of convergence for different eigenpairs are uneven, numerically converged eigen-
vectors can be deflated after each RR projection. A main advantage of SSI is the use of si-
multaneous matrix-block multiplications instead of individual matrix-vector multiplications.
It enables fast memory access and highly parallelizable computation on modern computer
architectures. Suppose that the eigenvalues of A are ordered into a descending order in abso-
lute value and there is a gap between the k-th and the (k + 1)-th eigenvalues. Then the SSI
method is guaranteed to converge to the eigenspace corresponding to the k largest eigenval-
ues from any generic starting point. However, a severe shortcoming of the SSI method is that
its convergence speed depends critically on eigenvalue distributions that can, and often does,
become intolerably slow in the face of unfavorable eigenvalue distributions.

2.3. Trace Maximization Methods. Computing a k-dimensional eigenspace associated
with k largest eigenvalues of A is equivalent to solving:

(2.3) max
X∈Rn×k

tr(XTAX), s.t. XTX = I.

Some block algorithms have been developed based on solving (2.3) or its minimization coun-
terpart. Projection-type methods include the locally optimal block preconditioned conjugate
gradient method (LOBPCG) [8] and more recently the limited memory block Krylov sub-
space optimization method (LMSVD) [14]. At each iteration, these methods solve a subspace
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trace maximization problem of the form

(2.4) Y = arg max
X∈Rn×k

{
tr(XTAX) : XTX = I, X ∈ S

}
,

where X ∈ S means that each column of X is in the given subspace S. LOBPCG [8]
constructs S as the span of the two most recent iterates X(i−1) and X(i), and the residual at
X(i). In LMSVD [14], the subspace S is spanned by the current i-th iterate and the previous p
iterates. For a given S, problem (2.4) is solved by calling Algorithm 1 (i.e., the RR procedure)
with input Z being a basis for S.

3. An Algorithmic Framework with Augmented Rayleigh-Ritz Projections. It is
easy to see that the Rayleigh-Ritz procedure in Algorithm 1 solves the trace-maximization
subproblem (2.4) with the subspace S = R(Z), while the solution Y is such that Y TAY is
a diagonal matrix Σ. Naturally, for a fixed number k the larger the subspace R(Z) is, the
greater chances there are to extract k Ritz pairs of better quality. The classic SSI always sets
Z to the current iterate X(i), while both LOBPCG [8] and LMSVD [14] augment X(i) by
additional blocks. Not surprisingly, using such augmented RR projections is the main reason
why algorithms like LOGPCG and LMSVD generally converge faster SSI does.

In this work, we focus on using an augmented RR procedure where the augmentation is
based on a block Krylov subspace structure as in (2.2). Specifically, for integer p ≥ 0 we let

(3.1) S = Kp(A,X) ≡ span{X,AX,A2X, . . . , ApX}.

With the above subspace S and a basis Z, we solve the trace maximization problem (2.4) via
the RR procedure. We call this procedure the augmented RR (or ARR) procedure, which is
formally presented as Algorithm 2.

Algorithm 2: ARR: (Y,Σ) = ARR(A,X, p)

1 Input X ∈ Rn×k and p ≥ 0 so that (p+ 1)k < n.
2 Construct matrix Kp = [X AX A2X · · · ApX].
3 Perform an RR step using (Ŷ , Σ̂) = RR(A,Kp).
4 Extract k leading Ritz pairs (Y,Σ) from (Ŷ , Σ̂).

We next introduce a prototype algorithmic framework that is equipped with ARR projec-
tions coupled with a block method for subspace update. We will call this prototype framework
ARRABIT, standing for ARR and block iteration. In this framework, at each outer iteration a
subspace update (SU) step is performed, and then an ARR step follows.

In principle, the SU step can be fulfilled by any reasonable block scheme that should not
necessarily require orthogonalizations. In this paper, we consider the classic power iteration
as our main updating scheme, i.e., forX0 = [x1 x2 · · · , xk] ∈ Rn×k, we setX = ρ(A)qX0,
where q > 0 is an integer parameter, and ρ(t) is a polynomial including ρ(t) = t (i.e., no
acceleration). Formally, we state our algorithmic framework as Algorithm 3. Although far
away from numerically viable, this prototype algorithm will allow us to carry out a theoretical
convergence analysis in the setting of exact arithmetic.

3.1. Convergence Rate of Subspace Iteration. It is clear that when there is no aug-
mentation (i.e., p = 0), Algorithm 3 reduces essentially to the classic subspace iteration
where orthonormalization is done every q power iterations. Let {|ρ(λj)|}nj=1 be ordered in a
descending order and

(3.2) X = ρ(A)qX0 ∈ Rn×k,
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Algorithm 3: ARRABIT (prototype)

1 Input matrix A ∈ Rn×n, integers k, p, q > 0 and polynomial ρ(t).
2 Initialize X to a random matrix X0 ∈ Rn×k.
3 while “not converged”, do
4 Power iteration: X = ρ(A)qX .
5 ARR projection: (X,Σ) = ARR(A,X, p) as in Algorithm 2.

where X0 is a generic initial matrix. Then it is well known (see [23] for example) that the
rate of convergence ofR(X) to the eigenspaceR(Uk) is given by

(3.3) 〈R(Uk),R(X)〉 = O

(∣∣∣∣ρ(λk+1)

ρ(λk)

∣∣∣∣q) ,
where 〈·, ·〉 is the angle between two subspaces, provided that there is a gap between |ρ(λk)|
and |ρ(λk+1)|. However, it is a common occurrence that |λk| and |λk+1| are so close to each
other that using polynomial filtering alone can hardly separate them, making the convergence
speed of subspace iteration too slow to be practical in many situations.

To accelerate convergence, one could use more than k columns to compute k eigenpairs.
For instance, if X0, X ∈ Rn×rk in (3.2) for some r ≥ 1, then the convergence rate will be
improved to

(3.4) 〈R(Uk),R(X)〉 = O

(∣∣∣∣ρ(λrk+1)

ρ(λk)

∣∣∣∣q) .
However, the amount of computation in each power iteration will be increased about r times,
making such a strategy unattractive when k is relatively large.

A main result of this paper is to show that with augmentation in Algorithm 3, i.e., p > 0
in the ARR procedure, the faster rate of convergence in (3.4) can be achieved under reasonable
conditions. The main computational cost of achieving such an acceleration is to perform an
RR projection onto an rk-dimensional subspace instead of a k-dimensional one.

3.2. Relations to Block Lanczos Methods. On the surface, the ARR procedure, pre-
sented as Algorithm 2, is mathematically equivalent to block Lanczos methods. Both apply
RR projections to A onto Krylov subspaces: ARR onto Kp(A,X) for X ∈ Rn×k and the
block Lanczos onto Kp(A, V ) for V ∈ Rn×b. When k = b, the two subspaces are indeed
mathematically identical provided that X = V . However, this apparent equivalence is only
an empty proposition.

Extending the Lanczos iterations from a single vector to a few, block Lanczos methods
operate under the implicit condition of b� p. In fact, existing convergence results for block
Lanczos methods require b ≤ p + 1 (see the next paragraph). On the contrary, our ARRA-
BIT framework is primarily constructed to compute a relatively large number of eigenpairs
(say, k = 500) while using only a few augmentation blocks in the ARR procedure (say,
p ≤ 5); that is, we are interested in cases of k � p. This implies that k ≤ p+ 1 would never
hold for the cases of our interest. Consequently, the existing convergence results for block
Lanczos methods are not applicable to the cases of our interest.

The convergence rate of either single-vector or block Lanczos methods has been analyzed
in [18, 15, 6, 13]. All the rate of convergence results developed so far, to the best of our
knowledge, rely on Chebyshev polynomials of the first kind. Specifically, when k eigenpairs
are computed, the error bound for the i-th eigenvector, i = 1, 2, · · · , k, requires evaluating
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the (p + 1 − i)-th degree Chebyshev polynomials of the first kind at a point greater than 1.
For i = k, obviously p ≥ k is necessary in order to ensure the existence of a meaningful
error bound. For the cases of our interest where k � p, none of the existing theoretical error
bounds is applicable, which necessitates an analysis of a different kind.

4. Analysis of the Augmented Rayleigh-Ritz Procedure. In this section, we provide
new understanding on the convergence of the ARR procedure from a different perspective
than the existing results. To facilitate our analysis, we first propose a new measure of accuracy
for approximations of eigenspaces.

4.1. A Measure of Accuracy. Recall that A = UΛUT is an eigen-decomposition of
A ∈ Rn×n. For integer k ∈ [1, n), we introduce the partition U = [Uk Uk+] where

(4.1) Uk = [u1 u2 · · ·uk] and Uk+ = [uk+1 uk+2 · · · un].

Let X ∈ Rn×k be an approximate basis for R(Uk), the range space of Uk. It is desirable
for X to have a large projection in R(Uk) relative to that in R(Uk+). We will measure the
accuracy of X based on the numbers in {‖uTi X‖}ni=1, where ‖uTi X‖ = ‖(uiuTi )X‖ is the
projection of X onto the one-dimensional subspaceR(ui).

For a fixed X , however, the number ‖uTi X‖ is unique if and only if the multiplicity of
λi, the i-th eigenvalue of A, is one; otherwise different orthonormal bases can give rise to
different values of ‖uTi X‖. For a reason that will soon becomes clear, we first introduce the
following technical assumption without loss of generality.

Let X ∈ Rn×k be a given nonzero matrix. For an index i ∈ [1, k], if λi = λi+` is a
multiple eigenvalue whose multiplicity equals ` + 1 for some ` > 0, then without loss of
generality we will always assume that an orthonormal basis, {uj}i+`

j=i, for the eigenspace of
λi is so constructed that the smallest value in {‖uTj X‖}

i+`
j=i is maximized over the set of all

orthonormal bases for the eigenspace of λi. That is, the set {uj}i+`
j=i solves the following

problem

(4.2) max
{v0,··· ,v`}

min
j∈{0,··· ,`}

‖vTj X‖

where {v0, · · · , v`} ⊂ Rn represents any orthonormal basis for the eigenspace of λi.
The optimal value in (4.2) is always positive unless V TX = 0 for V = [v0, · · · , v`],

meaning that all columns of X are perpendicular to the eigenspace of λi. As long as V TX
has a single nonzero column, one can rotate it into the first orthant so that the rotated matrix,
say R(V TX), has no zero rows, while the columns of V RT remain an orthonormal basis for
the eigenspace of λi that guarantees a nonzero objective value in (4.2).

Now we define a measure for the relative accuracy of X to be the ratio

(4.3) δk(X) ,
maxi>k ‖uTi X‖
mini≤k ‖uTi X‖

.

Clearly, δk(X) = 0 means that all the columns of X are in R(Uk). In general, the smaller
δk(X) is, the better is X as an approximate basis for R(Uk). By our technical assumption
above, the denominator in the ratio is zero if and only if the columns of X are all inR(Uk+)
— the orthogonal complement ofR(Uk).

Let Y ∈ Rn×k be another approximate basis for the eigenspace R(Uk) which is con-
structed from X . To compare Y with X , we naturally compare δk(Y ) with δk(X). More
precisely, we will try to estimate the ratio δk(Y )/δk(X) and show that under reasonable
conditions, it can be made much less than the unity.
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4.2. Technical Results. Before calling the ARR procedure, we have an iterate matrix
of rank k, X ∈ Rn×k, from which we construct the augmented matrix

Kp = [X AX · · · ApX]

for a given p ≥ 0. In view of A = UΛUT , we rewrite UTKp as

(4.4) UTKp = [UTX ΛUTX · · · ΛpUTX] ∈ Rn×(p+1)k.

We next normalize the rows of UTKp. Let D = diag(d11, . . . , dnn) be the diagonal matrix
whose diagonal consists of the row norms of UTKp. From the structure of UTKp in (4.4),
we see that

(4.5) dii = ‖eTi UTKp‖ = ‖uTi X‖‖eTi V ‖, i = 1, 2, · · · , n,

where ei is the i-th column of the n× n identity matrix and V is the following Vandermonde
matrix constructed from the spectrum of A:

(4.6) V =

 1 λ1 λ21 · · · λp1
...

...
...

...
...

1 λn λ2n · · · λpn

 ∈ Rn×(p+1),

where λ1, · · · , λn are the eigenvalues of A.
Let D† be the pseudo-inverse of D, that is, D† is a diagonal matrix with (D†)ii = 1/dii

if dii > 0 and zero otherwise. The normalization of the rows of UTKp in (4.4) leads to the
matrix

(4.7) G = D†UTKp = [C ΛC · · · ΛpC] for C = D†UTX,

so that the nonzero rows of G all have unit norm. Now we can rewrite

(4.8) Kp = UDD†UTKp = UDG.

For p ≥ 0 so that k + pk < n, let m be an integer parameter so that m ∈ [k, k + pk].
Consider the partition

(4.9) Kp = [Um Um+]

[
D1 0
0 D2

] [
G1

G2

]
= [Um Um+]

[
D1G1

D2G2

]
,

where D and G are partitioned following that of U . In particular, G1 ∈ Rm×(p+1)k consists
of the first m rows of G. In the sequel, we will make use of an important assumption on G
which we will call the G-Assumption:

ASSUMPTION 4.1 (G-Assumption). The first m ∈ [k, k + pk] rows of G in (4.7) are
linearly independent; i.e., G1 ∈ Rm×(p+1)k in (4.9) has full row rank.

The G-Assumption implies that (i) D1 > 0, and (ii) the pseudo-inverse G†1 exists such
that G1G

†
1 = Im×m. In view of (4.9), let us define

(4.10) Y = KpG
†
1D
−1
1 Ek = [Um Um+]

[
Im×m

D2G2G
†
1D
−1

]
Ek,

where Ek ∈ Rm×k consists of the first k columns of the m × m identity matrix; i.e., Y
consists of the first k columns of the matrix in front of Ek. Another implication of the G-
Assumption is that UT

mX must not have zero rows; otherwise the rank of the first m rows of
C in (4.7) would be less than m, contradicting the G-Assumption.
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We summarize what we already have for Y into the following lemma which directly
follows from (4.10).

LEMMA 4.2. Let A = UΛUT be the eigen-decomposition of A = AT ∈ Rn×n. For
integers k > 0 and p ≥ 0 satisfying (p + 1)k < n, and m ∈ [k, k + pk], let G and Kp

be defined as in (4.7) and (4.8), respectively, for a rank-k matrix X ∈ Rn×k. Under the
G-Assumption, Y in (4.10) has the expression

(4.11) Y = UmEk + Um+SEk ∈ Rn×k,

where S = D2G2G
†
1D
−1
1 and Ek ∈ Rm×k consists of the first k columns of Im×m.

Since Y is extracted from the subspaceR(Kp) constructed from X , a central question is
how much improvement Y can provide over X as an approximate basis forR(Uk). We study
this question by comparing the accuracy measure δk(Y ) relative to δk(X).

LEMMA 4.3. Let dii be defined in (4.5). Under the conditions of Lemma 4.2,

(4.12) δk(Y ) ≤ maxi>m dii
mini≤k dii

max
1≤i≤n−m

‖eTi G2G
†
1Ek‖.

Proof. It follows from (4.11) that

uTi Y =

 eTi , i ∈ [1, k]
0T , i ∈ [k + 1,m]

eTi−mSEk, i ∈ [m+ 1, n]

where ei ∈ Rk, 0 ∈ Rk and ei−m ∈ Rn−m. These formulas imply that in δk(Y ) (see
definition (4.3)) the denominator is mini≤k ‖uTi Y ‖ = 1; thus

(4.13) δk(Y ) = max
i>k
‖uTi Y ‖ = max

i>m
‖uTi Y ‖.

In view of the formula S = D2G2G
†
1D
−1
1 , and the definition of D in (4.5), we have

uTi Y = diie
T
i−mG2G

†
1D
−1
1 Ek, i ∈ [m+ 1, n].

Therefore, for i ∈ [m+ 1, n], ‖uTi Y ‖ ≤ (dii/minj≤k djj)‖eTi−mG2G
†
1Ek‖. It follows that

max
i>m
‖uTi Y ‖ ≤

maxi>m dii
mini≤k dii

max
1≤i≤n−m

‖eTi G2G
†
1Ek‖,

which, together with (4.13), establishes (4.12).

4.3. Main Results. For any matrix M of n rows, for m ∈ [k, k + pk] we define

(4.14) Γk,m(M) ,
maxj>m ‖eTj M‖
minj≤k ‖eTj M‖

.

By this definition, δk(X) = Γk,k(UTX). It is worth observing that (i) Γk,m(M) is mono-
tonically non-increasing with respect to m for fixed k and M ; (ii) Γk,m(M) is small if the
first k rows of M are much larger in magnitude than the last n − m; (iii) if {‖eTi M‖} is
non-increasing, then Γk,m(M) ≤ 1. Specifically, since the eigenvalues of A are ordered in a
descending order in absolute value, for the matrix V in (4.6) we have

(4.15) Γk,m(V ) =
‖eTm+1V ‖
‖eTk V ‖

=

(
1 + λ2m+1 + · · ·+ λ2pm+1

1 + λ2k + · · ·+ λ2pk

)1/2

≤ 1;
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and the faster the decay is between λk and λm+1, the smaller is Γk,m(V ).
Moreover, when M = z ∈ Rn is a vector which is in turn the element-wise product of

two other vectors x, y ∈ Rn, i.e., zi = xiyi for i = 1, · · · , n, then it holds that

(4.16) Γk,m(z) ≤ Γk,m(x) Γk,m(y).

In our first main result, we refine the estimation of δk(Y ) and compare it to δk(X).
LEMMA 4.4. Under the conditions of Lemma 4.2,

δk(Y ) ≤ Γk,m(UTX)Γk,m(V )
∥∥∥G†1Ek

∥∥∥
2
,(4.17)

δk(Y )

δk(X)
≤

maxj>m ‖uTj X‖
maxj>k ‖uTj X‖

Γk,m(V )
∥∥∥G†1Ek

∥∥∥
2
.(4.18)

Proof. Observe that the ratio in the right-hand side of (4.12) is none other than Γk,m(d).
Applying (4.16) to M = d where d = diag(D) with Dii defined in (4.5), xi = ‖uTi X‖
and yi = ‖eTi V ‖, we derive Γk,m(d) ≤ Γk,m(UTX)Γk,m(V ). In addition, we observe that
‖eTi G2G

†
1Ek‖ ≤ ‖G†1Ek‖2 for all i ∈ [1, n−m], since the row vectors eTi G2 are either zero

or unit vectors. Substituting the above two inequalities into (4.12), we arrive at (4.17). To
derive (4.18), we simply observe that

Γk,m(UTX) =
maxj>m ‖uTj X‖
minj≤k ‖uTj X‖

= δk(X)
maxj>m ‖uTj X‖
maxj>k ‖uTj X‖

.

Now (4.18) follows from substituting the above into (4.17) and dividing by δk(X).
Next we consider the case where X ∈ Rn×k is the result of applying a block power

iteration q times to an initial random matrix X0 ∈ Rn×k. In this case,

(4.19) X = ρ(A)qX0 = Uρ(Λ)qUTX0, UTX = ρ(Λ)qUTX0,

where ρ(A) is a polynomial or rational matrix function accelerator (or filter). Without loss of
generality, we can assume that X0 has rank k and δk(X0) <∞.

We make the following assumption about the filtered spectrum:

(4.20) min
1≤j≤k

|ρ(λj)| = |ρ(λk)| ≥ |ρ(λk+1)| ≥ · · · ≥ |ρ(λm+1)| = max
m<j≤n

|ρ(λj)|.

If there is a significant decay in {|ρ(λj)|} from the index k + 1 on, then it is likely that

(4.21) max
j>k
|ρ(λj)|q‖uTj X0‖ = |ρ(λk+1)|q‖uTk+1X0‖,

especially when a similar decay also exists in {‖uTj X0‖}.
In view of (4.4) and (4.19), we have

UTKp =
[
UTX ΛUTX · · · ΛpUTX

]
= ρ(A)q

[
UTX0 ΛUTX0 · · · ΛpUTX0

]
.

Recall that G1 consists of the first m normalized rows of UTKp. Hence,

(4.22) G1 = diag (d11, · · · , dmm)
−1 [

UT
mX0 ΛmU

T
mX0 · · · Λp

mU
T
mX0

]
,

where Um is formed by the first m columns of U , Λm = diag (λ1, · · · , λm), and dii are
defined by (4.5) with X replaced by X0.
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When m = k + pk, G1 is square and

(4.23) G−11 =
[
UT
mX0 ΛmU

T
mX0 · · · Λp

mU
T
mX0

]−1
diag (d11, · · · , dmm) .

THEOREM 4.5. Let X be defined in (4.19) from an initial matrix X0 ∈ Rn×k, Γk,m(V )

be defined by (4.15), and G†1Ek be the first k columns of the pseudo-inverse of G1 defined in
(4.22). Assume that the conditions of Lemma 4.2 hold. Then

δk(Y ) ≤ cm
∣∣∣∣ρ(λm+1)

ρ(λk)

∣∣∣∣q ,(4.24)

δk(Y )

δk(X)
≤ c′m

∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q ,(4.25)

where

cm = Γk,m(UTX0)Γk,m(V )
∥∥∥G†1Ek

∥∥∥
2
,(4.26)

c′m = Θk,m(UTX0)Γk,m(V )
∥∥∥G†1Ek

∥∥∥
2
,(4.27)

and

(4.28) Θk,m =


maxj>m ‖uT

j X0‖
minj>k ‖uT

j X0‖
, in general,

maxj>m ‖uT
j X0‖

‖uT
k+1X0‖

, when (4.21) holds.

Proof. Since UTX = ρ(Λ)qUTX0,

(4.29) ‖uTi X‖ = |ρ(λi)|q‖uTi X0‖, i = 1, · · · , n.

By (4.16) and (4.20),

Γk,m(UTX) ≤ Γk,m(ρ(Λ)q)Γk,m(UTX0) =

∣∣∣∣ρ(λm+1)

ρ(λk)

∣∣∣∣q Γk,m(UTX0).

Substituting the above into (4.17) yields (4.24) and (4.26).
To prove (4.25), we utilize (4.29) and (4.20) to derive the inequality

maxj>m ‖uTj X‖
maxj>k ‖uTj X‖

=
maxj>m |ρ(λj)|q‖uTj X0‖
maxj>k |ρ(λj)|q‖uTj X0‖

≤
∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q maxj>m ‖uTj X0‖
minj>k ‖uTj X0‖

.

Substituting the above into (4.18) yields (4.25) and (4.27) for the general case of (4.28). The
second case of (4.28) is obvious when (4.21) holds true.

Finally, let us state a few special cases that are of particular interest.
COROLLARY 4.6. If the G-Assumption holds for m = rk where r = p+ 1, then

δk(Y ) ≤ crk
∣∣∣∣ρ(λrk+1)

ρ(λk)

∣∣∣∣q ,(4.30)

δk(Y )

δk(X)
≤ c′rk

∣∣∣∣ρ(λrk+1)

ρ(λk+1)

∣∣∣∣q ,(4.31)
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where crk and c′rk are defined in (4.26) and (4.27), respectively, in which m = rk and G†1
reduces to G−11 defined in (4.23).

When p = 0 (no augmentation) and ρ(t) = t (no polynomial acceleration), inequality
(4.30) reduces to

(4.32) δk(Y ) ≤ ck
∣∣∣∣λk+1

λk

∣∣∣∣q ,
which recovers the convergence rate of the classic subspace iteration method.

All the above results give asymptotic rates of convergence in exact arithmetic. We note
that both constant cm and c′m depend on the size of ‖G†1Ek‖ which tends to increase with
m. In finite precisions, the term |ρ(λrk+1)/ρ(λk+1)|q cannot be made smaller than roundoff
errors (in fact, this term may be much larger than roundoff errors). Therefore, an excessively
large crk (or c′rk), which could occur whenX is badly conditioned, may render the right-hand
of (4.30) (or (4.31)) numerically irrelevant. The corollary below should be more meaningful
in finite-precision situations, whose proof follows directly from (4.24) and (4.25).

COROLLARY 4.7. If the G-Assumption holds for m = rk where r = p+ 1, then

δk(Y ) ≤ Ψk(p, q) ≡ min
m∈[k,rk]

cm

∣∣∣∣ρ(λm+1)

ρ(λk)

∣∣∣∣q ,(4.33)

δk(Y )

δk(X)
≤ Ψ′k(p, q) ≡ min

m∈[k,rk]
c′m

∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q ,(4.34)

where cm and c′m are defined in (4.26) and (4.27), respectively.

4.4. Interpretation of results. To put our results into perspective, let us examine the
results and make several remarks on points of interest. Unless otherwise specified, our dis-
cussion is under the assumption of exact arithmetic by default. The second point below is of
particular importance.

1. Without augmentation (p = 0), the obtained convergence rate of δk(Y ), see (4.24)
for m = k, reduces to |ρ(λk+1)/ρ(λk)| which is the same rate of the classic power
iteration applied to ρ(A) (see (3.3)).

2. With augmentation and m = (p + 1)k = rk, the convergence rate of δk(Y ), see
(4.30), increases to |ρ(λrk+1)/ρ(λk)| — the same rate as if k is increased to rk
during the power iteration (see (3.4)). This is particularly important since the only
extra work required for such an acceleration is an RR on (p + 1)k vectors in place
of an RR on k vectors.

3. The error bound (4.25) indicates that for appropriate values of p and q, Y can be
made better than X , while X is the result of applying a q-step subspace iteration to
an initial matrix. Since the subspace iteration itself is convergent under mild condi-
tions, (4.25) guarantees, in exact arithmetic, a faster convergence of ARRABIT (i.e.,
Algorithm 3) under suitable conditions.

To improve the performance of Algorithm 3, we may choose a suitable polynomial ac-
celerator ρ to enlarge the gap between |ρ(λk)| and |ρ(λrk+1)|, and select q to be as large
as permissible by numerical stability. Ideally, such parameters should be chosen adaptively.
These practical issues, however, will be left to be studied in another work along with many
other practical issues.

Let us now take a close look at the two constants cm and c′m in (4.26) and (4.27), respec-
tively, both taking the form of a three-term product in which only the first terms differ.

1. For fixed k, p andm, cm and c′m are solely determined byA andX0, but independent
of q — the number of power iterations applied to X0 to produce X , see (4.19).
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2. The first terms, Γk,m(UTX0) and Θk,m(UTX0), should have reasonable sizes in
generic cases when X0 is randomly chosen. In the case where X0 is already a good
approximate basis for R(Uk), one can expect a significant decay in {‖uTj X0‖}. In
this case, most likely (4.21) holds and the second case of (4.28) applies.

3. When the eigenvalues of A are ordered in a descending order in absolute value, the
second term Γk,m(V ) is less than one, see (4.15).

4. The third term ‖G†1Ek‖2, however, presents a complicating factor. How this term
behaves for p > 0 requires a scrutiny which will be the topic of Section 4.5.

Finally, we remark that all of our results point out that there exists a matrix Y ∈ Rn×k

in the augmented subspace R(Kp) (which is constructed from the matrix X) that, under
reasonable conditions, will be a better approximate basis for R(Uk) than X is. It is known
that the Ritz pairs produced by the RR procedure are optimal approximations to the eigenpairs
of A from the input subspace (see [15] for example). Therefore, the derived bounds in this
section should be attainable by the Ritz pairs generated by the ARR procedure.

4.5. Validity of G-Assumption. A key condition for our results is the so-called G-
Assumption in (4.1), that requires the first m rows of G in (4.7) to be linearly independent.
The larger m is, the better the convergence rate will be.

Let us examine the matrix G1 defined in (4.22). To simplify notation, we redefine

C = diag (d11, · · · , dmm)
−1
UT
mX0

and rewrite

(4.35) G1 = [C ΛmC · · · Λp
mC] ∈ Rm×(p+1)k,

where Λm is the m×m leading block of Λ.
We first give a necessary condition for the m rows of G1 to be linearly independent.
PROPOSITION 4.8. Let integer m ∈ [k + 1, k + pk] for p > 0. The matrix G1 defined

in (4.35) has full rank m only if Λm has no more than k equal diagonal elements (i.e., Λm

contains no eigenvalue of multiplicity greater than k).
Proof. Without loss of generality, suppose that the first k + 1 diagonal elements of Λm

are all equal, i.e., λ1 = λ2 = · · · = λk+1 = α. Then the first k + 1 rows of G1 is of the
form [C ′ αC ′ · · · αpC ′], where C ′ consists of the first k + 1 rows of C. Since all column
blocks are scalar multiples of C ′ which has k columns, the rank of G1 is at most k.

The fact that G1 is built from C which has only k columns dictates that for the rank of
G1 to be greater than k, it is necessary that the maximum multiplicity in Λm must not exceed
k. An interesting question then is the following: what happens if the maximum multiplicity
in Λm is exactly k? For this question we present an answer for the case of p = 1 andm = 2k.
In this case, when the maximum multiplicity in Λm is exactly k, then G1 is nonsingular in a
generic sense.

Let m = 2k, and let us do the partitioning

(4.36) C =

[
C1

C2

]
, Λm =

[
Λ1

Λ2

]
, G1 =

[
C1 Λ1C1

C2 Λ2C2

]
,

where Cj ,Λj , j = 1, 2, are all k × k submatrices. Recall that Λ1 consists of the first k
eigenvalues of A and Λ2 the next k eigenvalues.

PROPOSITION 4.9. Let p = 1, m = 2k, and C, Λm and G1 be defined as in (4.36). Let
r be the maximum multiplicity in Λm. Assume that any k × k submatrix of C is nonsingular.
Then G1 is nonsingular for r = k.



Accelerating Convergence by ARR procedure 13

Proof. We will show that when λ1 or λk+1 has multiplicity k, then G1 is nonsingular.
All the other cases can be similarly proven with appropriate permutations before partitioning
(4.36) is done. First, the nonsingularity of G1 is equivalent to that of[

C1 Λ1C1

C2 Λ2C2

] [
C−11

C−11

]
=

[
I Λ1

C2C
−1 Λ2C2C

−1

]
=

[
I Λ1

F Λ2F

]
,

where F = C2C
−1
1 is nonsingular by our assumption. By eliminating the (2,1)-block, we

obtain a block upper triangular matrix in which the (2,2)-block is Λ2F − FΛ1. Hence, the
nonsingularity of G1 is equivalent to that of FΛ1 − Λ2F , or in turn equivalent to that of

(4.37) K = Λ1 − F−1Λ2F.

If the multiplicity of λ1 is k (implying that Λ1 = λkI), then K = F−1(λkI − Λ2)F . On
the other hand, if the multiplicity of λk+1 is k (implying that Λ2 = λk+1I), then K =
Λ1 − λk+1I . In either case, K is nonsingular since λk+1 < λk; hence, so is G1.

In Proposition 4.9, we assume that every k × k submatrix of C is nonsingular. It is
well-known that for a generic random matrix C, this assumption holds with high probability.
Therefore, in a generic setting G1 is nonsingular with high probability.

Intuitively, the more variance exists in Λm, the more likely that G1 will have full row
rank m. However, this remains unproven for the case of maximum multiplicity r < k. To
examine this case, let us rewrite K in (4.37) into a sum of two matrices,

K = (Λ1 − λkI) + F−1(λkI − Λ2)F.

The first is diagonal and positive semidefinite, and the second has positive eigenvalues when
λk > λk+1, but is generally asymmetric. So far, we have not been able to find a result that
guarantees nonsingularity for such a matrix K. However, in a generic setting where C and
diagonal Λ are random matrices, nonsingularity should be expected with high probability
(which has been empirically confirmed by our numerical experiments).

It should be noted that G1 being nonsingular with m = (p + 1)k represents the best
scenario where the acceleration potential of p-block augmentation is fully realized. However,
m < (p + 1)k does not represent a failure, considering the fact that as long as m > k, an
acceleration is still realized to some extent. Practically speaking, what is really relevant is the
condition number of G1 rather than its nonsingularity.

Once it is established for p = 1 and m = 2k that in a generic setting G1 is nonsingular
whenever the maximum multiplicity of Λm is less than or equal to k, the same result can in
principle be extended to the case of p = 3 by considering

G1 =
[
C ΛC Λ2C Λ3C

]
=
[
[C ΛC] Λ2[C ΛC]

]
= [Ĉ Λ̂Ĉ],

where Ĉ = [C ΛC] and Λ̂ = Λ2, which has the same form as for the case p = 1. It will also
cover the case of p = 2 where the matrix involved is a submatrix of the one for p = 3.

5. Numerical Results. In this section, we conduct proof-of-concept numerical exper-
iments on Algorithm 3 (ARRABIT) to examine the tightness of inequality (4.33), that is,
δk(Y ) ≤ Ψk(p, q),with various parameter values on both random and deterministic matri-
ces. Our measure δk(Y ) is also compared with two other standard measures

πk(Y ) = tan〈R(Uk),R(Y )〉 and νk(Y ) =
‖UT

k+Y ‖2
‖UT

k Y ‖2
,
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where 〈·, ·〉 is the angle between two subspaces.
For simplicity of experiments, we apply a simple polynomial function

(5.1) ρ(A) = A5,

to test matrices A that are chosen to be positive definite unless otherwise specified. Since
ρ(A)q = A5q , in this case the effect of polynomial filtering can be absorbed into the power.
For the sake of generality, however, we choose to keep these two items separate. Indeed, the
performance of ARRABIT can be made much better if more sophisticated polynomials such
as Chebyshev polynomials are judiciously used.

It is well-known that too large of a q-value can make (A5q)X lose numerical rank. In
our experiments, we choose the power q in Step 4 of Algorithm 3 after doing some trial and
error in advance to avoid numerical difficulties. In addition, we normalize each column of X
once it is multiplied by A to help enhance numerical stability.

Let (xi, µi), i = 1, 2, · · · , k, be computed Ritz pairs where xTi xj = δij . We terminate
the algorithm when the following maximum relative residual norm becomes smaller than a
tolerance 10−12, i.e.,

(5.2) maxres , max
i=1,...,k

{
‖Axi − µixi‖2
max(1, |µi|)

}
≤ 10−12.

All numerical experiments are performed in MATLAB on a MacBook Pro computer with a
Intel Core i7 (2.5 GHZ) CPU and 16GB memory.

5.1. Experiments on Random Matrices. We first examine the inequalities (4.24) and
(4.25), specifically, the following five quantities:

(5.3) ‖G†1Ek‖2, cm, c′m, cm

∣∣∣∣ρ(λm+1)

ρ(λk)

∣∣∣∣q , c′m

∣∣∣∣ρ(λm+1)

ρ(λk+1)

∣∣∣∣q ,
at either the first or the second iteration of ARRABIT. We note that all five quantities are
m-dependent (though not explicit in the first one); and the last two are the right-hand sides of
(4.24) and (4.25), respectively.

In this set of experiments, we generate matrices of the form A = V diag(s)V > where V
is an orthonormalization of an n×n random matrix whose entries are i.i.d. standard Gaussian,
and s ∈ Rn is also i.i.d. standard Gaussian whose elements are sorted into a descending order.
Throughout the tests, we set n = 1000, k = 50 (the number of eigenpairs), and q = 15
(the number of power steps), and vary p (the number of augmentation blocks) from 1 to 3.
Figure 5.1 shows the values of the above five quantities on a typical random instance for
m = k, k + 1, . . . , (p+ 1)k. The following observations are now in order:

• The top three plots in Figure 5.1 indicate that at the first iteration, which starts from
a random initial X0, the coefficients cm and c′m are basically dominated by the term
‖G†1Ek‖2 which tends to increase as m increases. On the other hand, the two right-
hand sides tend to decrease as m increases, and the decay rate improves as the p
value increases.

• At the second iteration, where the initial X0 is no longer random, cm is smaller than
and c′m larger than ‖G†1Ek‖2, by approximately a uniform factor for all m values in
either case. Consequently, the right-hand side of (4.24) is smaller than that of (4.25)
by approximately a constant factor allm values. These results suggest that it is more
difficult to make improvements at the second iteration than at the first one, which
appears intuitively reasonable.
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• For the case of p = 1, error bound (4.25) loses its meaningfulness since c′m values
are large and the right-hand side becomes greater than 1 (and similar situation occurs
to (4.24) as well for most m values). Once p is increased to 2 or 3, the right-hand
sides of both (4.24) and (4.25) behave as expected.

• Normally, the minima of the right-hand sides of both (4.24) and (4.25) occur at or
near the end where m = k + pk, which validates the rate of convergence results
(4.24) and (4.25) in Corollary 4.6.
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FIG. 5.1. The five quantities in (5.3) for m ∈ {k, k + 1, · · · , (p+ 1)k} on a typical random matrix.

In order to see the distributions of relevant quantities involved in the right-hand side of
(4.33), i.e., Ψk(p, q), we run ARRABIT on 1000 random instances and present statistics for 9
quantities given in Table 5.1. Three of these quantities are the 3 factors that define cm, see
(4.26). Recall that Ψk(p, q) is the minimum value over m ∈ [k, rk]. The values of the first
five m-dependent quantities in Table 5.1 are corresponding to the m that gives Ψk(p, q). The
last three quantities in Table 5.1, δk(Y ), νk(Y ) and πk(Y ), are the three accuracy measures
of Y as an approximate basis for R(Uk). Finally, X0 and Y refer to the input and output
matrices, respectively, at each outer iteration of ARRABIT.

Table 5.1 gives the minimum, mean and maximum values of the 9 quantities at the first
and second ARRABIT iterations over 1000 replications for p = 1, 2, 3. In addition, Figure 5.2
presents histograms of log10(‖G†1Ek‖2) and log10(cm) over these 1000 replications. From
these results, we can make several observations:

• the constants cm remain moderate in size at the first two ARRABIT iterations;
• the error bound (4.33) becomes tighter as approximate solutions become more ac-

curate (but before the effects of roundoff errors kick in);
• the two accuracy measures δk(Y ) and νk(Y ) are of the same order; on the other

hand, πk(Y ) is larger than νk(Y ) when Y is far from R(Uk), but essentially coin-
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cides with νk(Y ) as soon as Y gets closer toR(Uk);
• for p = 3, on average two iterations are enough for ARRABIT to achieve an accuracy

of δk(Y ) < 6 × 10−7; in favorable cases one iteration is sufficient to reach an
accuracy of δk(Y ) < 6× 10−8.

TABLE 5.1
Statistics of 9 quantities over 1000 random replications. (In some cases q < 15 is used due to numerical issues.)

‖G†
1Ek‖2 Γk,m(UTX0) Γk,m(V ) cm

∣∣∣ ρ(λm+1)

ρ(λk)

∣∣∣q Ψk(p, q) δk(Y ) νk(Y ) πk(Y )

first iteration, p = 1
min 5.0e+01 1.4e+00 8.3e-01 8.8e+01 2.6e-05 2.8e-02 4.0e-05 7.6e-05 7.6e-05

mean 1.4e+03 1.7e+00 8.8e-01 2.2e+03 1.9e-02 3.3e+01 2.0e-02 2.8e-02 3.3e-02
max 5.7e+04 2.2e+00 1.0e+00 8.3e+04 9.5e-01 4.5e+03 3.8e+00 9.9e-01 6.1e+00

first iteration, p = 2
min 1.7e+02 1.5e+00 5.3e-01 2.8e+02 7.5e-09 7.1e-05 1.4e-07 4.6e-07 4.6e-07

mean 1.1e+04 1.7e+00 6.3e-01 1.2e+04 2.5e-03 1.1e+01 2.5e-04 6.9e-04 6.9e-04
max 1.9e+05 2.1e+00 1.0e+00 2.0e+05 9.7e-01 2.6e+03 1.9e-02 3.8e-02 3.8e-02

first iteration, p = 3
min 1.1e+02 1.5e+00 2.8e-01 1.5e+02 1.7e-11 2.8e-08 5.7e-08 1.7e-07 1.7e-07

mean 7.6e+04 1.7e+00 3.7e-01 4.8e+04 1.5e-03 2.9e+00 1.0e-05 3.6e-05 3.6e-05
max 1.4e+06 2.2e+00 9.9e-01 7.9e+05 9.5e-01 4.2e+02 1.0e-03 3.2e-03 3.2e-03

second iteration, p = 1
min 1.4e+00 4.0e-05 8.2e-01 5.7e-05 5.6e-09 1.6e-06 1.2e-09 2.2e-09 2.2e-09

mean 1.2e+06 1.7e-02 9.7e-01 2.8e+03 6.0e-01 1.5e-01 1.8e-03 1.9e-03 1.9e-03
max 3.6e+08 3.8e+00 1.0e+00 2.1e+05 1.0e+00 3.7e+01 2.1e-01 2.1e-01 2.1e-01

second iteration, p = 2
min 1.7e+00 3.8e-08 5.3e-01 4.2e-05 7.2e-14 2.0e-16 4.1e-13 8.0e-13 8.0e-13

mean 1.5e+08 1.9e-04 6.2e-01 6.4e+03 1.5e-02 4.6e-05 1.9e-05 2.0e-05 2.0e-05
max 4.1e+10 6.5e-03 1.0e+00 6.5e+05 9.9e-01 1.1e-02 5.3e-03 5.3e-03 5.3e-03

second iteration, p = 3
min 5.1e+02 1.2e-08 2.8e-01 2.2e-05 1.7e-17 5.1e-22 7.3e-14 9.3e-14 8.9e-14

mean 7.5e+06 9.1e-06 3.6e-01 2.7e+00 1.2e-12 1.8e-10 5.2e-07 7.4e-07 7.4e-07
max 4.4e+09 1.0e-03 4.6e-01 2.4e+02 7.1e-10 1.7e-07 1.9e-04 4.0e-04 4.0e-04

3 4 5
0

20

40

60

80

100

120
p = 2

3 4 5 6
0

20

40

60

80

100

120
p = 3

(a) log10(‖G†
1Ek‖2), first iteration

3 4 5
0

20

40

60

80

100

120
p = 2

3 4 5
0

20

40

60

80

100

120
p = 3

(b) log10 (cm), first iteration

2 4 6 8 10
0

10

20

30

40

50

60

70
p = 2

4 6 8
0

10

20

30

40

50

60

70
p = 3

(c) log10(‖G†
1Ek‖2), second iteration

-4 -2 0 2 4
0

10

20

30

40

50

60

70
p = 2

-4 -2 0 2
0

10

20

30

40

50

60

70
p = 3

(d) log10(cm), second iteration

FIG. 5.2. Histograms of log10(‖G†
1Ek‖2) and log(cm) where m is corresponding to Ψk(p, q).
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5.2. Experiments on A Deterministic Matrix. In this subsection, we use a test matrix
that is the finite difference Laplacian on an L-shaped domain generated by the MATLAB
command: A = delsq(numgrid(’L’,52)). The resulting A is symmetric positive
definite of dimensionality n = 1875. We show the spectrum of A in Figure 5.3(a), and
plot four types of spectral ratios in Figure 5.3(b): |λm+1/λk| and |ρ(λm+1)/ρ(λk)|q for
q = 9, 12, 15 and k = 100. Since there is no significant decay in the first a few hundred
eigenvalues, the first spectral ratio |λm+1/λk| is close to 1 as m varies from 100 to 300. The
other three ratios, after polynomial transformations and with a suitable power q, can be made
much smaller than 1 as m increases.
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FIG. 5.3. spectral information of the delsq matrix with n = 1875

In our experiments, we focus our attention to investigating the tightness of the error
bound (4.33), that is, δk(Y ) ≤ Ψk(p, q). We plot the left and the right hand sides with
different parameter values p, q, k at different iterations. Specifically, the parameter ranges are
p ∈ {0, 1, . . . , 4}, q ∈ {3, 6, 9, 12, 15} and k ∈ {50, 100, 150, . . . , 300}, although only a
subset of the combinations are tested with results given in Figures 5.4-5.8.

We first mention a special case in Figure 5.4 where two other accuracy measures πk(Y )
and νk(Y ) are included in addition to δk(Y ). The results show that the three measures are
very close to each other, especially when Y is close to R(Uk). For this reason, we exclude
πk(Y ) and νk(Y ) from all subsequent tests.

Now we make several observations based on Figures 5.4-5.8.

• The error bound (4.33) holds in all the tests except in two cases where roundoff
errors appear to have prevented δk(Y ) from going below its corresponding Ψk(p, q)
value that is near the machine epsilon.

• In all the tests, the error bound (4.33) becomes considerably tighter at the second
iteration than at the first one.

• When there is augmentation (i.e., p > 0), the bound Ψk(p, q) in (4.33) always de-
creases as any one of the parameters p, q and k increases within its range.

• When p, q or k are suitably chosen, a single ARRABIT iteration is often sufficient for
δk(Y ) to reach an accuracy of 10−6 or below on this particular test problem.

• The acceleration provided by ARR over the plain RR is best illustrated in Figure 5.6
(just compare the two plots with p = 0 with the other four plots with p > 0).
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FIG. 5.4. Ψk(p, q) and δk(Y ) versus p at two iterations with q = 9, 12, 15 and k = 100

5.3. Parameter Selections. Our results reveal that the convergence rate of ARRABIT is
tightly bounded by the spectral ratio (|ρ(λk+1+pk)|/|ρ(λk)|)q and a few constants that are not
controllable by us. The smaller the ratio is, the faster is the convergence in exact arithmetic.
For a given k, the selectable parameters are the polynomial function ρ(·), the number of aug-
mentation block p and the power q. All these parameters need to be chosen and synthesized
carefully, and ideally in an adaptive manner. Once ρ(·) and p are chosen, to make the spectral
ratio as small as permissible by numerical stability, a sensible scheme for selecting q is to
keep increasing q until the matrix ρ(A)qX becomes sufficiently badly conditioned, implying
that the size of the spectral ratio is near the level of roundoff errors.

6. Concluding Remarks. This paper is a first step towards constructing a block algo-
rithm of high scalability suitable for computing relatively large numbers of exterior eigenpairs
for large-scale matrices on modern computers. Our strategy is simple: to reduce as much as
possible the number of Rayleigh-Ritz projections (RR calls) or, in other words, to shift as
much as possible computation burdens to subspace update (SU) steps. This strategy is based
on the considerations that RR steps perform small dense eigenvalue decompositions, as well
as basis orthogonalizations, thus possessing limited concurrency; on the other hand, SU steps
can be accomplished by block operations like A times X , thus more scalable.

To reach for maximal concurrency, we choose the classic subspace iteration for subspace
updating. It is well known that the convergence of the subspace iteration can be excessively
slow, preventing it from being widely used to drive general-purpose eigensolvers. Therefore,
the key to success reduces to whether one could accelerate the subspace iteration sufficiently
and reliably to an extent so that it can compete in speed with Krylov subspace methods in
general. In our analysis, we show that an effective acceleration is provably accomplishable
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FIG. 5.5. Ψk(p, q) and δk(Y ) versus q at two iteration with p = 1, 2, 3 and k = 100

through the use of an augmented Rayleigh-Ritz (ARR) procedure, preferably coupled with
polynomial accelerations in practice. The resulting prototype algorithm combining ARR and
subspace iteration is named ARRABIT, which usesA only in matrix multiplications. Our main
theoretical results appear in Theorem 4.5 and its corollaries. Numerical tests are performed to
check the tightness of the derived error bounds on random and deterministic matrices. Among
other things, the tests indicate that it is possible for ARRABIT to use only two or three ARR
projections to reach a good solution accuracy, even when the number of augmentation blocks
is limited to only 1 or 2.

There are a number of future directions worth pursuing from this point on. The foremost
is a comprehensive implementation of ARRABIT and its numerical verifications (see [25] for
an initial work in this direction). Software development is also important. The present work
has laid a solid foundation for these and other future activities.
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FIG. 5.8. Iteration history of Ψk(p, q) and δk(Y ) with various p, k and q = 9


