SFEMaNS
version 4.1 (work in progress)
Reference documentation for SFEMaNS

Go to the source code of this file.
Functions  
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with  f (r,\theta, z)\f $the cylindrical coordinates 
Variables  
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode  independently 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic  form 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic  theta 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic  z 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic  t 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f  $f_h 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f  sin_m 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f  Omega_ {T}^{2D}\f$ 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f  Omega_v 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f  left 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as  follows 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments< li > For f $n geq0 f let f  bu {n+1}\f$ 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments< li > For f $n geq0 f let f that matches the Dirichlet boundary conditions of the  problem 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments< li > For f $n geq0 f let f that matches the Dirichlet boundary conditions of the be the solutions of the following formulation for all f  textbf 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments< li > For f $n geq0 f let f that matches the Dirichlet boundary conditions of the be the solutions of the following formulation for all f f  text 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f  (  r  , 
\  theta,  
z  
) 
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f $f_h 
Definition at line 204 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments<li> For f $n geq0 f let f bu {n+1}\f$ 
Definition at line 327 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as follows 
Definition at line 218 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic form 
Definition at line 193 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode independently 
Definition at line 193 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f left 
Definition at line 218 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f Omega_ {T}^{2D}\f$ 
Definition at line 214 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f Omega_v 
Definition at line 215 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments<li> For f $n geq0 f let f that matches the Dirichlet boundary conditions of the problem 
Definition at line 327 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f sin_m 
Definition at line 207 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic t 
Definition at line 199 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments<li> For f $n geq0 f let f that matches the Dirichlet boundary conditions of the be the solutions of the following formulation for all f f text 
Definition at line 342 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic f with f $t f the time and f $M f the number of Fourier modes considered The unknown f f f f f f f f Omega_v f and f Omega f We also consider f a penalty method of the divergence of the velocity field is also implemented The method proceeds as the pressure and the pressure increments< li > For f $n geq0 f let f that matches the Dirichlet boundary conditions of the be the solutions of the following formulation for all f f f textbf 
Definition at line 330 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic theta 
Definition at line 193 of file doc_intro.h.
section doc_intro_frame_work_num_app Numerical approximation subsection doc_intro_fram_work_num_app_Fourier_FEM Fourier Finite element representation The SFEMaNS code uses a hybrid Fourier Finite element formulation The Fourier decomposition allows to approximate the problem’s solutions for each Fourier mode modulo nonlinear terms that are made explicit The variables are then approximated on a meridian section of the domain with a finite element method The numerical approximation of a function f $f f is written in the following generic z 
Definition at line 193 of file doc_intro.h.